
PHYSICAL REVIEW E 88, 062123 (2013)

Thermodynamic cost of acquiring information
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Connections between information theory and thermodynamics have proven to be very useful to establish
bounding limits for physical processes. Ideas such as Landauer’s erasure principle and information-assisted
work extraction have greatly contributed not only to broadening our understanding about the fundamental limits
imposed by nature, but also paving the way for practical implementations of information-processing devices.
The intricate information-thermodynamics relation also entails a fundamental limit on parameter estimation,
establishing a thermodynamic cost for information acquisition. We show that the amount of information that
can be encoded in a physical system by means of a unitary process is limited by the dissipated work during the
implementation of the process. This includes a thermodynamic tradeoff for information acquisition. Likewise,
the information acquisition process is ultimately limited by the second law of thermodynamics. This tradeoff for
information acquisition may find applications in several areas of knowledge.
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I. INTRODUCTION

Information theory first encountered thermodynamics when
Maxwell introduced his famous Demon [1]. This relation
became clear with Brillouin’s treatment of information en-
tropy (due to Shannon) and thermodynamic entropy (due to
Boltzmann) on an equal footing [2]. Many advances linking
these two apparently distinct areas have been achieved since
then, with one of the most remarkable being ascribed to
Landauer’s erasure principle [3]. This principle, introduced
as an effective way to exorcize Maxwell’s Demon, states that
the erasure of information is a logically irreversible process
that must dissipate energy. More recently, developments in this
direction have included theoretical and experimental investi-
gations of Landauer’s principle and its consequences [4,5],
work extraction by feedback control of microscopic systems
[6–10], and links between the second law of thermodynamics
and two fundamental quantum-mechanical principles, i.e., the
wave-function collapse [11] and the uncertainty relation [12].
Here, we introduce a thermodynamic tradeoff for information
acquisition, which relates the uncertainty of the information
acquired in a parameter estimation process with the dissipated
work by the encoding process. This tradeoff relation is
obtained by making a formal connection between an elusive
quantity from estimation theory, called Fisher information
[13–16], and the Jarzynski equality [17].

II. THERMODYNAMIC TRADEOFF

Natural sciences are based on experimental and phe-
nomenological facts. Parameter estimation protocols have a
central role to observate new phenomena or to validate some
theoretical prediction. Suppose we want to determine the value
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of some parameter, say ϕ. This can be accomplished, generally,
by employing a probe, ρT . We will assume that the probe state
is initially in thermal equilibrium at absolute temperature T , so
ρT is the canonical equilibrium (Gibbs) state [18]. To extract
some information about the parameter ϕ, the probe could
be prepared (through a process �) in a suitable blank state
represented by ρ0. Then the probe is transformed by a unitary
process �ϕ in order to encode information about the parameter
on the probe state ρϕ . In general, in real-world applications,
these operations are logically irreversible (due to unavoidable
fluctuations during the system’s dynamics) and therefore must
have a thermodynamic cost. The effectiveness of the estimation
(metrology) process depends on how information is encoded
in the probe system. This encoding operation consumes some
work from a thermodynamic point of view. An estimation of
the parameter ϕ can be obtained by a suitable read-out of the
encoded probe system ρϕ . The aforementioned protocol [also
outlined in Fig. 1(a)] abstractly summarizes the operation of
almost all high-precision measurement devices. Employing
this general framework, we show that the uncertainty (the
mean-square root error) �ϕ of an estimation process is limited
by a general physical principle,

�C �Iϕ � kB

2
, (1)

where kB is Boltzmann’s constant, and the thermodynamic
tradeoff for information acquisition is defined as the mean
dissipated work (i.e., work not converted into encoding) 〈WD〉
at a given temperature T as �C = 〈WD〉/T and the relative
acquired information as �Iϕ = (�ϕ)2/δ2

ϕ . δϕ is a quantity
describing the accuracy of the encoding process. Roughly
speaking, δϕ is the precision of the experimental device used
to implement �ϕ [the minimum scale for ϕ; see Fig. 1(b) and
the Appendixes]. The symbol 〈· · ·〉 represents the mean value
with respect to an ensemble of measurements. The physical
quantities appearing in Eq. (1) are highly process-dependent
and must be carefully defined in each physical setup. We
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FIG. 1. (Color online) General sketch of a parameter estimation
process. (a) The estimation process works as follows: A probe system
initially in the thermal equilibrium, ρT , at a given temperature T , is
prepared in a suitable blank state ρ0 (through a process �). Then,
�ϕ acts on the probe in order to encode some information about
the desired parameter ϕ. The thermodynamic cost of the probe state
preparation and encoding of information is �C. The final step is the
read-out of the encoded probe ρϕ . This measurement process results
in a probability distribution, pϕ , that contains the information about
ϕ. After some statistical manipulation of this measured distribution,
an estimation for the value of ϕ is obtained with the mean-square
root error �ϕ. (b) Pictorial representation of an imperfect encoding
of information. The probe state is represented as a pointer and the
encoding process �ϕ has a (minimum) finite precision δϕ .

proceed by analyzing the physical meaning of Eq. (1) and
discussing some of its implications, postponing its derivation.

