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Brownian particles in random potentials show an extended regime of subdiffusive dynamics at intermediate
times. The asymptotic diffusive behavior is often established at very long times and thus cannot be accessed
in experiments or simulations. For the case of one-dimensional random potentials with Gaussian distributed
energies, we present a detailed analysis of experimental and simulation data. It is shown that the asymptotic
long-time diffusion coefficient can be related to the behavior at intermediate times, namely, the minimum of
the exponent that characterizes subdiffusion and hence corresponds to the maximum degree of subdiffusion.
As a consequence, investigating only the dynamics at intermediate times is sufficient to predict the order of
magnitude of the long-time diffusion coefficient and the time scale at which the crossover from subdiffusion to
diffusion occurs, i.e., when the long-time diffusive regime and hence thermal equilibrium is established. Inversely,
theoretical predictions derived for the asymptotic long-time behavior can be used to quantitatively characterize
the intermediate behavior, which hardly has been studied so far.
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I. INTRODUCTION

The motion of an individual Brownian particle on a rough
surface or in a random external potential exhibits different
dynamical regimes. If the external potential lacks a lower
limit and the mean or second moment of the potential energy
does not exist, the motion remains subdiffusive even in the
asymptotic long-time limit [1–4]. However, if the first and
second moments of the potential energy are well defined and
finite, the motion becomes diffusive in the long-time limit,
i.e., the mean square displacement 〈r2(t)〉 is proportional to
the time t for t → ∞. Nevertheless, at intermediate times an
extended subdiffusive regime usually exists where 〈r2(t)〉 ∝
tν(t) with the exponent ν(t) < 1 (for reviews see, e.g., [5–7]).
Colloidal model systems can be used to systematically study
the intermediate- and long-time dynamics experimentally
[8–14] or with simulations [2–4,15–17]. The crossover from
the intermediate subdiffusion to the long-time diffusion occurs
at progressively longer times as the roughness of the surface or
the barriers of the potential are increased. As a consequence,
the asymptotic long-time diffusive regime is often inaccessible
in experiments or simulations.

The properties of the asymptotic long-time dynamics,
such as the asymptotic diffusion coefficient D∞, can be
theoretically derived within various models, e.g., diffusion
models with rough potentials [18]; hopping, transition rate, or
random trap models [15,19,20]; random barrier methods [21–
23]; and continuous-time random walks [24,25]. However,
a comprehensive theoretical description of the intermediate
subdiffusive regime is still lacking. Establishing a link between
the intermediate- and long-time behaviors will thus allow us
to exploit theoretical predictions for the asymptotic long-time
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behavior for a quantitative description of the intermediate
behavior.

Intermediate subdiffusive regimes exist in the dynamics of
many systems. In addition to the already mentioned Brownian
motion in random and also regular potentials [8–18,26–30] or
on rough surfaces [31–33], subdiffusion is also observed when
particles move in confinement [34], in inhomogeneous media
(e.g., with fixed obstacles as in a Lorentz gas [35], porous
gels [36], or cells [37–39]), in materials with defects (e.g.,
zeolites [40] or charge carriers in a conductor with impurities
[41,42]), or between magnetic domains [8,9]. Intermediate
subdiffusive regimes also occur in dense suspensions close
to freezing [43] and glasses [44–46], where subdiffusion is
due to particles being trapped in the cage of neighbors and
has been described by potential energy landscape models
[45–48] that are similar to random trap models. Furthermore,
in biological systems a similar phenomenon, termed crowding,
can occur at large densities [37,38]. Energy landscapes have
also been applied in the context of protein folding [49,50] and
the behavior of RNA, proteins, and transmembrane helices
[51,52], where random energy landscapes with a Gaussian
distribution of energy levels of width O(kBT ), where kBT is
the thermal energy, seem to be relevant. Particles diffusing in a
narrow channel without the possibility to pass each other also
exhibit subdiffusive motion, known as single file diffusion,
which, however, extends to infinity (with the center of mass
motion subtracted) [53–55]. This is in contrast to our system of
individual noninteracting dilute particles, which always exhibit
diffusive dynamics in the asymptotic long-time limit. Diffusion
in a random potential energy landscape might represent a
crude approximation only, but nevertheless often provides
a useful initial description of the effect of disorder on the
dynamics [7,56].

