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Generalized information entropies depending only on the probability distribution
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In the framework of superstatistics it has been shown that one can calculate the entropy of nonextensive
statistical mechanics. We follow a similar procedure; we assume a �(χ2) distribution depending on β that also
depends on a parameter pl . From it we calculate the Boltzmann factor and show that it is possible to obtain
the information entropy S = k

∑�

l=1 s(pl), where s(pl) = 1 − p
pl

l . By maximizing this information measure,
pl is calculated as function of βEl and, at this stage of the procedure, pl can be identified with the probability
distribution. We show the validity of the saddle-point approximation and we also briefly discuss the generalization
of one of the four Khinchin axioms. The modified axioms are then in accordance with the proposed entropy.
As further possibilities, we also propose other entropies depending on pl that resemble the Kaniakadis and two
possible Sharma-Mittal entropies. By expanding in series all entropies in this work we have as a first term the
Shannon entropy.
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I. INTRODUCTION

Since the seminal work by Shannon [1] about an informa-
tion entropy to quantify predictability in a stochastic process,
several other measures of information have been proposed in
the literature [2]. By maximizing these information measures
[3], their corresponding probability distributions can be cal-
culated. Some of these generalized information and entropy
measures and their potential physical applications have been
discussed elsewhere [4].

Also, by considering nonequilibrium systems with a long-
term stationary state that possess a spatiotemporally fluctu-
ating intensive quantity, more general statistics have been
formulated, known as superstatistics [5]. In these cases, the
temperature is a fluctuating quantity among other various avail-
able intensive variables. The macroscopic system is considered
as made up of many smaller cells that are temporarily in local
equilibrium. Within each cell β, the inverse temperature, is
approximately constant. Each cell is large enough to obey
statistical mechanics but has a different β assigned to it,
according to a general distribution f (β); from it one can get
an effective Boltzmann factor

B(E) =
∫ ∞

0
dβf (β)e−βE, (1)

where E is the energy of a microstate associated with each
of the considered cells. The ordinary Boltzmann factor is
recovered for f (β) = δ(β − β0). One can, however, consider
other distributions for the temperature that will lead to their
corresponding Boltzmann factors. The � (χ2), log-normal, and
F distributions were studied in this context as well as their
corresponding Boltzmann factors. The analysis of these B(E)
showed that all these statistics present the same behavior for
small variance of the fluctuations [5]. An extended discussion
exists in the literature analyzing the possible viability of this
kind of model to explain several physical phenomena [4,6].

In [7] a new formalism was developed to deduce entropies
associated with Boltzmann factors B(E). Following this

*octavio@fisica.ugto.mx
†gil@fisica.ugto.mx

procedure, the Boltzmann Gibbs entropy and the so-called
nonextensive statistical mechanics entropy [8] Sq [correspond-
ing to the � distribution (χ2) and depending on a constant
parameter q] were obtained. They expressed the entropy
as S = k

∑�
l=1 s(pl) in terms of a generic s(x) and were

able to calculate it, where x is at this stage a parameter
and the sum over this parameter is defined as the entropy.
Identifying this parameter as the probability distribution, it
is possible to determine it by maximizing the appropriate
information measure. For the log-normal and F distributions
and other distributions it is not possible to get closed analytic
expressions for their associated entropies and the calculations
were performed numerically [7] utilizing the corresponding
B(E) in each case.

In a previous work by Obregón [9], the effect of assuming
a generalized non-Boltzmann distribution depending only
on a parameter pl (i.e., the probability distribution after
maximizing the information measure) was studied and applied
for deriving the corresponding entropy of black holes, based on
the Bekenstein-Hawking entropy model that identifies entropy
with the black hole’s horizon area. Since the Einstein equation
can then be derived as an equation of state and gravity can
be established as an entropic force, Obregón [9] derived
corrections to Newton’s law depending on the inverse power of
the Planck’s length lp = G�/c3. This procedure is interesting
in a general context, since it allows us to model modifications
of a force law by considering alternate formulations of the
entropy associated with the system, and vice versa.

