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Accelerated transport and growth with symmetrized dynamics
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(Received 25 June 2013; revised manuscript received 14 October 2013; published 23 December 2013)

In this paper we consider a model of accelerated dynamics with the rules modified from those of the
recently proposed [Dong et al., Phys. Rev. Lett. 109, 130602 (2012)] accelerated exclusion process (AEP)
such that particle-vacancy symmetry is restored to facilitate a mapping to a solid-on-solid growth model in 1 + 1
dimensions. In addition to kicking a particle ahead of the moving particle, as in the AEP, in our model another
particle from behind is drawn, provided it is within the “distance of interaction” denoted by �max. We call our
model the doubly accelerated exclusion process (DAEP). We observe accelerated transport and interface growth
and widening of the cluster size distribution for cluster sizes above �max, when compared with the ordinary
totally asymmetric exclusion process (TASEP). We also characterize the difference between the TASEP, AEP,
and DAEP by computing a “staggered” order parameter, which reveals the local order in the steady state. This
order in part explains the behavior of the particle current as a function of density. The differences of the steady
states are also reflected by the behavior of the temporal and spatial correlation functions in the interface picture.
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I. INTRODUCTION

The totally asymmetric exclusion process (TASEP) and the
related zero-range process have become paradigmatic models
of low-dimensional nonequilibrium dynamics [1–5]. Macro-
scopic quantities of interest, including the current through
the system and its fluctuations, as well as configurational
properties, such as the dynamics of the largest cluster and
the condensation transition, have been of a renewed interest
for various generalizations [6–17] of the basic TASEP model,
many of them interesting, e.g., from the point of view of RNA
transcription, jamming of traffic flow, phase separation, and
growth phenomena.

Very recently, an accelerated exclusion process (AEP) was
developed and analyzed by Dong et al. [16,17]. In the AEP a
particle hopping into a (particle) cluster “kicks” the frontmost
particle of that cluster one site forward. The kicked particle
cannot cause any further kicks. In Refs. [16] and [17] this
is argued to lead via condensation to the existence of a
novel “unit velocity” (UV) phase with the particle current
J = 1 − ρ for particle densities ρ > 1/2. The value of ρ for
the emergence of the UV phase depends on the value of the
control parameter �max, the range (see below for its definition)
of the kick interaction. In the definition of the AEP model
the particle-vacancy symmetry is broken, but the dynamics
can be nevertheless successfully understood by considering
the concerted motion of vacancies for large values of �max

[17]. In the present work we further generalize the TASEP
to include a “draw” (from behind) interaction, to restore
the particle-vacancy symmetry. In addition to providing one
generalization of the particle model, a major motivation for
this is to enable mapping to a solid-on-solid interface growth
model. The related interface models have been extensively
studied for their scaling properties [4,18–21] We call our model
the doubly accelerated exclusion process (DAEP).

*juha.t.merikoski@jyu.fi

II. MODEL AND NUMERICAL METHODS

The dynamical rules of the DAEP model and its mapping
onto a solid-on-solid (SOS) model are shown in Fig. 1. We
consider a one-dimensional lattice of L sites i with occupation
number ni = 0,1 and periodic boundary conditions ni+L = ni .
The total number of particles, N = ∑

i ni , is kept constant,
with ρ = N/L giving the particle density.

The hopping rules of the DAEP are as follows: A particle at
site i = 1,2, . . . ,L hops into a neighboring empty site on the
right with unit probability in time. Into the ordinary TASEP
model two possible adjoint moves controlled by the parameter
�max are added: If the particle hops into an existing particle
cluster with length �p � �max it will kick the frontmost particle
of that cluster one site ahead (this is the AEP rule). In addition,
if the hopping particle has immediately behind it a vacancy
cluster of length �v � �max, it will draw the frontmost particle
of the preceding particle cluster one site ahead; see Fig. 1(a).
The particles kicked or drawn will themselves cause no further
particle moves.