Here experiments and simulations are performed to in-
vestigate the dynamics of a colloidal particle in an external
potential, namely, a one-dimensional random potential whose
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potential values are distributed according to a Gaussian
function of width ε. We determine the asymptotic long-time
diffusion coefficient D∞ and the time scale τ∞ associated
with the crossover from subdiffusion to asymptotic long-time
diffusion, as well as the exponent ν(t) that characterizes the
intermediate subdiffusive regime. We find that D∞ ∝ τ−1

∞ ∝
exp[−(ε/kBT )2], in agreement with theoretical predictions
[15,18], and that the minimum of ν(t) approximately fol-
lows νmin = exp(−cε/kBT ), with a constant c. Using these
relations, we demonstrate that if one obtains νmin in the
intermediate regime and D∞ for a few (possibly small) ε,
the order of magnitude of D∞ and τ∞ can be estimated even
for large ε, i.e., for conditions where it is difficult or even
impossible to reach the asymptotic regime. Using the converse
argument, this allows for a more detailed characterization of
the intermediate behavior.

The article is structured as follows. In Sec. II we introduce
the model system and describe details of the experiments and
simulations. The results are presented in Sec. III. In Sec. III C
we demonstrate how the long-time diffusion coefficient D∞
and the crossover time τ∞ can be predicted even for large ε.
Finally, we summarize in Sec. IV.

II. SYSTEM

A. Experiment

The sample consisted of a suspension of colloidal spheres
made from polystyrene with sulfonated chain ends (Interfacial
Dynamics Corporation) with radius R = 1.4 μm in heavy
water. The suspension was dilute with an area fraction of
the quasi-two-dimensional (creamed) particle layer of less
than 0.05 to minimize particle-particle interactions. The
sample was kept in a cell constructed from microscope
slides and cover slips that were thoroughly cleaned to
reduce sticking of particles to the glass surfaces; two cover
slips were used as spacers with a horizontal gap between
them and a third cover slip on top resulting in a narrow
capillary [57].

An external potential was imposed on the polarizable
particles by exposing them to a light field [58,59]. The
light field was created using a laser with a wavelength of
532 nm (Ventus 532-1500, Laser Quantum) and a spatial
light modulator (Holoeye 2500-LCR) [10,60]. The light fields
consisted of rings of high average intensity with random
intensity fluctuations. Different realizations of the fluctuations
were created, all of them leading to a random potential exerted
on the particles with the distribution of energy levels following
a Gaussian distribution with standard deviation, or degree of
roughness, ε. The roughness of the potential ε is controlled
via the laser intensity.

The sample was imaged using a Nikon Eclipse 2000-U
inverted microscope with a Plan APO VC Oil 60× objective.
Micrographs were recorded with a complementary metal-
oxide semiconductor camera (PL-B742F, Pixelink). From the
time series of micrographs, particle coordinates were extracted
[61] and subsequently trajectories xi(t) of the individual
particles i determined. Details of the experiments and data
analysis are given in [10].

B. Simulations

In the simulations, first random potential values U (x) are
drawn from a Gaussian distribution with standard deviation
ε. The resulting U (x) correspond to the spatially varying
laser intensity. A convolution of U (x) with the volume of the
spherical particle results in the effective potential U (x) as felt
by a pointlike particle at position x [17]. The effective potential
U (x) has Gaussian-distributed potential values with standard
deviation ε. Initially, the particle was randomly positioned in
the potential, corresponding to an instantaneous quench of the
system. At each time step, the particle attempts to move a
distance xs = R/32, with the direction chosen randomly. The
move is executed if the potential energy of the new position
is smaller than the current potential energy. Otherwise, the
move is accepted with a probability exp(−�U/kBT ), where
�U is the difference between the potential values at the new
and current positions. For the determination of the different
parameters characterizing the particle dynamics (Sec. III A),
5000 individual runs were averaged. Times are normalized
by the Brownian time τB = R2/2D0, i.e., after the time τB

the mean square displacement in the case of free diffusion is
the square of the radius R of the particle. The free diffusion
coefficient D0 is obtained for ε → 0. Details of the simulations
are described in [17].

