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Equilibration of quantum chaotic systems
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The quantum ergordic theorem for a large class of quantum systems was proved by von Neumann
[Z. Phys. 57, 30 (1929)] and again by Reimann [Phys. Rev. Lett. 101, 190403 (2008)] in a more practical
and well-defined form. However, it is not clear whether the theorem applies to quantum chaotic systems. With a
rigorous proof still elusive, we illustrate and verify this theorem for quantum chaotic systems with examples. Our
numerical results show that a quantum chaotic system with an initial low-entropy state will dynamically relax
to a high-entropy state and reach equilibrium. The quantum equilibrium state reached after dynamical relaxation
bears a remarkable resemblance to the classical microcanonical ensemble. However, the fluctuations around
equilibrium are distinct: The quantum fluctuations are exponential while the classical fluctuations are Gaussian.
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I. INTRODUCTION

Boltzmann pondered on how to understand thermodynam-
ics with Newton’s equations; his answer to this question
along with Gibbs’ theory have become the foundation of
classical statistical mechanics [1,2]. After quantum mechanics
was fully formulated, many giants in physics discussed a
similar issue: how to understand thermodynamics with the
Schrödinger equation [3,4]. In a 1929 paper, von Neumann
provided an answer to this question by proving two inequalities
“in full rigor and without disorder assumptions” [4]. These two
inequalities, which he called the quantum ergordic theorem
and the quantum H theorem, respectively, laid down a
foundation for quantum statistical mechanics. However, this
work has been largely forgotten and apparently has never
been mentioned in any modern textbook on quantum statistical
mechanics [1,2]. There are discussions on why this work has
almost been forgotten [5]. In our opinion, one of the likely
reasons is that von Neumann introduced a rather unfamiliar
concept, macroscopic operators, to prove his theorems. It
appears very hard to compute these commuting macroscopic
operators and related variables such as an entropy defined for
a pure quantum state [4].

Recently, there has been renewed interest in the foundation
of quantum statistical mechanics [6–41], perhaps due to the
remarkable progress in experimental realization of coherent
quantum systems [42–47]. An important result achieved is
an inequality proved by Reimann [6,7] and later modified
by Short et al. [8,9]. This inequality can be regarded as a
different version of von Neumann’s quantum ergodic theorem.
The advantage of this new inequality is that every variable
involved is well known and can be computed. For this reason,
when we discuss quantum ergodic theorem, we refer to the
inequality proved by Reimann unless stated otherwise.

According to the quantum ergodic theorem, an isolated
quantum system starting with a far-from-equilibrium state will
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relax dynamically to an equilibrium state and stay there with
very small fluctuations for almost all of the time. To be more
specific, for an isolated quantum system described by the wave
function |ψ(t)〉, it will relax to an equilibrium state

ρ∞ =
∑

k

|ck|2 |Ek〉 〈Ek| , (1)

where |Ek〉 is the energy eigenstate of the system and
ck’s are the expansion coefficients of |ψ(t)〉 in terms of
these eigenstates. The density matrix ρ∞ is regarded as the
microcanonical ensemble by von Neumann [4]. It is different
from the usual microcanonical ensemble found in textbooks
[1,2], where the coefficients ck’s take an identical value
within a narrow energy shell. As |ck|’s do not change with
time, the microcanonical density matrix ρ∞ is completely
determined by the initial condition. By utilizing this fact
and the supposition principle, we were able to predict a
new quantum state which is at equilibrium with multiple
temperatures, challenging the conventional wisdom that an
equilibrium state has only one temperature [10].

The quantum ergodic theorem holds only for quantum
systems with no degenerate energy gaps. Mathematically, this
condition is expressed as [4,6,7]

Ek − El = Em − En ⇒
⎧⎨
⎩

Ek = El and Em =En,

or
Ek = Em and El =En.

(2)

However, it is not clear at all how this condition of nonde-
generate energy gap is related to the familiar classification
of quantum systems by their integrability. For a general
integrable system, this condition is not satisfied as quantum
integrable systems have the Poisson distribution of energy level
spacing [48], which imply the existence of many degenerate
eigen-energies. However, there are plenty of examples of
integrable systems, which have no energy degeneracy at all.
In fact, there are already reports of dynamical relaxation in
integrable systems [49,50].

The case for quantum chaotic systems is more complicated.
As is well known, quantum chaotic systems have the Wigner
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distribution of energy level spacing [48]. The Wigner distribu-
tion has two prominent features: zero probability at zero energy
level spacing and a peak at a finite energy level spacing. The
former feature means that there is little degeneracy, which is
the favorite for condition (2) being satisfied. The latter implies
that there are a large number of energy level spacings around
the peak value, which is clearly not the favorite for condition
(2) being satisfied. As a result, it is not clear at all, in the
sense of mathematical rigor, whether the quantum ergodic
theorem and the H theorem hold for quantum chaotic systems
or not. We led by intuition tend to believe that the quantum
ergodic theorem and the H theorem should hold for quantum
chaotic systems. Von Neumann believed that his theorems
should hold when condition (2) is violated by “infrequent
exceptions” [4]. This belief is now confirmed by Short and
Farrelly [9]. Despite this progress, it is still not clear how
these mathematical conditions are related to the integrability
of a system. The main purpose of this paper is to demonstrate
that the quantum ergordic theorem applies to quantum chaotic
systems numerically with examples.