The DAEP model is mapped onto a SOS model as indicated
in Fig. 1(b). An occupied site, ni = 1, in the DAEP corresponds
to a step down in the SOS model and a vacant site, ni = 0,
corresponds to a step up. The interface configuration is given
by a height function hj , where j = 1,2, . . . ,L is the index of a
column. The configurations in Figs. 1(a) and 1(b) correspond
to each other one to one, except for the overall height of the
interface configuration, which can be shifted by a constant
value. Since all the particle moves (hop, kick, draw) are
directed to the right, each of them corresponds to a local
upward move of the interface by two height units, as indicated
in Fig. 1(b) by the 1 × 2 blocks landing on the interface. In
this way the BSCOS rule hj+1 − hj = ±1 is preserved [18].
The difference in height between adjacent columns can also
be interpreted as a classical spin-1/2 variable. In the mapping,
the locations in the horizontal direction of interface columns
are between two adjacent sites of the particle model.

We note that since �max is the same for both kick and
draw processes, the left-right symmetry is preserved in the
interface model. A kick means adsorption onto a site right of
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FIG. 1. (Color online) (a) The moves in the DAEP model and
(b) the corresponding growth events in the body-centered solid-on-
solid (BCSOS) model. In (a) moving particles are indicated by solid
circles, and other particles by open circles (otherwise there is no
difference between them). The hop indicated by “hop 1” causes the
move indicated by “kick 1” if �max � 4 and the (independent) hop
indicated by “hop 2” causes the move “draw 2” if �max � 2.

the landing site corresponding to the hop, and a draw means in
the interface picture adsorption onto a site left of the landing
site corresponding to the hop. In the particle model this means
particle-vacancy symmetry such that a particle system with
density ρ corresponds to a vacancy system with density 1 − ρ.

Yet another mapping of the AEP model exists, namely,
that onto a mass-transport process (MTP) [16,17], which
is a generalization of the zero-range process (ZRP). Within
the MTP picture hops and kicks are easily handled, with a
hop + kick effectively leading to one hop of length 2 in the
MTP, i.e., to an effective interaction of short range in the MTP
coordinates. Adding the draw process leads to interaction over
the preceding vacancy cluster in the DAEP, which corresponds
to effective interaction over up to �max adjacent empty sites in
the MTP picture. Thus the MTP description for the DAEP
would become complicated and will not be used here.

III. RESULTS

In Fig. 2 we show simulation results for the particle current
J in the DAEP model for several values of �max. In contrast
with the AEP [16,17], by construction, the behavior in the
DAEP is symmetric such that J (ρ) = J (1 − ρ). This is due to
the particle-vacancy symmetry of DAEP.

For the calculations of the current, we have used both the
step initial conditions with all particles initially confined in
a single cluster and the totally disordered initial state, with
similar results for the steady state. We do not observe the
unit-velocity-type phase for any initial conditions. A typical
length of the simulations was of the order of 200 000 Monte
Carlo steps (trial hops) per particle with random update of
sites and we sampled the steady state reached after 100 000
steps. As in Refs. [16,17], the system size is L = 1000 in all
simulation results shown.
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FIG. 2. (Color online) The average current J as a function of
particle density ρ for �max = 0,1,3,5,10,20,1000 in the DAEP model
with L = 1000. The three dotted curves denote Jtasep, 2Jtasep, and
3Jtasep, from bottom to top.

As in the AEP, also in the DAEP transport is accelerated
such that J is larger than Jtasep. For �max > 0 at and close
to ρ = 1/2 with large �max the current is even larger than
the first mean-field (MF) guess: We find J > 3Jtasep, where
Jtasep = ρ(1 − ρ) is the current in the ordinary TASEP in
the thermodynamic limit [2]. In addition to this comparison
with the TASEP, we have attempted several functional forms
for J (ρ) preserving the particle-vacancy symmetry, but such
forms cannot be justified by approximations derived from MTP
such as the one in Refs. [16,17], since the MTP description is
particle-vacancy asymmetric. Thus J ≈ 3Jtasep for large �max

remains our best approximation. In particular, MTPMF-type
approximations [cf. Eq. (11) of Ref. [17]] do not work because
of, e.g., the asymmetric factor (1 − ρ) in the the MTP-ASEP
back transformation.