III. RESULTS

A. Mean square displacement, diffusion coefficient, and degree
of subdiffusion

Based on the particle trajectories xi(t), the mean square
displacement is calculated according to

〈x2(t)〉 = 〈[xi(t0 + t) − xi(t0)]2〉, (1)

where the average is taken over different particles i and the
waiting time is usually set to t0 = 0, i.e., the time when
the system is quenched [Figs. 1(a), 1(c), and 1(e)]. To
improve the statistics of the experimental results, we also
average over waiting times t0 [Figs. 1(b), 1(d), and 1(f)]. The
mean square displacement 〈x2(t)〉 as a function of delay time
t shows a strong dependence on the standard variation ε of
the distribution of potential values U (x), which is a measure
for the roughness of the potential [Figs. 1(a) and 1(b)]. For
vanishing ε = 0 (black solid line), free diffusion is observed.
For ε > 0, subdiffusive dynamics occurs at intermediate times.
It becomes more pronounced and extends to longer times as
ε increases. For long times, the dynamics becomes diffusive
again, although with a reduced diffusion coefficient D∞. The
crossover from intermediate subdiffusion to the asymptotic
diffusive regime occurs at increasingly longer times τ∞ as
ε increases. For very large ε, the asymptotic regime is not
reached within the observation time.

At very short times, superdiffusion is observed in the
simulations. This is due to the particle being driven from its
initial quenched position to the closest (most likely local)
minimum. As ε increases, the slopes become steeper and
hence the particle is more strongly driven, reflected in a
more pronounced superdiffusion. Although the experimental
data in Fig. 1(a) are quite noisy, they seem to agree with the
simulation results. To reduce the noise, the experimental data
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FIG. 1. (Color online) Time dependence of the (a) and (b) mean square displacement 〈x2(t)〉 in units of the radius R, (c) and (d) diffusion
coefficient D in units of the free diffusion coefficient D0 = R2/2τB, and (e) and (f) exponent ν(t) of the mean square displacement as in
〈x2(t)〉 ∝ t ν(t) for different degrees of roughness of the potential ε/kBT (as indicated). Time t is in units of the Brownian time τB. Simulation
results are represented by lines, experiments by symbols. Simulation results are not averaged over time. The experimental data shown in (a),
(c), and (e) are not time averaged, while the experimental data presented in (b), (d), and (f) are obtained after an average over time (see the text
for details). Fits to D(t)/D0 from simulations are represented by thin gray lines. For comparison, free diffusion is indicated by black solid lines
with (a) and (b) 〈x2(t)〉 = 2D0t , (c) and (d) D/D0 = 1, and (e) and (f) ν = 1.

are time averaged [Fig. 1(b)]. Then the initial superdiffusion
is masked due to the average over waiting times t0. The

average allows the behavior at later times to contribute
to 〈x2(t)〉 and hence results in only a small weight of the
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initial superdiffusive regime. (Note that for the simulations
t0 = 0.) The averaging over t0 has a further consequence: The
system is initially quenched and evolves toward an occupation
of the energy values following a Boltzmann distribution. This
implies an increasing occupation of deep minima. The escape
from deeper minima takes longer and hence results in slower
dynamics. The averaging, via the inclusion of later times
with their slower dynamics, thus results in an earlier onset
of subdiffusion. This is indeed observed in the experimental
t0-averaged 〈x2(t)〉 (see also Figs. 11 and 12 in [17]). Since
the time-averaged data depend on the total measurement time
and thus an additional parameter is introduced, time averaging
is only applied to the experimental data to improve statistics.
Since the asymptotic long-time regime is only reached after
the system equilibrated, the long-time limit is not affected by
the averaging over t0. Interestingly, the method that we apply
in the following seems also unaffected by time averaging,
although it also involves behavior at intermediate times.