In this paper we study two quantum chaotic systems, the
ripple billiard system [11,51] and the Henon-Heiles system
[10,52]. Our numerical simulation shows that both systems
will indeed dynamically relax to an equilibrium state where
the overall features of the wave function no longer change.
For the ripple billiard system, where the successive energy
eigenstates can be computed, the quantum ergodic inequality
can be verified directly. In addition, we define entropies for
pure quantum states in the spirit of von Neumann as it is not
clear how to compute the entropy defined for a pure quantum
state by him. We find that these entropies will approach
maximized values, offering another indication that the system
is indeed equilibrating dynamically.

We have also analyzed the properties of the equilibrium
state reached after the dynamical relaxation in quantum chaotic
systems. We find an interesting correspondence between the
quantum equilibrium state and the classical microcanonical
ensemble. We discuss the underlying mechanism with the cor-
respondence between the quantum and the classical Liouville
equations. At the end, we consider the statistical properties of
fluctuations in quantum chaotic systems and find a distinction
between the distributions of quantum fluctuations and the
classical fluctuations.

This paper is organized as follows. In Sec. II we introduce
the two quantum chaotic systems, ripple billiard and Henon-
Heiles. In Sec. III we study the dynamical equilibration of
quantum chaotic systems. In Sec. IV we numerically verify
the quantum ergodic theorem in the ripple billiard system.
In Sec. V we discuss the quantum-classical correspondence
for the equilibrium states in detail. In Sec. VI we discuss the
fluctuation properties of the quantum systems and their corre-
sponding classical systems. Finally, in Sec. VII we discuss the
implications for many-body cases and summarize our results.

II. MODELS

We focus on single-particle quantum chaotic systems. There
are two main reasons for this choice. First, single-particle
quantum systems are much less challenging numerically and
easier to analyze. Second, according to random matrix theory,

(a) (b)

FIG. 1. (a) Energy contours of the Henon-Heiles potential
V (x,y). The thick solid lines are the contours for V/Vc = 1/2, 1, 2,
from inside to outside. The unit of axis is rc. A, B, and C are three
saddle points and O is the stable point. (b) The shape of a ripple
billiard system.

the statistics of energy level spacings of quantum chaotic
systems only depends on the type of matrix of the system when
its Hamiltonian is expressed in an orthonormal basis [48]. This
property has nothing to do with whether the system is single
particle or many body. According to condition (2), the property
of the eigenenergy spectrum is the most important factor
determining whether the quantum system will equilibrate
or not. There are properties that exist only in many-body
systems, for example, the correlations [53]. So far, no one
has shown that the correlation plays any essential role in the
equilibration process. We also emphasize that we here consider
isolated quantum systems and do not consider the dynamics of
quantum systems under external driving [54]. It is well known
that a classical system will behave very differently under
different drivings. This feature seems to be shared by quantum
systems [54].

A single particle in a two-dimensional chaotic potential is
described by the Hamiltonian

H = p2/2m + V (x,y). (3)

We choose the Henon-Heiles potential [52] and the ripple
billiard system [51] as two examples for our study. The Henon-
Heiles potential is given by V (x,y) = U

2 (x2 + y2) + λ(x2y −
y3

3 ). The energy contour of Henon-Heiles potential is shown
in Fig. 1(a); it has four special points: one stable point O
(0,0) and three saddle points A (0,rc), B (−

√
3

2 rc,− 1
2 rc), C

(
√

3
2 rc,− 1

2 rc), where rc ≡ U
λ

. The classical orbits in the Henon-
Heiles potential are chaotic when the energy is above Vc/2 and
approach fully chaotic when the energy is close to Vc, with
Vc ≡ U 3

6λ2 . For later use, we set p0 = √
2mVc.

Billiard systems are a two-dimensional areas surrounded
by infinite potential walls at the edges. For the ripple billiard
system [51], as shown in Fig. 1(b), the left and right edges
are described by functions x = ∓[b − a cos(πy/b)] and the
up and down edges are two straight lines at y = 2b and y = 0.
The two geometrical parameters a, b control the shape of the
billiard. When a = 0 the ripple billiard system is a square
with width 2b. As a increases from zero, it changes from an
integrable system to a mixed, then to a fully chaotic system.
It becomes mixed again when a becomes very large. We have
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chosen for our computation a = 6,b = 15, which corresponds
to a fully chaotic case.