In this work, we review this entropy model and its possible
extension to other systems besides black holes, studying a
generalized distribution and its associated Boltzmann fac-
tor and entropy. Based on these results, we present other
information entropies that also depend on pl only. These
models resemble the already well known f (β), B(E), and
information entropies depending on a constant parameter
q, whose possible applications and limitations, in relation
with certain physical systems, have been discussed in the
literature [4,6,8]. As we will discuss, the procedure given by
Obregón [9] could be useful in the study of systems with a
reduced number of microstates, such as systems under strong
confinement, where the proposed entropy can be used to
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deduce corrections to van der Waals forces (vdW), that would
also alter the corresponding equation of state. Modifications
to van der Waals forces arise when we consider effects due
to confinement and the effect of substrates. Sinanoglu and
Pitzer [10] used third-order quantum perturbation theory to
demonstrate that the standard Lennard-Jones model used to
represent vdW forces in bulk phases is modified for adsorption
of monolayers in solid substrates, with the presence of a new
long-range repulsion originated from a quantum mechanical
fluctuation that counterbalances the usual London attraction.
This modification is the main mechanism that explains the
changes on the phase diagram of an adsorbed substance (e.g.,
the critical temperature) with respect to its behavior in a bulk
phase [11]. Similar effects have been proposed for the behavior
of colloidal particles at the air-water interface [12] observed
in experimental and simulated systems [13]. Considering
the inverse problem, that is, the evaluation of pair-potential
interactions based on the behavior of the entropy, suggests
that corrections to the vdW forces observed in confined fluids
also could be explained in terms of a nonextensive entropy as
those proposed in this article.

In Sec. II, we first express [5] the � (χ2) distribution and
its corresponding Boltzmann factor in terms of the parameter
pl , and then the corresponding entropy [7] is obtained, as
discussed in [9]. We will maximize this information entropy
to identify our parameter and to get the corresponding {pl}
probability distribution. In our model, the entropy resembles
the one proposed in nonextensive statistical mechanics result-
ing also by assuming a (χ2) distribution. In our case, however,
it does not depend on a free constant q, but instead on a
parameter pl that as mentioned results in being the probability
distribution. We will show that this entropy can be expanded in
a series, whose first term corresponds to the Shannon entropy
[1].

In Sec. III, we will consider other well-known information
entropies [2] that can be generalized; the proposed entropies
will not depend on the constant q, but on the probability pl

in each case. As examples we will consider the pl-modified
Kaniadakis and Sharma-Mittal entropies, which, as expected,
will have also the Shannon entropy as a first term when
expanded in series.

To complete this work we analyze two further aspects,
the validity of the saddle-point approximation [14–16], and
following [4,17,18] we also discuss a generalized version
of the Khinchin axioms. As shown in [4], three of these
axioms are kept and the fourth of them is replaced by a more
general version similar to the one proposed in [17], leading to
Tsallis entropy. We will study these two aspects only for the
Boltzmann factor Bpl

(E) and its associated entropy, arising
from the proposed � distribution depending on pl . For the other
entropies we will not discuss these two features. However, for
example, for these other entropies a similar procedure to that
followed in [4,18] could be worked out in relation with an
extension of the Khinchin axioms.

Section IV is dedicated to discussing the saddle-point
approximation [16]. We will consider it in relation to the
Boltzmann factor Bpl

(E) arising from the pl-� distribution. In
Sec. V, we discuss how one can replace the fourth Khinchin
axiom to get a set of axioms from which the entropy proposed
here follows. As mentioned, this entropy is obtained from the

Boltzmann factor Bpl
(E) and this one from the � distribution.

Section VI is devoted to discussion and outlook.

II. ENTROPY FROM THE BOLTZMANN FACTOR

We begin by assuming a � (or χ2) inverse temperature β

distribution depending on a parameter pl , to be identified with
the probability associated with the microscopic configuration
of the system. We may write these parameter pl-� distribution
as

fpl
(β) = 1

β0pl�
(

1
pl

)
(

β

β0

1

pl

) 1−pl
pl

e−β/β0pl , (2)

where β0 is the average inverse temperature.
Integration over β yields the generalized Boltzmann factor

Bpl
(E) = (1 + plβ0E)−

1
pl . (3)

As shown in [5], this kind of expression can be expanded, for
small plβ0E, to get