The time-dependent diffusion coefficient D(t) can be
defined as the derivative of 〈x2(t)〉:

D(t) = d〈x2(t)〉
2dt

. (2)

Figures 1(c) and 1(d) show D(t) in units of the free diffusion
coefficient D0 as a function of the delay time t for different
degrees of roughness of the potential ε, as obtained from
simulations (lines) and experiments (symbols). In the case of
free diffusion, that is, ε = 0, D(t)/D0 = 1. In the presence
of a random potential, D(t) monotonically decreases at
intermediate times until, in the asymptotic regime, diffusive
behavior is recovered with a constant asymptotic long-time
diffusion coefficient D∞. With increasing ε, the decrease of
D(t) becomes more pronounced and the asymptotic regime
is reached at increasingly longer times. In the log-log-plot,
the approach of log10 [D(t)/D0] towards the asymptotic value
log10 (D∞/D0) can be described by an empirical exponential
function

log10

(
D(t)

D0

)
= log10

(
D∞
D0

)
[1 + a exp(−t/τ∞)], (3)

with a fit constant a. In Fig. 1(c) thin gray lines indicate fits
to the simulation data. The fits are used to determine D∞
and τ∞ even if the long-time limit is not reached within the
simulation time. The experimental data averaged over t0 [see
Fig. 1(d)] contain a significant contribution from the dynamics
at late times and hence of the system closer to equilibrium
where the particle tends to occupy lower energy values. This
leads to a sharper decrease of D(t)/D0 at short and inter-
mediate times, but, in the asymptotic long-time limit, to the
same D∞/D0 [17].

The mean square displacement 〈x2(t)〉 at delay time t can be
expressed as a power law 〈x2(t)〉 ∝ tν(t). The time-dependent
exponent ν(t) can be calculated using

ν(t) = d log10[〈x2(t)〉/R2]

d log10(t/τB)
. (4)

In Figs. 1(e) and 1(f) the exponent ν(t) is shown as a function
of the delay time t . In the absence of an external potential, i.e.,

ε = 0, free diffusion with ν(t) = 1 is observed. For ε > 0,
ν(t) < 1 and thus subdiffusion occurs. The sharp decrease of
ν(t) is due to the particle being trapped in a local minimum
with the trapping becoming more efficient with increasing
ε. In contrast, the crossover from subdiffusion to asymptotic
diffusion, indicated by ν(t) approaching 1, is very slow and
occurs at increasingly longer times as ε increases. For the
largest ε, it cannot be determined within our observation
window. For diffusion to be reestablished the particle has
to escape also deep minima and hence cross large barriers.
This requires a very long time, which depends on the range
of barrier heights, i.e., ε. Furthermore, as ε increases, the
minimum in ν(t), νmin, decreases, which will be analyzed
in Sec. III B. The experimental data without time averaging
[points in Fig. 1(e)] are very noisy. The experimental ν(t)
with t0 averaging [Fig. 1(f)] also contain a contribution from
the dynamics at later times, when the particle has already
escaped the minima, and thus increase toward 1 earlier. The
value of νmin is, however, hardly affected by the t0 averaging
as shown below. Therefore, in the following discussion, we
will always refer to the experimental data that are averaged
over t0.

B. Dynamics at intermediate times and in the asymptotic
long-time limit

The asymptotic long-time diffusion coefficient D∞ of dif-
fusion in a one-dimensional random potential was calculated
to be [18]

D∞
D0

= exp

[
−

(
ε

kBT

)2]
. (5)

The same relation was also derived from transition rate
models (see, e.g., [5]) and continuous-time random walks
with transition rates calculated according to Kramers’ formula
[62]. For small ε, the agreement between the theory and our
experiments and simulations is very good, while for large
ε the simulations lead to smaller values of D∞, i.e., larger
values of − log10(D∞/D0), than expected from theory (Fig. 2).
This is attributed to the fact that, for large ε, the asymptotic
diffusive regime was not reached within the simulation
time and hence D∞ was determined by extrapolating the
time-dependent diffusion coefficient D(t) [Figs. 1(c) and
1(d); cf. thin gray lines], which seems to systematically
underestimate D∞.