The two systems are chosen because each of them has its
own advantages. For the ripple billiard system, its successive
eigenstates from the ground state up to the 3000th excited state
can be computed numerically with great precision [51]. To the
best of our knowledge, for all other studied quantum chaotic
systems, the high-energy eigenstates can only be computed
selectively [55]. The famous Henon-Heiles system is chosen
to bring our study beyond billiards where |p| is a constant of
motion, allowing us to gain more insights into general systems.
In addition, we note that the Henon-Heiles system is beyond
what is considered by von Neumann and others as it has no
bound eigenstates mathematically. However, its resonant states
can be regarded as bound states in our numerical studies, where
the dynamical evolution lasts for a finite time and hard-wall
boundaries are imposed at a distance [56].

III. DYNAMICAL EQUILIBRATION

We numerically study the wave packet dynamics with the
Schrödinger equation for these two systems. In our numerical
simulation we set m = 1

2 , � = 1. The initial states are highly
localized moving Gaussian wave packet for both systems,

ψ(	r,t = 0) = α√
π

exp

[
−1

2
α2(	r − 	ri)

2

]
exp(i 	pi · 	r/�),

(4)

with 1/α = 3rc/40, 	ri = (0.3,0)rc, and 	pi = √
7/10(cos 10◦,

sin 10◦) p0 for the Henon-Heiles system; 1/α = a/6, 	ri =
(0,0), and 	pi = (5,0) for the ripple billiard system. In both
systems, a classical particle with the above initial position
	ri and momentum 	pi has a fully chaotic orbit, which we
confirmed by computing the Poincare section.

The subsequent dynamical evolutions of these two Gaussian
wave packets are computed. For the ripple billiard system, the
dynamical evolution can be found in Ref. [11]; for the Henon-
Heiles system, the evolution is illustrated in Ref. [10]. Both
evolutions are very similar to each other. Following is a brief
description. The smooth Gaussian wave packet starts to spread
out and gets diffracted by the potentials; the interference be-
tween diffracted waves begins to make the wave packet appear
more and more irregular; eventually, the wave packet spreads
out over the classically allowed region rather uniformly with
small speckles. This overall feature will no longer change,
signaling that the system has dynamically equilibrated.

To illustrate this dynamical equilibration process, we
compute how the expectation of momentum changes with time
for the ripple billiard system. The results for both px and py

are shown in Fig. 2, where the momenta are seen to relax to
equilibrium values after a short period of large fluctuations.

Equilibration should be accompanied by a maximizing
entropy. Von Neumann was able to define an entropy for a pure
quantum state and proved that this entropy will stay very close
to its ensemble entropy almost all the time (the quantum H

theorem) [4]. However, there appears to be no viable procedure
which one can use to compute this version of von Neumann
entropy. As an alternative, we define an entropy in the spirit of
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FIG. 2. (Color online) Time evolution of (a) 〈ψ | Px |ψ〉 and
(b) 〈ψ |Py |ψ〉 in the ripple billiard system. The red lines are tr(ρ∞px)
and tr(ρ∞px). The initial condition of 	P is (5,0). Ts ≡ 2(a+b)

|pi |/m
.

von Neumann,

Sr = −
∫ |ψ(x,y,t)|2

|ψ∞(x,y)|2 ln
|ψ(x,y,t)|2
|ψ∞(x,y)|2 dxdy, (5)

where |ψ∞(x,y)| is the long-time average of |ψ(x,y,t)|2 [10].
As shown in Fig. 3, the entropy will increase with time with
small fluctuations and eventually saturate to a maximized
value. The increasing entropies in Fig. 3 can be regarded as a
heuristic illustration of von Neumann’s quantum H theorem.

In summary, we have observed numerically that dynamical
equilibration indeed occurs in both the Henon-Heiles system
and the ripple billiard system: An initially localized Gaussian
wave packet with low entropy will dynamically evolve into
a quantum state with a maximized entropy, where the wave
packet spreads out and looks irregular with speckles. This
is clearly consistent with both the quantum ergodic theorem
and the quantum H theorem. It is reasonable to expect that
this kind of dynamical equilibration occurs in any quantum
chaotic system. Meanwhile, we note that the equilibration
process for the Henon-Heiles system deserves more detailed
study in the future. As noted before, the Henon-Heiles system
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FIG. 3. Time evolutions of entropy in (a) the Henon-Heiles
system and (b) the ripple billiard system.
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has no bound states. As a result, a Gaussian wave packet
will eventually leak out and spread out in the whole space,
not confined to just the triangle area, beyond the tunneling
time. In our numerical simulation, the equilibration time is
clearly much shorter than the tunneling time. It would be
very interesting to investigate in which situations where the
equilibration time becomes shorter than the tunneling time.
It might also be worthwhile to formulate mathematically the
ergodic theorem for these kind of systems.