The work consumed in the parameter estimation process
could ultimately be attributed to the logical irreversibility of
information encoding. The first step for any estimation proto-
col is to prepare the probe. If we employ an out-of-equilibrium
probe, we have to erase the thermal state to prepare the probe
in a suitable blank state, and it has some energetic cost (from
Landauer’s principle). The second step, i.e., the encoding of in-
formation in the probe state (�ϕ), in a realistic apparatus is not
perfect. In other words, the finite precision δϕ of the encoding
operation implies logical irreversibility, and, as a consequence,
some work is dissipated by fluctuations. For the sake of clarity,
let us discuss these issues in two physical contexts.

First, we consider a simple classical thermodynamic sys-
tem. In this classical setting, all the quantities appearing in
Eq. (1) are naturally defined. Nevertheless, our results can
be applied to both (out-of-equilibrium) classical and quantum
systems. Let us suppose that our apparatus is composed of a
gas confined within a cylindrical chamber in which the upper
base is made out of a movable piston with some amount of
matter (M) placed over it as sketched in Fig. 2. The gas is our
probe system and the position of the movable piston indicates
the probe state. Defining ϕ0 as the equilibrium position
of the piston, we can encode information on this system
introducing (or removing) some amount of matter over the
piston. The information is encoded by the displacement ϕ of

FIG. 2. (Color online) Illustration of a parameter estimation
process employing a classical apparatus. The apparatus itself is
composed of a gas confined within a cylindrical chamber with a
movable piston. Information is encoded in the piston position adding
or removing some amount of mass above the piston. In the ideal
encoding process (reversible), the position displacement is given
by ϕid. On the other hand, in a finite step (irreversible, nonideal)
protocol the mean position displacement is labeled as ϕ̄re. (a) A very
irreversible process in which the information encoding is performed
moving suddenly a large amount of mass in a single shot resulting in
the displacement ϕ̄re

1 with a large uncertainty �ϕ1. (b) In this case, the
information encoding is performed moving small portions of mass.
This is still an irreversible process which dissipates less work than
the first one, leading to the displacement ϕ̄re

2 with an uncertainty �ϕ2

(which is smaller than �ϕ1). (c) Sketch of an idealized reversible
process in which the amount of mass above the piston is removed in
an adiabatic way, in this case ϕ̄re

3 → ϕid and �ϕ3 → 0.

the piston from its initial equilibrium position ϕ0. Considering
the parameter estimation processes as described in Fig. 1(a),
we have the following steps: (i) Initially, the system is in
thermal equilibrium at temperature T , being described by the
state ρT , corresponding to the piston position ϕ0 (with some
amount of mass M on the piston). In this situation, all the
forces acting on the piston are in equilibrium and its position
is fixed (except for thermal fluctuations). In this context, the
equilibrium state ρT could be a suitable probe (ρ0 = ρT ), so the
probe preparation process [� of Fig. 1(a)] does not dissipate
work. (ii) By removing (in an adiabatic or nonadiabatic way)
some amount of mass (�M) on the piston, the information
can be encoded into the probe. Due to the imbalance of forces,
this operation drives the piston to a new equilibrium position
described by the state ρϕ , corresponding to position ϕ, thus
encoding the information into the probe state. During such an
implementation, a certain amount of work must be employed
and part of it may be dissipated into the environment. To get
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a good estimation of the encoded information, this protocol
should be repeated N times, or N identical copies of such a
system should be employed. Each realization of the protocol
is driven by an amount of performed work wi . The mean
applied work is then given by 〈W〉 = ∑

p(wi)wi , with p(wi)
being the measured work probability distribution for the whole
ensemble of realizations. (iii) Measuring the piston position
in all realizations, we obtain an estimation ϕ = 〈ϕ〉 ± �ϕ

for the parameter, where 〈ϕ〉 = ∑
p(ϕi)ϕi is the mean value

of the piston displacement, p(ϕi) is the observed probability
distribution, and �ϕ is the mean-square root deviation.

In the example explored above, the work is dissipated in
step (ii). When we remove a certain amount �M of mass from
the top of the piston, the gas expands until a new equilibrium
position is reached. The amount of removed mass determines
how much the piston position changes, and, ultimately, it will
also determine how much work will be dissipated. If the whole
mass is removed in just one shot [Fig. 2(a)], there will be a huge
amount of dissipated work, since the gas will expand from the
initial state (corresponding to ρT ) to the final one (correspond-
ing to ρϕ) through a sudden and irreversible path [19]. The
amount of dissipated work is given by 〈WD〉 = 〈W〉 − �F ,
where �F is the difference in free energy between the final and
the initial states, and 〈W〉 is the mean invested work during the
encoding process. This example clearly shows that some infor-
mation is lost in the encoding process due to work dissipation
caused by finite changes in the system (irreversibility).