The time scale τ∞ quantifies when the crossover from sub-
diffusion to asymptotic diffusion occurs, i.e., the asymptotic
long-time regime is established. From the fits to the simulation
data [Fig. 1(c)], the ε dependence of τ∞ is extracted (Fig. 2).
Note that the value of τ∞ might depend on the (heuristic) fit
equation used [Eq. (3)] for both small ε, where D(t)/D0 shows
only a weak time dependence, and large ε, where a significant
extrapolation is required. The time scale τ∞ is predicted to
follow [15]

τ∞ ≈ f τB
D0

D∞
, (6)

where f is a prefactor of order 1 that depends on the details of
the potential. From a fit to our simulation results (Fig. 2, left
inset) we find f ≈ 1.33. Thus τ∞ can be estimated based on
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FIG. 2. (Color online) Negative logarithm of the normalized
asymptotic diffusion coefficient D∞/D0 as a function of the degree of
roughness of the potential ε/kBT . Here D∞/D0 is obtained by theo-
retical predictions (5) (black solid line) and fits to D(t)/D0 [Fig. 1(b)],
which were determined in simulations (+) and experiments (�).
The logarithm of the normalized time scale τ∞/τB, associated
with the crossover from subdiffusion to asymptotic diffusion, is
shown for the simulation results (∗). The negative logarithm of the
minimal value of the exponent νmin is obtained from ν(t) [Fig. 1(c)],
determined in simulations (×) and experiments (	). Straight lines
are fitted to log10 [νmin(ε)], determined in simulations (blue dashed
line) and experiments (red dotted line). The inset on the right shows
− log10 (νmin) from simulations together with a linear fit as in the
main figure (blue dashed line) and a power law fit with exponent
0.83 (cyan solid line). The inset on the left shows log10(τ∞/τB) as
a function of − log10(D∞/D0). The green dashed line indicates a
linear dependence τ∞/τB = f D∞/D0 [Eq. (6)], where f ≈ 1.33 is
obtained by fitting.

D∞ even if it cannot be extracted directly from the data. The
crossover time τ∞ is of special interest for many simulations
and experiments since it characterizes the relaxation time
required to reach thermal equilibrium.

The intermediate subdiffusive regime is characterized by
a minimum of ν(t) [Figs. 1(e) and 1(f)]. The minimum νmin

was determined as a function of ε (Fig. 2). With increasing
ε, νmin decreases, indicating the increasingly pronounced
subdiffusion. The logarithm of νmin can be fitted by an
empirical linear function, namely,

νmin = exp

(
−c

ε

kBT

)
, (7)

with a constant c. We find c = csim ≈ 0.104 for the simulation
data and c = cexpt ≈ 0.134 in the case of the experiments. A
power law fit with exponent 0.83 seems to be slightly more
suitable than the linear fit (Fig. 2, right inset). However, for
simplicity and because the difference is very small, the linear
fit (7) will be used in the next section.

The time τmin at which the minimum occurs is very difficult
to determine unambiguously due to the shallow minimum,
especially for large ε. We thus refrain from extracting τmin.
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FIG. 3. (Color online) Negative logarithm of the normalized
asymptotic diffusion coefficient D∞/D0, which is related to the
logarithm of the time characterizing the crossover to the asymptotic
regime τ∞, as a function of the negative logarithm of the minimum
exponent νmin as obtained by simulations (main figure, ×) and
experiments (inset, �). Lines are quadratic fits to all data (black
solid line) or only the first few data points (broken lines). The gray
area indicates the time scale that needs to be explored in experiments
or simulations in order to predict the behavior shown in the entire
figure.