IV. VERIFICATION OF QUANTUM ERGODIC THEOREM

The mathematical expression of the quantum ergodic
theorem is an inequality. For an arbitrary operator A, this
inequality reads [6,8,9]

σ 2
A ≡ 〈|tr{A |ψ(t)〉 〈ψ(t)|} − tr(Aρ∞)|2〉t

‖A‖2
� 1

deff
, (6)

where deff ≡ 1/
∑

k |ak|4 measures effectively how many
energy eigenstates are occupied in the state |ψ〉. The subscript
t in 〈 〉t indicates a long-time averaging. We emphasize that
this inequality is much stronger than the approximation

〈tr{A |ψ(t)〉 〈ψ(t)|}〉t ≈ tr(Aρ∞), (7)

which can be readily proved for any quantum systems with no
energy degeneracy. The above approximation can still be true
even when tr{A |ψ(t)〉 〈ψ(t)|} fluctuates greatly from tr(Aρ∞)
as long as the positive large fluctuations cancel out the negative
large fluctuations. However, the fluctuations cannot cancel
each other in the inequality (6); this means that the inequality
(6) dictates that the fluctuations are very small most of the
time when deff 
 1. So, the approximation relation (7) coupled
with the inequality (6) shows that the long-time averaging is
equivalent to ensemble averaging, the essence of ergodicity, in
all quantum systems that satisfy condition (2).

To test numerically the inequality (6), one needs to compute
the energy eigenstates |Ek〉 successively up to a high energy
value and find the expansion coefficients ck . We are able to do it
for the ripple billiard system. The expansion coefficients of the
initial state Eq. (4) are computed and shown in Fig. 4, where
ck’s are grouped according the symmetry of the eigenstates.
Both groups peak around 500th eigenstate and have a width of
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FIG. 4. The distribution of expansion coefficients ck in the ripple
billiard system for (a) even-even eigenstates and (b) odd-even
eigenstates.

around 300. With the computed ck’s, we find that the effective
dimension deff is around 300, satisfying the condition deff 
 1.

Without loss of generality, we choose to compute the left
hand side (l.h.s.) of the inequality Eq. (6) for momentum
operator 	P = (px,py). By using the symmetry of the eigen-
states, one can readily show exactly that tr(ρ∞px) = 0 and
tr(ρ∞py) = 0. The time evolution of momentum is shown in
Fig. 2. We calculate the long-time average between t = 10Ts

and t = 14Ts . The time unit Ts ≡ 2(a+b)
|pi |/m

is the period of the
motion of a classical particle with the same initial momentum
and position. We find that 〈tr{|ψ(t)〉 〈ψ(t)| px}〉t � 0.0021 and
〈tr{|ψ(t)〉 〈ψ(t)| py}〉t � −0.0033, very close to the ensemble
average tr(ρ∞px) = 0 and tr(ρ∞py) = 0, respectively. At the
same time, we find that

〈|tr{ 	P |ψ(t)〉 〈ψ(t)|} − tr( 	Pρ∞)|2〉t
= 〈|tr{ 	P |ψ(t)〉 〈ψ(t)| |2〉t � 0.0039. (8)

For operator 	P , the maximum value ‖ 	P ‖2 =
sup{〈ψ |P †P |ψ〉}. Since we have chosen m = 1/2 and
the wave function is only nonzero inside the billiard, we have
‖ 	P ‖2 = sup{〈ψ |H |ψ〉}; that is, ‖ 	P ‖2 is effectively the largest
energy in the occupied Hilbert space. According to Fig. 4, the
occupied Hilbert space is roughly spanned by the eigenstates
between the 100th even-even (odd-even) eigenstates and the
1000th even-even (odd-even) eigenstates. The upper bound
can be estimated as the eigenvalue of the 1000th even-even
(odd-even) eigenstates, i.e., ‖ 	P ‖2 � 55.64. So, the relative
fluctuation or the l.h.s. of Eq. (6) is σ 2

	P � 7 × 10−5. As

1/deff � 3 × 10−3, we see that the inequality (6) is clearly
satisfied. Moreover, our computation, in fact, shows that the
right hand side (r.h.s.) of the inequality is about 30 times larger
than the l.h.s. This indicates that it is possible to improve the
inequality, for example, replacing ‖A‖2 with the averaged
value.

Before we proceed further, we want to mention that the
inequality for quantum ergodicity proved by von Neumann
[4] has a different upper bound on the r.h.s. However, his
theoretical formalism relies on the introduction of macroscopic
operators (such as macroscopic position and momentum) that
commute with each other. It appears not be a straightforward
task to construct these macroscopic operators and compute
them numerically. As a result, we did not compute von
Neumann’s upper bound.