Bpl
(E) = e−β0E

[
1 + 1

2plβ
2
0E2 − 1

3p2
l β

3
0E3 + · · · ]. (4)

The examples studied in [5] have been nicely addressed in
[7] in order to deduce the entropies from their corresponding
Boltzmann factors. Another possible way to reconstruct the
entropy has been proposed in [19,20]; this approach provides
other expressions. In [21] it has been shown that there exists
a duality between these two procedures. We will restrict
ourselves to the first proposal, where the Boltzmann-Gibbs
entropy and the nonextensive statistical mechanics entropy
can be obtained in a closed analytic form [7]. However, the
entropies corresponding to the Boltzmann factors associated
with other distributions like the log-normal or the F distri-
butions cannot be obtained analytically and were calculated
numerically. Following [7] and [9], we present the procedure
to obtain the entropy corresponding to the f (β) distribution
Eq. (2) and to its associated generalized Boltzmann factor
Eq. (3). We begin by defining the entropy S = k

∑�
l=1 s(pl)

in terms of a generic s(pl), where pl can be considered at
this moment an arbitrary parameter; for s(x) = −x ln x the
Shannon entropy is recovered. As shown in [7] it is possible
to express s(x) and a generic internal energy u(x) in terms
of integrals on a function E(y) that is obtained from the
Boltzmann factor B(E) of interest. By these means s(x) and
u(x) can be written as

s(x) =
∫ x

0
dy

α + E(y)

1 − E(y)/E∗ (5)

and

u(x) = (1 + α/E∗)
∫ x

0

dy

1 − E(y)/E∗ , (6)

where E(y) is to be identified with the inverse function of
Bpl

(E)/
∫ ∞

0 dE′Bpl
(E′). One selects first the f (β) of interest;

then B(E) is calculated and the integral
∫ ∞

0 B(E′)dE′ is
performed. Inverting the axes of the variables, E(y) for several
superstatistics can be found [5], and from it E∗. In our case, the
starting points are the distribution Eq. (2) and the Boltzmann
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factor Eq. (3). E(y) and E∗ are given by

E(y) = y−x − 1

x
, (7)

E∗ = − 1

x
. (8)

A straightforward calculation gives for u(x) and s(x)

u(x) = xx+1, (9)

s(x) = 1 − xx, (10)

where α has been determined by means of the condition
u(1) = 1.

Expressions Eqs. (9) and (10) fulfill the expected conditions
for the entropy and the energy s(0) = 0,u(0) = 0 and u(1) =
1,s(1) = 0. By these means the entropy results in

S = k

�∑
l=1

(
1 − p

pl

l

)
, (11)

where k is the conventional constant and
∑�

l=1 pl = 1. The
expansion of Eq. (11) gives

− S

k
=

�∑
l=1

[
pl ln pl + (pl ln pl)2

2!
+ (pl ln pl)3

3!
+ · · ·

]
, (12)

where the first term is the Shannon entropy.
Using this last expression, the corresponding functional

including restrictions is given by

� = S

k
− γ

�∑
l=1

pl − β

�∑
l=1

p
pl+1
l El, (13)

where the second restriction concerns the average value of the
energy and γ and β are Lagrange parameters, and then by
maximizing �, pl is obtained as

1 + ln pl + βEl(1 + pl + pl ln pl) = p
−pl

l . (14)

The dominant term in this expression corresponds to the Gibbs-
Boltzmann prediction, pl = e−βoEl . In general, however, we
cannot analytically express pl as a function of βEl . In Fig. 1,
pl is given as a function of the reduced energy βEl . We notice
that for relative large values of βEl the usual values for pl

coincide with the ones given by Eq. (14). As expected, they
coincide also for pl ≈ 1.