C. Relation between the asymptotic long-time dynamics and the
intermediate subdiffusion

In the previous section we determined characteristic fea-
tures of the intermediate subdiffusive regime, namely, the
minimum of the exponent νmin, as well as of the asymptotic
long-time regime, that is, the asymptotic long-time diffusion
coefficient D∞ and crossover time τ∞. These parameters
only depend on the degree of the roughness of the po-
tential ε [Eqs. (5)–(7)]. They can thus be related to each
other: − log10(D∞/D0) shows a quadratic dependence on
− log10 νmin (Fig. 3). Interestingly, the first few data points
obtained for small ε are sufficient to reliably determine the
only fit parameter c (Fig. 3, broken lines). While, in the case
of simulations, fits to the first two or three points lead to an
underestimate of D∞ [i.e., overestimate of − log10(D∞/D0)],
fits to the first five points from the simulations and only
two points from the experiments, respectively, result in good
estimates for all data points including those at the highest
− log10 νmin and thus large ε. (Note that the required number
of points depends on their νmin values, not their determination
by simulations or experiments.) The limited range of data, and
thus time scales, used to reliably determine c is highlighted by
the gray area in Fig. 3.

As a consequence, if in an experiment or simulation νmin

and D∞ can be measured for a few, possibly small, ε, i.e.,
on time scales that are indicated by the gray area in Fig. 3,
a quadratic fit to the logarithms of these data can provide the
fit parameter c and hence a relation between the parameters
describing the asymptotic long-time behavior, D∞ and τ∞, and
the one characterizing the intermediate regime νmin. Then a
determination of νmin, which can be performed at intermediate
times, will provide an estimate of the asymptotic long-time
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behavior, namely, D∞ and τ∞. Importantly, the duration of
simulations and experiments required to obtain νmin is much
shorter, often by many orders of magnitude, than required to
determine the long-time dynamics (Fig. 1), which is given
by the crossover time to the asymptotic regime τ∞ (Fig. 2).
Moreover, in t0-averaged data, the minimum in ν(t) occurs
earlier. Even if thermal equilibrium is not reached within
the simulations or experiments, the time scale on which the
relaxation will take place can nevertheless be estimated. Hence
D∞ and τ∞ can be estimated even for very rough substrates
or potentials without having to perform long simulations or
experiments. Furthermore, the roughness ε of the surface or
potential does not need to be known to obtain an estimate of
D∞ and τ∞.

Moreover, in experiments or simulations with particles on
rough surfaces or in random potentials, the roughness ε can
often be varied but not quantified. If ε cannot be determined,
the relationship between νmin and D∞ can be exploited to
obtain ε. Determining a few sets of νmin and D∞, possibly on
short-time scales, i.e., for small ε, allows for the determination
of c. Subsequently, D∞ and ε can be predicted as a function
of νmin.

Our method also can be applied to other potentials whose
potential energies are not distributed according to a Gaussian
function. The asymptotic limit can be calculated if the first
and second moments of the potential energy distribution are
finite [5]. Therefore, an extensive exploration of the asymptotic
long-time motion is not needed. It is sufficient to determine the
dependence of νmin on the roughness ε, which can be extracted
from the dynamics at intermediate times, in order to employ
our extrapolation method.

IV. CONCLUSION

The motion of individual colloidal particles was studied
in random potentials using simulations and experiments. We
investigated in particular the dynamics in the intermediate
subdiffusive regime and in the asymptotic long-time regime,
where the motion again is diffusive. The behavior at very long
times, namely, the asymptotic long-time diffusion coefficient
D∞ and the crossover time from subdiffusion to diffusion τ∞,

was related to the characteristic feature at intermediate times,
that is, the minimum in the exponent νmin, which quantifies
the degree of subdiffusion. As predicted by theory [15,18], the
logarithms of D∞/D0 and τ∞/τB are quadratic functions of ε,
while the logarithm of νmin was found to be approximately a
linear function of ε. This allowed us to relate D∞ and τ∞ to
νmin (Fig. 3) and thus the properties of the asymptotic long-time
dynamics to the intermediate dynamics. Conversely, based
on the available theoretical predictions for the asymptotic
diffusive regime, the intermediate dynamics, in particular the
maximum subdiffusion νmin [Eq. (7)], could be quantified,
which so far had been largely unexplored.