The shape of the curves J = J (ρ) is nevertheless different
from the shape of Jtasep. For large �max and small ρ they are
almost linear up to ρ < 1/4 and, correspondingly, for ρ > 3/4.
A reasonably good approximation for large �max is given by
J (ρ < 1/4) ≈ 2ρ and J (ρ > 3/4) ≈ 2(1 − ρ). Interestingly,
the latter is twice the current in the unit-velocity phase in the
AEP. No turning point is observed in the J = J (ρ) curves;
cf. Fig. 3 in [17].

The slope ∂J/∂ρ ≈ 2 for small densities is understood
most easily by considering the cases N = 2 and N = 3.
For N = 2 the state where the distance between the two
particles remains 2 is an absorbing state, i.e., a local particle
configuration 0010100 (0 refers to an empty site and 1 to an
occupied site) has two possibilities for a configuration change,
when both kick and draw processes are effective: Either the
frontmost particle is chosen and hops, drawing the trailing
one with it, or the trailing particle hops, kicking the frontmost
particle one step ahead. Both of these processes lead to the
configuration 0001010 and a contribution of two jumps to the
current; thus J = 2ρ. For high densities a similar argument
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for two vacancies (holes) leads to the average jump rate 2 and
J = 2(1 − ρ).

For N = 3 one can start the discussion by considering an
initial state 001010100, where there are three possibilities: If
the frontmost particle hops, it draws the second one with it,
leading to 001001010. If the particle in the center hops, all
three particles move, leading to 000101010. If the last one
hops it kicks the particle in the middle, leading to 000101100.
From the last one of these there are only two possibilities:
either the frontmost particle hops, leading to one jump only
and the configuration 0000101010, or the last one hops, leading
to two jumps and the same configuration 0000101010. On the
average, these processes lead to approximately two jumps for
each hop. In the case N = 3 one should note that it is not
possible for the first particle alone to escape the second one; it
will draw the second particle with it (with a vacant site between
them). After that the third particle still has an effective jump
rate of 2, either by hopping or being drawn by the second
particle, if it is within the range �max. Thus the system of the
three particles is loosely bound, with the average particle jump
rate close to 2.

The discussion of the cases N = 2 and N = 3 also explains
why ∂J/∂ρ ≈ 2 remains valid for larger densities for larger
values of �max, i.e., for effective interactions of longer range.
The effective attraction tends to build and stabilize local
configurations of the type considered above.

As a partial explanation of the difference between the AEP
and DAEP for larger N , we note also that in the DAEP the
“balance” of, e.g., the largest particle cluster becomes different
from that in the AEP. In the DAEP there are two ways particles
can come into the cluster and two ways (not just the one in the
AEP) out of it.

The particle and vacancy cluster size distributions are
interesting in that there first is an exponential decay with one
value of the decay parameter for cluster size s < �max, after
which there is a slower exponential decay for s > �max; see
Fig. 3(a). A finite value of �max thus induces a length scale
in the system and widens the cluster size distribution above
it. The vacancy cluster distributions (not shown) for density ρ

are similar to particle cluster distributions for density 1 − ρ.
Figure 3(b) reveals one striking feature: The distributions are
nonmonotonic with a dip (the same is observed for vacancy
clusters at density 1 − ρ). The increase of fs(p) just above
s = �max can be understood as follows: the kick process no
longer contributes to the exit rate from the cluster, thereby
changing its balance equation.

Let us next turn to the interface picture with ρ = 1/2. We
have monitored the surface roughness in the transient state and
spatial and temporal correlations in the steady state. For the
transient dynamics, we used initial conditions corresponding
to a “flat” interface or ρ = 1/2 with even-numbered sites
filled. This choice of ρ gives a globally untilted interface.
Note that there is an intrinsic roughness even in the flattest
possible configuration, consisting of alternating up and down
steps because of the condition hj+1 − hj = ±1.