V. QUANTUM-CLASSICAL CORRESPONDENCE
AT EQUILIBRIUM

According to the quantum ergodic theorem, the equilibrium
state is described by the density matrix ρ∞, which can be
regarded as the quantum microcanonical ensemble. We ana-
lyze this quantum equilibrium state and find that it possesses
many features that resemble the classical microcanonical
ensemble. This kind of quantum-classical correspondence has
been studied and found in a spin system [57,58]. To illustrate
this quantum-classical correspondence, we compare ρ∞ in
both the real space and the momentum space with the classical
microcanonical ensemble

ρc = 1

�
δ[H ( 	p,	r) − E], (9)
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FIG. 5. (Color online) (a) Comparison between quantum and classical equilibrium distributions in the Henon-Heiles system. P (x) is for the
real space and f (p) for momentum space. The unit for x is rc and the unit for p is p0. (b) Section of the Husimi function Hr.p ≡ 〈	r, 	p|ρ̂(t)|	r, 	p〉 in
the Henon-Heiles system at t = 0.2126. The red circle is the section of the classical phase space density ρc(	r, 	p). The section is at y = 0,py = 0.
The unit for x is rc and the unit for px is p0. The coarse-graining parameter for the Husimi function σ � 0.11rc.

where � is the normalization factor and H ( 	p,	r) is the cor-
responding classical Hamiltonian of the fully chaotic system.
Here we choose the Henon-Heiles system to analyze because
its probability distribution in phase space is more general
than the billiard system where | 	p| is a constant of motion.
For the quantum results, we calculate n∞(	r) = 〈	r|ρ∞|	r〉 and
n∞( 	p) = 〈 	p|ρ∞| 	p〉 by long-time averaging. For the classical
results, we calculate the probability distribution in real space
and momentum space nc(	r) and nc( 	p) from the microcanonical
ensemble ρc(r,p) by integration over 	p and 	r separately.

For better comparison, we choose the following marginal
distribution without loss of generality: For the real space, we
integrate out the y dimension to obtain the density distribution
P (x); for the momentum space, we integrate out the angle
variable to find the momentum distribution f (p). The results
are shown in Fig. 5(a), where we see that the quantum and
classical distributions are consistent, except for some quantum
tunneling effect indicated by the nonzero value of the quantum
distribution in the classically forbidden region.

This correspondence also exists in phase space. In quantum
mechanics, the uncertainty relation does not allow the con-
struction of a phase space in principle. However, a kind of
quasiquantum distribution in phase space can be constructed
with the Husimi function Hr,p [59,60]. This is to calculate
the projection of the density operator on a Gaussian wave

packet 〈 	r ′|	r, 	p〉 = C exp[− ( 	r ′−	r)2

2σ 2 + i 	p·( 	r ′−	r)
�

] centered around
position 	r and momentum 	p,

Hr,p ≡ 〈	r, 	p|ρ|	r, 	p〉 . (10)

The Husimi function can be understood as coarse-grained
phase space density with parameter σ controlling the coarse
graining. We have computed the Husimi function Hr,p for
a density matrix ρ ≡ |ψ〉 〈ψ | at t = 0.2126 (which is after
equilibration) and compared it to the classical ensemble ρc. For
easy illustration, we use a two-dimensional section in the four-
dimensional phase space of the Henon-Heiles system. Without
loss of generality, we choose the section at y = 0,py = 0
and the results are plotted in Fig. 5(b). We can see that the
Husimi function centers around the phase space where the

classical density is nonzero, indicating the quantum-classical
correspondence. Note that the quantum fluctuations in the
phase space are much larger than the ones seen in Fig. 5(a). The
reason is that the results in Fig. 5(a) are obtained after being
averaged over time and integrated over a given dimension.

One possible understanding for this correspondence is
through the quantum and classical Liouville equations. In-
tuitively, one can think of the quantum wave packet as an
ensemble of particles with equivalent classical probability
density in the phase space [61,62]. The time evolution of quan-
tum density matrix operator ρ(t) is governed by the quantum
Liouville equation, ∂tρ(t) = 1

i�
[H,ρ(t)]; the time evolution

of the classical probability density ρc(t) is governed by the
classical Liouville equation, ∂tρc(t) = [H,ρc(t)]PB. These two
time evolution equations have an identical algebraic structure,
implying a possible quantum-classical correspondence in the
equilibrium states. Moreover, there are numerical evidences
for this correspondence in the studying of the time evolution of
the ensemble average and quantum expectation value [61,62].
Note that this quantum-classical correspondence is not implied
in the quantum ergodic theorem [4,6–9].