As we have shown, by choosing fpl
(β) Eq. (2), Bpl

(E)
Eq. (3) is obtained by integrating over β; by inverting the
axes of the variable the inverse function E(y) Eq. (7) and
E
 Eq. (8) can be found. This procedure has allowed us to
calculate u(x) Eq. (9) and s(x) Eq. (10) and consequently the
entropy Eqs. (11) and (12). If we assume in fpl

(β) Eq. (2)
the equiprobable condition, pl = 1

�
, then the corresponding

distribution is given by

f�(β) = �

β0�(�)

(
β�

β0

)�−1

e
− β�

βo , (15)

1 2 3 4 5
El

0.2

0.4

0.6

0.8

1.0

pl

FIG. 1. (Color online) Comparison of the two probabilities. Blue
dotted line corresponds to pl = f (βEl), Eq. (14), and red dashed line
to the standard one, pl = e−βEl .

where the Boltzmann factor and the entropy are now

B�(E) = (1 + β0E/�)−�, (16)

S = k�

[
1 − 1

�
1
�

]
, (17)

or, in terms of the Boltzmann entropy, SB = k ln �,

S

k
= SB

k
− 1

2!
e−SB/k

(
SB

k

)2

+ 1

3!
e− 2SB

k

(
SB

k

)3

· · · . (18)

Figures 2 and 3 show the Boltzmann entropy SB

k
and the

entropy S
k

given by expression Eq. (17). As mentioned in the
Introduction, it was shown in [9] in relation with the entropy of
a black hole that if we associate its entropy, depending linearly
on its area, with SB

k
the standard entropy, then the entropy S

k

will be given as a complicated function of the area by means
of Eqs. (17) and (18). This would imply a modification to the
laws of Newton and to general relativity according with the
possibility that gravity could be thought of as an equation of
state [22], explained as an entropic force [23–25]. However,

1 2 3 4 5 6 7

0.5

1.0

1.5

Entropy

FIG. 2. (Color online) Entropies as function of � (small). Blue
dashed and red dotted lines correspond to S

k
, Eq. (17), and Sβ

k
,

respectively (pl = 1/� equipartition).
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FIG. 3. (Color online) Entropies as function of � (large). Blue
dashed and red dotted lines correspond to S

k
, Eq. (17), and Sβ

k
,

respectively (pl = 1/� equipartition).

for most gravitational systems one expects a large �, namely
large SB

k
, and this will not greatly differ from S

k
, Eq. (18) and

Fig. 3.
We notice that in the range of low values of � the entropies

Sβ

k
and S

k
differ. Instead, for large � the two entropies

essentially coincide. Since � is basically a measure of the
phase space volume, what we are finding is that for systems
with reduced number of microstates the entropies become
different, whereas for the opposite case they will be essentially
identical. Then, we could conclude from here that the model
derived for the particular case of black holes in [9] could
be useful when we have a clear indication of restriction of
available states, like by strong confinement of fluids or low
temperatures.

The entropy derived in [9] and whose main properties have
been studied here, obtaining Eqs. (11) and (17), has as an
important feature to be independent of any arbitrary constant
parameter, and to depend only on the probability distribution
pl Eq. (14) associated with the microscopic configuration of
the system. Its expansion provides as a first term the Shannon
entropy Eq. (12) and correspondingly the Boltzmann entropy
Eq. (18). This entropy corresponds to the � distribution
Eqs. (2) and (15).

III. OTHER GENERALIZED INFORMATION ENTROPIES
IN TERMS OF pl

More general measures of information than the Shannon
entropy have been proposed in the literature [2]. Maximizing
these entropies subject to suitable constraints allow us to
obtain associated probability distributions. In [4,6,8] several of
these entropies have been reviewed and their potential physical
applications discussed.

Similar entropies depending only on pl can be proposed.
As examples let us consider modified Kaniadakis and Sharma-
Mittal entropies. The Kaniadakis entropy is defined by the
expression

Sκ = −k

�∑
l

p1+κ
l − p1−κ

l

2κ
. (19)

This is an entropy which reduces to the original Shannon
entropy for κ = 0 [4]. Inspired by this Kaniadakis entropy,
we propose to consider the following generalized entropy,

S = −k

�∑
l

p
pl

l − p
−pl

l

2
; (20)

the two terms in this expression can be expanded in a similar
manner as in Eqs. (11) and (12) to get

− S

k
=

�∑
l

[
pl ln pl + (pl ln pl)3

3!
+ · · ·

]
. (21)

The first term corresponds to the Shannon entropy. It is
interesting to notice that the expansion Eq. (21) of the entropy
Eq. (20) differs from the expansion Eq. (12) of the entropy
Eq. (11) corresponding to the � distribution Eq. (2) and that
we have analyzed in more detail in the previous sections; in
Eq. (21) only the “odd” terms in the expansion arise.