In the case of very rough surfaces or potentials, the
asymptotic diffusive regime occurs at very long times. It is
thus often inaccessible in experiments and simulations and
hence D∞ and τ∞ cannot be measured. However, we have
demonstrated that if one determines νmin, which requires only
an investigation at intermediate times, and a few values of D∞,
possibly at a small degree of roughness ε, then D∞ and τ∞
can be predicted even for rough substrates and potentials, i.e.,
large ε. Our method can therefore be used to estimate, based
on relatively short measurements, the asymptotic long-time
diffusion coefficient D∞ and the crossover time τ∞ and hence
the time required to relax and reach thermal equilibrium
without knowledge of ε. Thus the characteristic features of the
asymptotic long-time dynamics can be determined based on
measurements in the intermediate regime, i.e., even if thermal
equilibrium is not reached within the time of the experiment
or simulation.

ACKNOWLEDGMENTS

We thank A. Heuer (Münster) as well as J. Bewerunge,
F. Evers, and C. Zunke (Düsseldorf) for very helpful
discussions. We gratefully acknowledge support by the
Deutsche Forschungsgemeinschaft (DFG) through the SFB-
TR6 (Project No. C7) and the International Helmholtz Re-
search School “BioSoft.” M.S. also acknowledges support
from the DFG within the Emmy Noether program (Schm
2657/2).

[1] J. Honkonen and Y. M. Pis’mak, J. Phys. A 22, L899 (1989).
[2] A. H. Romero and J. M. Sancho, Phys. Rev. E 58, 2833 (1998).
[3] J. M. Sancho, A. M. Lacasta, K. Lindenberg, I. M. Sokolov, and

A. H. Romero, Phys. Rev. Lett. 92, 250601 (2004).
[4] A. M. Lacasta, J. M. Sancho, A. H. Romero, I. M. Sokolov, and

K. Lindenberg, Phys. Rev. E 70, 051104 (2004).
[5] J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263 (1987).
[6] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[7] J.-P. Bouchaud, A. Comtet, A. Georges, and P. L. Doussal, Ann.

Phys. (NY) 201, 285 (1990).
[8] P. Tierno, P. Reimann, T. H. Johansen, and F. Sagués, Phys. Rev.

Lett. 105, 230602 (2010).
[9] P. Tierno, F. Sagués, T. H. Johansen, and I. M. Sokolov, Phys.

Rev. Lett. 109, 070601 (2012).
[10] R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C.

Jenkins, and S. U. Egelhaaf, Soft Matter 8, 2714 (2012).

[11] F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa,
A. Heuer, and S. U. Egelhaaf, Phys. Rev. E 88, 022125 (2013).

[12] F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann,
J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa,
A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, Eur. Phys.
J. Spec. Top. 222, 2995 (2013).

[13] X. Ma, P. Lai, and P. Tong, Soft Matter 9, 8826 (2013).
[14] G. Volpe, G. Volpe, and S. Gigan, arXiv:1304.1433.
[15] M. Schmiedeberg, J. Roth, and H. Stark, Eur. Phys. J. E 24, 367

(2007).
[16] C. Emary, R. Gernert, and S. H. L. Klapp, Phys. Rev. E 86,

061135 (2012).
[17] R. D. L. Hanes and S. U. Egelhaaf, J. Phys.: Condens. Matter

24, 464116 (2012).
[18] R. Zwanzig, Proc. Natl Acad. Sci. USA 85, 2029

(1988).