We emphasize here that the quantum-classical correspon-
dence discussed so far needs to be understood in the sense of
typicality [19–21,24,63]. As dictated by the quantum ergodic
theorem, the equilibrium state is completely determined by the
initial expansion coefficient |ck|2. For a typical initial state,
|ck|2 should have a distribution similar to what is shown in
Fig. 4 with a large effective dimension deff . For these states,
we expect that the quantum-classical correspondence hold.
However, for many atypical states, this quantum-classical cor-
respondence may not hold. For example, the ergodic inequality
(6) holds for an energy eigenstate; but energy eigenstate does
not belong to the typicality class. Here we use the ripple billiard
system to illustrate this point as the energy eigenstates in this
system can be computed successively [11,51]. We study the
position space marginal distribution f (y) = ∫ 〈	r|ρ|	r〉 dx, and
compare it with the classical result [b − a cos(2πy/L)]/bL.
We compute f (y) first for the equilibrium state ρ(t 
 Ts).
We see in Fig. 6(a) that the quantum result (black line)
is in good agreement with the classical result (red line).
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FIG. 6. (Color online) (a) Marginal distributions f (y)
∫

n(	r)dx

for the equilibrium state in the ripple billiard system. The black line
is for the quantum result while the red line is for the classical result.
(b) The density distribution n(r) of the equilibration state in the ripple
billiard system. (c) Marginal distribution f (y) for the 493rd even-even
eigenstate in ripple billiard system. (d) Density distribution n(x,y)
of the 493rd even-even eigenstate. For this eigenstate, the expansion
coefficient |ci |2 = 0.0086 in the initial Gaussian wave packet (4).

For completeness, we also show the density 〈	r|ρ|	r〉 in
Fig. 6(b).

For eigenstates, we choose to study the eigenstates that have
relatively large expansion coefficients |ck|2 in the initial wave
packet (4). We find that the results for them are similar. Without
loss of generality, we choose the 493rd even-even eigenstates
with coefficient |ck|2 = 0.0086 as the example. The marginal
distribution f (y) for this eigenstate is shown in Fig. 6(a).
Compared with the result for the equilibrium state in Fig. 6(a),
we see a clear distinction: the eigenstate has larger fluctuations
and bigger deviation from the classical distribution. In fact,
this distinction is also seen in the density plot. As seen in
Fig. 6(d), the density distribution for the eigenstate has certain
uneven patterns, similar to what have been found in “scar”
states [64]; these patterns are absent in the distribution of
the equilibrium state [Fig. 6(b)]. Although eigenstates appear
to be too special, their difference from a typical quantum
state does indicate that not all quantum states that satisfy
the inequality (6) can relax to an equilibrium state which
has the quantum-classical correspondence. In other words, all
quantum states in a chaotic system may be classified into two
groups: one has the quantum-classical correspondence and the
other does not. It is not yet clear whether there are simple
ways to separate them other than using direct computation as
we did. In Ref. [58], a remarkable correspondence between
eigenstates and their classical counterparts is found for the
shape of eigenfunctions and the local spectral density of
states. This seems to indicate that when the properties not
related to the complexity of a wave function are considered,
the quantum-classical correspondence can still be found for
eigenstates.
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FIG. 7. (a) Log plot of the distribution function P [n(ri)/n∞(ri)]
of the relative quantum fluctuation n(ri)/n∞(ri). (b) Log plot of the
distribution function P [n(pi)/n∞(pi)] of the relative quantum fluctu-
ation n(pi)/n∞(pi). (c) The phase of the equilibrated wave function in
the real space for the Henon-Heiles system. (d) The normalized spatial
correlation function C(r) = 1

〈�n2〉 〈[n(0) − n̄][n(r) − n̄]〉 of density in
the real space at equilibrium for the Henon-Heiles system.

VI. FLUCTUATION PROPERTY

While the equilibrium density operator ρ∞ shares a good
correspondence with the classical microcanonical ensemble
ρc, the operator ρ(t) does fluctuate around the equilibrium
density operator, as shown in Fig. 6(b). This fluctuation
has been shown to obey the exponential distribution in the
ripple billiard system [11]. Here we focus on the Henon-
Heiles system to bring this exponential distribution beyond
billiard systems. To quantitatively show the fluctuation, we
compare the probability density in both the real space and the
momentum space; i.e., we compare n(ξ ) ≡ 〈ξ |ρ(t)|ξ〉 with
n∞(ξ ), ξ = 	r, 	p.

Numerically, this is realized by calculating the density
n(ξi) and n∞(ξi)(i = 1, . . . ,N) of N small discrete region
and calculating the distribution of the relative fluctuation
n(ξi)/n∞(ξi). Due to limited numerical precision, we choose
different N in the real space and momentum space and the
results are shown in Figs. 7(a) and 7(b). Both distributions
are found to be well fitted by exponential distribution. Due
to the different N , the coefficients of the fitted exponential
distributions are different in the real space and the momentum
space.

This exponential distribution results from the randomness
of wave function in a quantum chaotic system. Though the sys-
tem is deterministic and evolves strictly with the Schrödinger
equation, the scattering by the potential wall brings the
wave function to a state where the probability density and
phases behave like random numbers. Here we demonstrate
the randomness by computing the phase of the wave function
and the normalized probability density correlation function
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FIG. 8. (a) The distribution function P [n(ri)/n∞(ri)] of the rel-
ative classical fluctuation n(ri)/n∞(ri). (b) The distribution function
P [n(pi)/n∞(pi)] of the relative classical fluctuation n(pi)/n∞(pi).