We consider now the Sharma-Mittal entropies; these are
two constant parameter families of entropic forms. They can
be written as

Sκ,r = −k

�∑
l

pr
l

(
pκ

l − p−κ
l

2κ

)
. (22)

We now assume that κ and r are functions only of pl ; we
get the entropy Eq. (11) for −2κ = pl and r = pl

2 + 1 and
the entropy Eq. (20) is obtained for r = 1 and κ = pl . These
Sharma-Mittal entropies can be generalized in several manners
as functions of the probability pl by means of other different
assumptions. Two of them correspond to the entropies given
in Eqs. (11) and (20). Other entropies considered, for example
in [2], can also be generalized as functions of pl . As examples
we have analyzed the pl-dependent generalized Kaniadakis
and two Sharma-Mittal entropies that reduce to the entropies
Eqs. (11) and (20).

IV. THE SADDLE-POINT APPROXIMATION, THE pl -�
DISTRIBUTION CASE

We have already obtained the low-energy asymptotics
Eq. (4) for the Boltzmann factor Eq. (3) arising from the
� distribution Eq. (2). This approximation represents the
leading order correction to ordinary statistical mechanics
systems with temperature fluctuations for small values of the
energy E. The zeroth-order approximation to this Boltzmann
factor corresponds, as expected, to the Boltzmann statistics
B(E) ∼ e−β0E with inverse temperature β0.

To find the high-energy asymptotics of B(E) we follow
[16] where the fact is used that Eq. (1) has the form of a
Laplace integral for E → ∞. In this limit, the integral can be
approximated by its largest integrand. This is the essence of
the saddle-point approximation, namely the Laplace method.
The conditions of applicability of this approximation method
are basically the conditions that one assumes regarding the
shape of f (β) and its differentiability. By putting Bpl

(E) in
the form

Bpl
(E) =

∫ ∞

0
e−βE+ln f (β)dβ, (23)
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one attempts to find the unique value of β which maximizes
the exponential function

�(β,E) = −βE + ln f (β), (24)

for any large enough energy value E. The value of β

maximizing �(β,E) for large fixed E is denoted βE . Having
assumed f (β) to be unimodal ensures the uniqueness of βE .
Since f (β) is unimodal, ln f (β) must be a concave function
of β. In this manner the maximum of �(β,E) can only be
obtained at the single point βE . It is such that

E = [ln fpl
(β)]′ = f ′

pl
(β)

fpl
(β)

. (25)

In this way we get βE and in the limit E → ∞
Bpl

(E) ∼ e�(βE,E) = fpl
(βE)e−βEE. (26)

This saddle-point or Laplace approximation can be improved
by using a Gaussian approximation of the integrand in Eq. (23).
The refined high-energy asymptotics results in

Bpl
(E) ∼ fpl

(βE)e−βEE√−[ln fpl
(βE)]′′

. (27)

The approximations of B(E) Eqs. (26) and (27) show that
the mixture of Boltzmann statistics defining B(E) reduces at
high energy E to a particular Boltzmann statistics, like in the
equilibrium situation, but now this Boltzmann statistics is a
function of βE which depends on E, the energy considered
and determined by fpl

(β) Eq. (25). The long-term stationary
behavior of the nonequilibrium system considered for high
values of E is dominated by the equilibrium behavior of a
subset of cells having an inverse temperature close to βE . We
now consider the asymptotic behavior of Bpl

(E) Eq. (1) for
E → ∞ and fpl

(β) given by Eq. (2). We first solve Eq. (25)
to find βE for this case. One gets

βE = (1 − pl)β0

Eplβ0 + 1
, (28)

as expected [16] as E → ∞, βE → 0. We want now to
calculate Bpl

(E) Eq. (26) for this βE . This can be expressed as

Bpl
(E) = 1

β0pl�
(

1
pl

)e
− 1−pl

pl
[ln pl

1−pl
+ln(Eplβ0+1)+1]

. (29)

For E → ∞ and a certain value of pl ,

Bpl
(E) ∼ e

− 1−pl
pl

ln E ∼ E
1− 1

pl . (30)

The more refined approximation Eq. (27) can be obtained by
dividing Eq. (30) by

√
−[ln fpl

(βE)]′′; this in the high-energy
limit is proportional to E. In this way

Bpl
(E) ∼ E−1/pl . (31)

In this more accurate calculation, we get, asymptotically,
a decaying power law for the effective Boltzmann factor.
As mentioned in [16] power-law superstatistics seem to be
physically relevant for several physical systems, among others
defect turbulence [26] and cosmic-ray statistics [27].