The interface width or roughness is measured by [18]

W (t) = 〈[hj (t) − h̄(t)]2〉1/2. (1)

Here 〈·〉 denotes an ensemble average, h̄(t) is the configuration
average, and t is the real time measured from the start of the
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FIG. 3. (Color online) (a) The particle cluster size distributions
fp(s) for ρ = 0.9 and �max = 3,5,10,20. (b) The same data for small
cluster sizes s. In both figures a cusp and change of the decay
parameter of the apparent exponential decay are observed just above
s = �max.

simulation. The intrinsic roughness is handled by calculating
W (t) separately for even and odd sites. As the spatial height-
height correlation function, which we measure in the steady
state, we take

C(r) = 〈[hj+r (t) − hj (t)]2〉1/2, (2)

where r is taken to be either even or odd to avoid oscillations
due to the intrinsic roughness. As the temporal one we take

C(t) = 〈[hj (t ′ + t) − hj (t ′)]2〉1/2, (3)

where t is the time difference (in the steady state).
The transient behavior of the interface width for the TASEP,

AEP, and DAEP at ρ = 1/2 are shown in Fig. 4(a). For long
times, corresponding to the steady state, the roughness W ss

differs slightly for the three models such that as computed
from the simulation data (not easily discernible from the plot)
one finds W ss

tasep < W ss
daep < W ss

aep. This is understandable as
follows: The steady state for the TASEP is fully disordered
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FIG. 4. (Color online) (a) Transient behavior of the interface
width W (t) for ρ = 1/2 starting from an initially flat interface. Solid
curves from top to bottom correspond to the DAEP, AEP, and TASEP,
respectively, for the DAEP and AEP with �max = 10. The dotted line
corresponds to W (t) ∼ t1/3. (b) The stationary value of the order
parameter O2 for ρ = 1/2 as a function of �max for the DAEP and
AEP. For �max = 0 both models reduce to the TASEP with O2 = 0.

[2]; AEP dynamics induces additional structure in the config-
urations [17] and so does (somewhat less) the DAEP.

A major second difference when comparing the DAEP with
the standard TASEP turns out to be the short-range order, as
measured by the “staggered” order parameter O2 defined most
conveniently in the interface picture as

O2 = 〈(hj − hj+1)(hj+2 − hj+1)〉. (4)

In the particle picture this is 1 for local two-site configurations
01 and 10 and −1 for 00 and 11. For the fully disordered
stationary state of the TASEP one has O2 = 0. For the DAEP
the local configurations 01 and 10 are favored by the dynamics
(cf. the discussion of two-particle and three-particle cases
above) such that O2 > 0 and increases with increasing �max.
The role of �max is to increase the effective attractive interaction
such that it tends to bring particles together in 0101010-like
configurations. For the AEP also O2 > 0, but it increases
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FIG. 5. (Color online) (a) The spatial and (b) the temporal corre-
lation functions in the steady state. In (a) for large distances and in
(b) for large times the largest values are obtained for the AEP and
the smallest ones for the TASEP. For all cases ρ = 1/2 and for the
DAEP and AEP �max = 10.

much more slowly at small values of �max. This local order
causes the rapid initial decay of the cluster (vacancy) size
distribution for small clusters (vacancies) up to s = �max, i.e.,
up to distances where the kick and draw processes are effective.
It leads to a (partly) faceted interface and enhances the
particle current as discussed above. Data for O2 are shown in
Fig. 4(b).

From Fig. 5 we find that the dynamics of the interface in the
steady state is accelerated such that the temporal correlation
function initially rises most rapidly in the DAEP but is
overtaken by the AEP for large times. The scale defined by �max

and visible in the cluster distributions is, however, not directly
discernible in the correlation functions. This can be understood
by noting the fast initial decay of the cluster distributions:
The particle clusters with s > �max have a relatively small
probability and their distribution is wide. At large distances
and long times the correlation functions are again ordered such
that the value for the AEP is larger than that for the DAEP, the
value for the TASEP being the smallest. In Figs. 4 and 5 the
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FIG. 6. (Color online) (a) The temporal height-height correlation
function C(t) for ρ = 1/10 with �max = 10 and the corresponding
(scaled and shifted) particle-particle correlation function Cn(t) in the
steady state. (b) Snapshots of a part of a particle configuration in the
DAEP. Here L = 1000, but for clarity only part of the configuration
is shown.

dotted lines correspond to the expected Kardar-Parisi-Zhang
scaling behavior [18] for intermediate times and distances.