C(r) = 1
〈�n2〉 〈[n(0) − n̄][n(r) − n̄]〉 in the real space after

equilibrium in the Henon-Heiles system. The results are shown
in Figs. 7(c) and 7(d). We see that the phases vary rapidly in
real space and the spatial correlation in real space decreases
exponentially to zero within small distance compared to the
characteristic length scale rc. These features indicate certain
randomness in the behavior of wave function in quantum
chaotic systems. With this established randomness, the proof in
Ref. [11] with slight modification can explain this exponential
distribution (see also the Appendix). Note that this randomness
of wave function in quantum chaotic system is consistent with
the idea of typicality [21]. It also supports, though not directly,
the assumption we made in Eqs. (2) and (3) in our previous
work [10].

This exponential fluctuation is a pure quantum phe-
nomenon. To show the quantum nature, we consider the
classical correspondence of an ensemble of particles obeying
the same initial Gaussian distribution of position and mo-
mentum and calculate their time evolution. Their phase space
distribution ρc(t) approaches the microcanonical distribution
ρc due to the ergodicity in the Henon-Heiles system with
certain fluctuation. Following the quantum case, we calculate
the relative fluctuations nc(ξ,t)/nc(ξ ),ξ = 	r, 	p and study their
distributions. The classical relative fluctuations is Gaussian as
indicated in Fig. 8. This shows that the exponential distribution
of relative fluctuations is of quantum nature and absent in the
classical system.

Besides the difference from classical case, we note that
this exponential distribution is also different from the Porter-
Thomas distribution in eigenstates [65] and the result is now
known as the Berry’s conjecture [66]. These results are only for
eigenstates, which are real up to an overall phase for systems
with time reversal symmetry. The exponential distribution
only exists for a complex wave function, For a generic
quantum system, even if all of its energy-eigenstates are real,
its dynamical wave function is, in general, complex. This
distinction again shows that the general equilibrium statistical
properties cannot be understood simply by properties of
single eigenstates. The superposition of numerous eigenstates
is crucial. We feel it very helpful to compare directly the
exponential distribution and the the Port-Thomas distribution
[65]. We have rederived these two distributions within the same
mathematical framework in the Appendix.

VII. DISCUSSION AND SUMMARY

In summary, we have studied equilibration of quantum
chaotic systems in the framework suggested by von Neumann
in 1929. Our study has examined various aspects of this
issue, such as dynamical equilibration, quantum-classical cor-
respondence between quantum equilibrium density operator
ρ∞ and classical microcanonical ensemble ρc, and the relative
fluctuations around the equilibrium state. All the results are
illustrated with two single-particle quantum chaotic systems.
We expect most of the results to hold in many-body quantum
chaotic systems.

The dynamical equilibration should hold in many-body
quantum chaotic systems because it is completely determined
by the energy gap statistics, which is universal for all quan-
tum chaotic systems. The quantum-classical correspondence
should also hold as it apparently originates from the similarity
between quantum and classical Liouville equations.

However, the fluctuation properties in a many-body system
will generally have Gaussian form, different from the single-
particle case. The only exception might be a Bose-Einstein
condensate or a superconductor where the many-body system
can be described by a single-variable wave function. In all
other cases, the probability density at a given point ξ = 	r, 	p
can be expressed by

n(ξ1) =
∫

dξ2 · · · dξN n(ξ1,ξ2, . . . ,ξN ), (11)

where N is the number of particles in this system. The
fluctuation in n(ξ1,ξ2, . . . ,ξN ) should have the exponential dis-
tribution due to the quantum chaotic nature of the many-body
system. The integration over N − 1 variables will produce a
Gaussian distribution due to the central limit theorem.

We note that one has to use many-body systems to discuss
the canonical statistics for a subsystem of the large isolated
system. However, one can use the correspondence between ρ∞
and ρc illustrated here with single-particle systems to show that
a subsystem of the many-body system will behave in canonical
ensemble statistics. The derivation is similar to the work by
Srednicki [16] and here we do not discuss further.

Although von Neumann has laid down the basic theoretical
framework for the dynamical equilibration in quantum systems
in 1929 [4], we believe that the study of this fundamental
issue has just started and many basic questions still wait to be
answered. Our study here and other related studies [49,50]
have indicated that the quantum ergodic theorem hold for
a class of quantum systems larger than what is specified
by condition (2). It is imperative to know how to relax
condition (2) mathematically. We are also not clear about
the properties of the entropy defined for a pure state by von
Neumann. We believe that these studies will not only lead to
a better perspective on the foundation of quantum statistical
mechanics but also produce new physics such as the quantum
multitemperature equilibrium state predicted in Ref. [10] by
us.
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APPENDIX: DERIVATION OF EXPONENTIAL
DISTRIBUTION AND PORT-THOMAS DISTRIBUTION