V. AN APPROPRIATE INFORMATION MEASURE

The well-established four Khinchin axioms are extensively
discussed and presented in [4]. As known, the celebrated
Shannon entropy S = −k

∑�
l pl ln pl satisfies all these ax-

ioms. It has been however argued in the literature that the
fourth of these axioms is not an obvious property [4,17,18]. We
will concentrate our discussion on it. This fourth axiom deals
with the composition of two systems I and II (not necessarily
independent). We denote the probabilities of the first system
as pI

i , those of the second system as pII
j . The joint system is

described by the joint probabilities p
I,II
ij = pI

i p
II (j |i), where

pII (j |i) is the conditional probability of event j in system II
under the condition that event i has already occurred in system
I. The conditional information of system II formed with the
conditional probabilities pII (j |i) is denoted by I ({pII (j |i)}),
under the condition that system I is in the state i. The fourth
axiom states that the conditional information is related by

I
({

p
I,II
ij

}) = I
({

pI
i

}) +
∑

i

pI
i I ({pII (j |i)}). (32)

This axiom postulates that the information measure should
be independent of the way the information is collected. We
can collect the information in II, assuming a given event i in
system I, and then sum the result over all possible events
i in the system I, weighting with the probabilities pI

i . If
the two systems are independent the probability of the two
systems factorizes p

I,II
ij = pI

i p
II
j . Only in this case Eq. (32)

reduces to

I
({

p
I,II
ij

) = I
({

pI
i

}) + I
({

pII
j

})
, (33)

the rule of additivity of information for independent systems.
From a physical point of view this axiom Eq. (32) is not an
obvious property. Should the information be considered as
independent from the way we collect it? In complex systems,
the order in which the information is collected can be very
relevant. This has led to the replacement of the fourth Khinchin
axiom by something more general. In particular in [17] it was
shown that the Tsallis entropy follows uniquely by replacing
only the fourth axiom Eq. (32) by the more general version

SI,II
q = SI

q + SII |I
q − (q − 1)SI

qSII |I
q . (34)

The meaning of this new axiom is that if we collect information
from two subsystems, the total information should be the sum
of the information collected from system I and the conditional
information from system II, plus a correction term. A priori
this correction term can be anything. One restricts the possible
assumptions to

SI,II = SI + SII |I + g(SI ,SII |I ), (35)

where g is some function. One of the simplest forms is of the
kind given by Eq. (34). We may as well formulate another
axioms which then would lead to other possible information
measures. This is the case, for example, in [18] where a set
of axioms has been assumed that leads to the Sharma-Mittal
entropy.

The entropies Eqs. (11) and (17) associated with the �

distribution Eqs. (2) and (15) are composable. Suppose the
two systems I and II are not independent. In this case one
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OCTAVIO OBREGÓN AND ALEJANDRO GIL-VILLEGAS PHYSICAL REVIEW E 88, 062146 (2013)

can still write the joint probability pij as a product of pi

and the condition probability p(j |i); the probability of event
j under the condition that event i has already occurred is
pij = p(j |i)pi .

Then the conditional entropy associated with system II,
under the condition that system I is in state i, is (k = 1)

SII |i
pj |i = 1 −

∑
j

p
p(j |i)
(j |i) . (36)

One can then verify the condition

SI
pi

+
∑

i

p
IpI

i

i S
II |i
p(j |i) = SI,II

pij
. (37)

This relation is similar to the original fourth axiom, Eq. (32);
one has however the probability with an exponent that is the
probability itself. We weigh now the events in system I with p

pi

i

instead of pi . Hence, the pl-dependent information considered
in Eq. (11) is not independent of the way it is collected for the
various subsystems; namely the information associated with
Eq. (37) will not be additive [Eq. (33)], for the case of two
independent systems for which, as mentioned, pI,II

ij = pI
i p

II
j .