It is also possible to study correlations for values of
the density other than ρ = 1/2. In the interface picture this
corresponds to a globally tilted interface. There we observe
oscillatory behavior in C(t) as shown in Fig. 6(a) for ρ = 0.1.
For comparison we plot the particle-particle (actually the
spin-spin) correlation function Cn(t), in the steady state:

Cn(t) = 〈[2ni(t + t ′) − 1][2ni(t
′) − 1]〉

− 〈2ni(t + t ′) − 1〉〈2ni(t
′) − 1〉, (5)

which displays similar oscillations, yet much weaker (there is
a large vertical scaling factor in the plot). From the snapshots
in Fig. 6(b) we can deduce a “velocity” of v ≈ 2 (in natural

units) and a related time scale τ = L/v ≈ 500. This is roughly
the period of oscillation in C(t) and Cn(t). For comparison,
the period of oscillation (figure not shown) for ρ = 0.4 is
roughly 900, with the apparent velocity still around v ≈ 2.
These results for the velocity can be compared with the
prediction for the particle velocity from the values obtained
from the current: taking vp = J/ρ we have vp(ρ = 0.4) ≈ 1.8
and vp(ρ = 0.1) ≈ 1.9. The oscillations in C(t) get weaker
the closer to one-half the density is. We conclude that local
disturbances in density live for a long time and can propagate
over the whole particle system, thus producing oscillations in
C(t) in the corresponding long time scales.

In Fig. 6(b) we also see typical space-time trajectories
corresponding to the local ordering: For example, at x ≈ 320
and t ≈ 20 we see the last particle of a group of three to be left
behind. The remaining two particles continue together with
average velocity 2. The particle left behind propagates with a
slower velocity and eventually it is adsorbed by another pair of
particles at x ≈ 350 and t ≈ 50. Several similar sequences are
seen in the figure. Within the denser patch close to the middle
of the figure the density of vacancies is also close to one-half.
Thus the average velocity is close to 2 and the current J ≈ 2ρ.

IV. CONCLUSIONS

To conclude, we have studied a generalization of the
TASEP model, which we called the DAEP model. This
is a symmetrized version of the AEP model [16,17] and
corresponds to a solid-on-solid interface model with dynamics
including long-range interactions up to a scale given by the
parameter �max. Including an additional kind of move, a draw,
in the AEP model containing a hop and a kick, is found to
change the unit-velocity phase observed in the AEP for high
density. For low and high densities in the DAEP we find J ≈
2ρ and J ≈ 2(1 − ρ), respectively. The draw process provides
a way for the “fluid phase” to rip off a particle from a large
cluster or “condensate,” thus modifying the balance equation
for large clusters: There are now two ways in and two ways out
(cf. the two ways in and one way out in the AEP) and no sign
of a condensate is seen. More importantly, the behavior of the
current at low and high density was explained by considering
prominent few-particle configurations, corresponding to local
order measured by an order parameter. A peculiarity of the
DAEP is that the dynamics strongly favors configurations
with adjacent vacant and occupied sites. The different jump
mechanisms are most effective at half filling, resulting in a
pronounced maximum of the total current there, the current
exceeding three times that of the TASEP. We then studied the
correlations in the corresponding solid-on solid model, and
observed accelerated dynamics. No simple, working analytic
approximation appears to be available for the cluster size
distributions of the DAEP, because the effective interaction
due to the draw process is of long range in an MTP, in which
the the kick process becomes short range, and vice versa. For
the same reason the model eludes solution by Bethe ansatz. In
possible further studies, the conditions for the existence of real
condensation transition and the behavior of the condensate in
various modified TASEP models, including those with open
boundaries, are of interest [9,14].
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