062133-6

http://dx.doi.org/10.1088/0305-4470/22/18/010
http://dx.doi.org/10.1088/0305-4470/22/18/010
http://dx.doi.org/10.1088/0305-4470/22/18/010
http://dx.doi.org/10.1088/0305-4470/22/18/010
http://dx.doi.org/10.1103/PhysRevE.58.2833
http://dx.doi.org/10.1103/PhysRevE.58.2833
http://dx.doi.org/10.1103/PhysRevE.58.2833
http://dx.doi.org/10.1103/PhysRevE.58.2833
http://dx.doi.org/10.1103/PhysRevLett.92.250601
http://dx.doi.org/10.1103/PhysRevLett.92.250601
http://dx.doi.org/10.1103/PhysRevLett.92.250601
http://dx.doi.org/10.1103/PhysRevLett.92.250601
http://dx.doi.org/10.1103/PhysRevE.70.051104
http://dx.doi.org/10.1103/PhysRevE.70.051104
http://dx.doi.org/10.1103/PhysRevE.70.051104
http://dx.doi.org/10.1103/PhysRevE.70.051104
http://dx.doi.org/10.1016/0370-1573(87)90005-6
http://dx.doi.org/10.1016/0370-1573(87)90005-6
http://dx.doi.org/10.1016/0370-1573(87)90005-6
http://dx.doi.org/10.1016/0370-1573(87)90005-6
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1016/0003-4916(90)90043-N
http://dx.doi.org/10.1016/0003-4916(90)90043-N
http://dx.doi.org/10.1016/0003-4916(90)90043-N
http://dx.doi.org/10.1016/0003-4916(90)90043-N
http://dx.doi.org/10.1103/PhysRevLett.105.230602
http://dx.doi.org/10.1103/PhysRevLett.105.230602
http://dx.doi.org/10.1103/PhysRevLett.105.230602
http://dx.doi.org/10.1103/PhysRevLett.105.230602
http://dx.doi.org/10.1103/PhysRevLett.109.070601
http://dx.doi.org/10.1103/PhysRevLett.109.070601
http://dx.doi.org/10.1103/PhysRevLett.109.070601
http://dx.doi.org/10.1103/PhysRevLett.109.070601
http://dx.doi.org/10.1039/c2sm07102a
http://dx.doi.org/10.1039/c2sm07102a
http://dx.doi.org/10.1039/c2sm07102a
http://dx.doi.org/10.1039/c2sm07102a
http://dx.doi.org/10.1103/PhysRevE.88.022125
http://dx.doi.org/10.1103/PhysRevE.88.022125
http://dx.doi.org/10.1103/PhysRevE.88.022125
http://dx.doi.org/10.1103/PhysRevE.88.022125
http://dx.doi.org/10.1140/epjst/e2013-02071-2
http://dx.doi.org/10.1140/epjst/e2013-02071-2
http://dx.doi.org/10.1140/epjst/e2013-02071-2
http://dx.doi.org/10.1140/epjst/e2013-02071-2
http://dx.doi.org/10.1039/c3sm51240a
http://dx.doi.org/10.1039/c3sm51240a
http://dx.doi.org/10.1039/c3sm51240a
http://dx.doi.org/10.1039/c3sm51240a
http://arxiv.org/abs/arXiv:1304.1433
http://dx.doi.org/10.1140/epje/i2007-10247-7
http://dx.doi.org/10.1140/epje/i2007-10247-7
http://dx.doi.org/10.1140/epje/i2007-10247-7
http://dx.doi.org/10.1140/epje/i2007-10247-7
http://dx.doi.org/10.1103/PhysRevE.86.061135
http://dx.doi.org/10.1103/PhysRevE.86.061135
http://dx.doi.org/10.1103/PhysRevE.86.061135
http://dx.doi.org/10.1103/PhysRevE.86.061135
http://dx.doi.org/10.1088/0953-8984/24/46/464116
http://dx.doi.org/10.1088/0953-8984/24/46/464116
http://dx.doi.org/10.1088/0953-8984/24/46/464116
http://dx.doi.org/10.1088/0953-8984/24/46/464116
http://dx.doi.org/10.1073/pnas.85.7.2029
http://dx.doi.org/10.1073/pnas.85.7.2029
http://dx.doi.org/10.1073/pnas.85.7.2029
http://dx.doi.org/10.1073/pnas.85.7.2029


BROWNIAN PARTICLES ON ROUGH SUBSTRATES: . . . PHYSICAL REVIEW E 88, 062133 (2013)

[19] J. W. Haus, K. W. Kehr, and J. W. Lyklema, Phys. Rev. B 25,
2905 (1982).

[20] B. Derrida, J. Stat. Phys. 31, 433 (1983).
[21] J. Bernasconi, H. U. Beyeler, S. Strässler, and S. Alexander,
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