VI. DISCUSSION AND OUTLOOK

The distribution Eq. (2), Boltzmann factor Eqs. (3) and (4),
and entropies Eqs. (11), (17), (20), and (22) proposed in this
work depend on a parameter pl . By maximizing the functional
Eq. (13) using the entropy Eq. (11), pl is identified with the
microscope probability distribution and its dependence on
βEl has been obtained Eq. (14). Moreover, the generalized
information entropies proposed in this work Eqs. (11), (20),
and (22) can be expanded to get as a first term the Shannon
entropy Eqs. (12) and (21).

We have analyzed the difference between the entropy
derived in this work and the Shannon expression, and we have
found that they differ for low values of �. In the context
of condensed matter, this effect implies that both approaches
will differ for systems with reduced number of microscopical
states, like in systems under strong confinement. We can expect
that for small amounts of substances confined within pores,
the entropy model of Ref. [9] will give noticeable differences
with respect to the standard Gibbs-Boltzmann statistics. We

expect that modifications to the van der Waals equation and
forces in this case will be present and a route to derive them
could be from the entropy of the system, as done in [9] for
the gravitational force. The proposed entropy Eqs. (11), (17),
and (18) defines now a nonextensive statistical mechanics
and consequently a modified thermodynamics. As mentioned,
in the Introduction considering an inverse procedure, one
would get from this entropy an associated equation of state
and pair-potential interactions that would alter the van der
Waals forces. As discussed, it is known that by considering
effects due to confinement and the effect of substrates one gets
modifications to these forces [10–13].

We have analyzed the saddle-point approximation for the
pl-� distribution and have got, in the high-energy limit,
an asymptotically decaying power law for the effective
Boltzmann factor Eq. (31); this is the physically expected
appropriate behavior [16]. We have also shown how the fourth
Khinchin axiom should be modified so that the associated
entropy results in Eq. (11). In Fig. 1 we have compared
the probability distribution arising from this entropy with
the standard one. In Figs. 2 and 3 we have compared (for
pl = l

�
) the entropy Eq. (17) with Boltzmann entropy. As

shown, the entropies Eqs. (11), (20), and (22) resemble the
well-known nonextensive statistical mechanics entropy, the
Kaniadakis and two Sharma-Mittal entropies correspondingly
(other well-known q entropies can also be generalized in terms
of pl). For the entropy depending on a constant parameter q,
there exists an extensive literature on their physical reach;
their relation with the experiments is under discussion [4,6,8].
Also, other theoretical developments have been proposed
[19–21]. We will study, in further work, some of the pl-
dependent entropies proposed here in connection with these
aspects.
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[2] A. Rényi, Probability Theory (North Holland, Amsterdam,

1970); G. Kaniadakis, Phys. Rev. E 66, 056125 (2002);
C. Tsallis, J. Stat. Phys. 52, 479 (1988); S. Abe, Phys. Lett.
A 224, 326 (1997); B. D. Sharman and D. P. Mittal, J. Math.
Sci. 10, 28 (1975); M. D. Esteban and D. Morales, Kybernetica
31, 337 (1995); A. N. Gorban, P. A. Gorban, and G. Judge,
Entropy 12, 1145 (2010).

[3] S. Abe, C. Beck, and E. G. D. Cohen, Phys. Rev. E 76, 031102
(2007); P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008).

[4] C. Beck, arXiv:0902.1235.
[5] C. Beck and E. G. D. Cohen, Physica A 322, 267 (2003).

[6] G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000); H.
Sakaguchi, J. Phys. Soc. Jpn. 70, 3247 (2001); S. Jung and H. L.
Swinney, Superstatistics in Taylor Couette Flow, University of
Austin, 2002 (unpublished).

[7] C. Tsallis and A. M. C. Souza, Phys. Rev. E 67, 026106 (2003).
[8] A. M. Crawford, N. Mordant, and E. Bodenschatz,

arXiv:physics/0212080.
[9] O. Obregón, Entropy 12, 2067 (2010).