Here we give detailed derivations for the exponential
distribution of equilibrium wave function [11] and the Port-
Thomas distribution of eigenstate wave function [65] with the
assumption that wave function in quantum chaotic systems
achieve the maximum randomness subject to the restriction
of normalization and other symmetry requirements. This
assumption follows naturally from our numerical observations
[Figs. 7(c) and 7(d)] and the spirit of random matrix theory
and was used by Berry in his study of eigenwave functions in
chaotic systems [66]. It is important to note that the difference
between equilibrium wave functions and eigenstates wave
functions is that equilibrium wave functions are generally
complex and eigenstate wave functions are real up to an overall
phase for systems with time reversal symmetry. This key
difference leads to the different distributions. For simplicity
we restrict our derivation for real space wave functions in
chaotic billiards. Extension to other systems and momentum
space can be achieved (however, without strict mathematical
rigorousness) by renormalizing densities with averaged values.

For a wave function ψ , we discretize the system area
into N equal infinitesimal pieces with their centers located

at 	ri,i = 1, . . . ,N and denote αi = ψ(	ri)
√

A
N

, where A is the
total area of the system. It follows from normalization that∑N

i=1 |αi |2 = 1. The notation here is the same with Ref. [11].
For a complex wave function in dynamical evolution, αi is
complex; for an eigenfunction, αi is real. In the following we
derive the distribution of |αi |2 for both cases.

Note that the following proof is given without consideration
of the discrete symmetries: (1) reflection symmetry initial state
[Eq. (4)] in the ripple billiard system; (2) reflection symmetries
in eigenstates of the ripple billiard system, and (3) the reflection
symmetries in eigenstates of the Henon-Heiles system. This is
because these symmetries can be treated by simply assuming
full randomness of a wave function in a smaller area while
changing the normalization, respectively, by 1/2 [Eq. (4)],
1/4 (ripple billiard), or 1/6 (Henon-Heiles).

1. Proof of exponential distribution of equilibrium
wave function [11]

Consider N complex numbers αi that satisfy normalization
condition

∑N
i=1 |αi |2 = 1 and that each complex number is

equivalent to another. Suppose the N complex numbers are
fully random subject to the normalization condition. This
implies that each state {α1,α2, . . . ,αN } is of equal possibility
on the hypersphere

∑N
i=1 |αi |2 = 1. So the distribution of the

amplitude of one complex number αj at |αj |2 = γ is

P (γ ) =
∫

d2α1 · · · d2αNδ(γ − |αj |2)δ
(
1 − ∑N

i=1 |αi |2
)

d2α1 · · · d2αNδ
(
1 − ∑N

i=1 |αi |2
) .

(A1)

Let x = |αj |2. The denominator equals the surface area of
2N -dimensional hypersphere. The numerator includes a factor
of a (2N − 2)-dimensional hypersphere with radius

√
1 − x.

Recall that the 2N -dimensional hypersphere of radius R has
an area of S2N (R) = 2πN

�(N) × (R)2N−1. We have

P (γ ) =
∫ ∞

0 πdxδ(x − γ ) 2πN−1

�(N−1) (1 − x)
2N−3

2

2πN/�(N )

= (N − 1)(1 − γ )N−3/2. (A2)

Let γ = A
N

n(	r), where n(	r) = |ψ(	r)|2 is the probability
density at 	r . We find that

p(n(	r))dn(	r) = lim
N→∞

A

N
P (γ )dγ lim

N→∞
A

N
(N − 1)

×
[

1 − A

N
n(	r)

]N [
1 − A

N
n(	r)

]−3/2

dn(	r)

= Ae−An(	r)dn(	r). (A3)

We have thus shown that the distribution is exponential. For
a billiard system, the averaged density n0 = 1/A. Therefore,
we have

p(n) = e−n/n0/n0. (A4)

2. Proof of Porter-Thomas distribution of eigenstate
wave function

For an eigenstate wave function, everything is the same except
that all the αi are real rather than complex. So we have∑N

i=1 α2
i = 1, and similarly the distribution becomes

P (γ ) =
∫

dα1 · · · dαNδ
(
γ − α2

j

)
δ
(
1 − ∑N

i=1 α2
i

)
dα1 · · · dαNδ

(
1 − ∑N

i=1 α2
i

) . (A5)

Let α2
i = x. The denominator equals the area of the N -

dimensional hypersphere with unit radius. The numerator
includes a factor of the area of a (N − 1)-dimensional
hypersphere with radius

√
1 − x. This leads to

P (γ ) =
∫ ∞

0 dxx−1/2δ(γ − x) 2π (N−1)/2

�((N−1)/2) (
√

1 − x)N−2

2πN/2/�(N/2)

=
√

1

γπ
(
√

1 − γ )N−2 �(N/2)

�((N − 1)/2)
(A6)

With γ = A
N

n(	r), we arrive at the Porter-Thomas distribution
in the limit of large N ,

p(n) =
√

A

2πn
e− A

2 n (A7)

where we have used limN→∞ �(N/2)
�((N−1)/2)

√
N

= 1√
2
.
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