[10] O. Sinanoglu and K. S. Pitzer, J. Chem. Phys. 32, 1279 (1960).
[11] J. G. Dash, Films in Solid Surfaces (Academic Press, New York,

1975), pp. 123–126.
[12] J. Ruı́z-Garcı́a and B. I. Ivlev, Mol. Phys. 95, 371 (1998).

062146-6

http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1103/PhysRevE.66.056125
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1016/S0375-9601(96)00832-8
http://dx.doi.org/10.1016/S0375-9601(96)00832-8
http://dx.doi.org/10.1016/S0375-9601(96)00832-8
http://dx.doi.org/10.1016/S0375-9601(96)00832-8
http://dx.doi.org/10.3390/e12051145
http://dx.doi.org/10.3390/e12051145
http://dx.doi.org/10.3390/e12051145
http://dx.doi.org/10.3390/e12051145
http://dx.doi.org/10.1103/PhysRevE.76.031102
http://dx.doi.org/10.1103/PhysRevE.76.031102
http://dx.doi.org/10.1103/PhysRevE.76.031102
http://dx.doi.org/10.1103/PhysRevE.76.031102
http://dx.doi.org/10.1140/epjb/e2008-00142-9
http://dx.doi.org/10.1140/epjb/e2008-00142-9
http://dx.doi.org/10.1140/epjb/e2008-00142-9
http://dx.doi.org/10.1140/epjb/e2008-00142-9
http://arxiv.org/abs/arXiv:0902.1235
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1016/S0378-4371(03)00019-0
http://dx.doi.org/10.1103/PhysRevLett.84.2770
http://dx.doi.org/10.1103/PhysRevLett.84.2770
http://dx.doi.org/10.1103/PhysRevLett.84.2770
http://dx.doi.org/10.1103/PhysRevLett.84.2770
http://dx.doi.org/10.1143/JPSJ.70.3247
http://dx.doi.org/10.1143/JPSJ.70.3247
http://dx.doi.org/10.1143/JPSJ.70.3247
http://dx.doi.org/10.1143/JPSJ.70.3247
http://dx.doi.org/10.1103/PhysRevE.67.026106
http://dx.doi.org/10.1103/PhysRevE.67.026106
http://dx.doi.org/10.1103/PhysRevE.67.026106
http://dx.doi.org/10.1103/PhysRevE.67.026106
http://arxiv.org/abs/arXiv:physics/0212080
http://dx.doi.org/10.3390/e12092067
http://dx.doi.org/10.3390/e12092067
http://dx.doi.org/10.3390/e12092067
http://dx.doi.org/10.3390/e12092067
http://dx.doi.org/10.1063/1.1730910
http://dx.doi.org/10.1063/1.1730910
http://dx.doi.org/10.1063/1.1730910
http://dx.doi.org/10.1063/1.1730910
http://dx.doi.org/10.1080/00268979809483169
http://dx.doi.org/10.1080/00268979809483169
http://dx.doi.org/10.1080/00268979809483169
http://dx.doi.org/10.1080/00268979809483169


GENERALIZED INFORMATION ENTROPIES DEPENDING . . . PHYSICAL REVIEW E 88, 062146 (2013)

[13] S. J. Mejı́a-Rosales, A. Gil-Villegas, B. I. Ivlev, and J. Ruı́z-
Garcı́a, J. Phys.: Condens. Matter 14, 4795 (2001).

[14] C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (MacGraw-Hill, New
York, 1978).

[15] J. D. Murray, Asymptotic Analysis (Springer, New York, 1984).
[16] H. Touchette and C. Beck, Phys. Rev. E 71, 016131 (2005).
[17] S. Abe, Phys. Lett. A 271, 74 (2000).
[18] T. Wada and H. Suyari, arXiv:cond-mat/0608139.
[19] R. Hanel and S. Thurner, Physica A 380, 109 (2007).
[20] R. Hanel and S. Thurner, Entropies for Complex Systems:

Generalized-Generalized Entropies, AIP Conf. Proc., Vol. 965

(American Institute of Physics, College Park, MD, 2007),
pp. 68–75.

[21] R. Hanel, S. Thurner, and M. Gell-Mann, Proc. Natl. Acad. Sci.
USA 108, 6390 (2011); 109, 19151 (2012).

[22] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[23] E. P. Verlinde, J. High Energy Phys. 04 (2011) 029.
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