To minimize the information loss and, consequently, to
improve the precision of the protocol, we have to diminish
fluctuations during the dynamics as much as possible. This
can be accomplished by removing the mass in small portions,
as depicted in Fig. 2(b), with the limit being the idealized
reversible process for which 〈WD〉 = 0 [Fig. 2(c)]. In this
case, Eq. (1) seems to be flawed, but a deeper analysis reveals
that this is not the case. For the implementation of a reversible
process, we must take the limit �M → 0 (the process must
be implemented in a quasistatic way). But, this limit implies
δϕ → 0, since δϕ (the encoding accuracy) is the minimum step
size that the piston is able to move, i.e., the minimum change in
the system (see below and the Appendixes for formal details).
In the limit of reversible processes, we can read out all the
information encoded in the probe. On the other hand, in the real
word the “scale” of the encoding apparatus is finite. In this case,
the minimum amount of mass that can be removed is finite;
this also introduces a minimum step size for the position of the
piston, i.e., δϕ > 0. This inevitable fact leads to information
loss in the encoding process, implying some work dissipation.
In fact, any realistic encoding apparatus with finite precision
(scale) is irreversible (in an ensemble of realizations), therefore
the apparatus must dissipate work, introducing uncertainty in
the parameter estimation as ultimately bounded by Eq. (1).

An important point concerning the analysis of Eq. (1) is the
relation between the dissipated work 〈WD〉 and the accuracy of
the encoding process δϕ . As illustrated in the above example
and in Fig. 2, in order to get 〈WD〉 → 0 in an ensemble of
realizations, we have to employ an apparatus with almost
perfect accuracy (adiabatic encoding), δϕ → 0. Nevertheless,
all real processes are irreversible and information is inevitably
lost, since we have a finite step size in a real encoding process
(δϕ > 0) implying finite dissipated work (〈WD〉 > 0). The

physical limit on the variance (�ϕ > 0) is given by the second
law, by means of the dissipated work in the encoding process.
This amount of work is a direct consequence of the finite
precision δϕ > 0 in every real encoding process. In other
words, due to the finite encoding precision, some amount of
information is lost, leading to the dissipated work. The satura-
tion of Eq. (1) occurs not in the limit 〈WD〉 → 0 (which would
imply δϕ → 0) but when δϕ = �ϕ . This can be achieved, for
example, if the same apparatus is used in the decoding process
with no additional error source. Although we have explored a
specific example, the discussion above is independent of the
physical system, just as irreversible processes (associated with
finite changes in the system) must increase entropy.

Two other important limits are zero and infinite temper-
ature. Let us assume that both dissipated work 〈WD〉 and
the encoding accuracy δϕ are constants with respect to the
temperature. When T → ∞, Eq. (1) leads to (�ϕ)2 → ∞.
The observer cannot obtain any information encoded by the
process �ϕ . Actually, we cannot encode any information in
this limit due to the infinite amplitude of thermal fluctuations,
which wash out all the information, no matter how precise the
encoding process is. In the opposite limit, T → 0, we have
(�ϕ)2 � 0. For classical systems, this is a valid limit and the
inequality could be, in principle, saturated. However, due to
the third law of thermodynamics, it is not allowed for quantum
systems to reach this limit. (�ϕ)2 is always greater than zero
due to quantum fluctuations.

The bound presented in Eq. (1) also holds for quan-
tum strategies for parameter estimation employing out-of-
equilibrium probes. Now, let us consider a standard interfer-
ometric strategy to estimate a phase shift between two states.
This task can be accomplished by observing the probability
for the measurement of the probe in a suitable basis. We are
going to label the two states by |0〉 and |1〉. A suitable probe in
this case is a balanced superposition, |ψ0〉 = (|0〉 + |1〉)/√2
(ρ0 = |ψ0〉〈ψ0|). This probe state preparation process could be
a suitable postselected projective measurement on the thermal
equilibrium state ρT . The encoding of information could be
carried out by a phase shifter, such as, for example, U (ϕ) =
eiφ|1〉〈1|. In a real interferometer, the minimum step size δϕ

to encode the phase ϕ on the probe state is finite. Therefore,
we have an imperfect encoding [as pictorially described in
Fig. 1(b)], and in an ensemble of realizations, the evolution is
irreversible. This finite accuracy of the phase shifter (δϕ >

0) implies information loss and work consumption in the
encoding process �ϕ . In fact, the probe state preparation
is also a nonideal process introducing another source of
dissipated work. The bound for information acquisition in the
out-of-equilibrium quantum context is also given by Eq. (1).

III. OUTLINE OF THE DERIVATION

Now, we outline the derivation of Eq. (1). Consider again
the general framework for a parameter estimation process
described in Fig. 1(a). To inspect how a given unbiased
estimator for the parameter ϕ is close to the real encoded
information, we can use the so-called Cramér-Rao bound
[20,21],

(�ϕ)2 � 1

F , (2)
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where F is the Fisher information, usually defined as F =∫
dx pϕ(x)( ∂ ln pϕ (x)

∂ϕ
)2. pϕ(x) is the probability distribution for

the best read-out strategy of the encoded probe, and it contains
the information about ϕ. For our proposal, it will be interesting
to express the Fisher information in terms of relative entropy
as [15,16]

F ≈ 2
S
(
pre

ϕ

∣∣∣∣pid
ϕ

)
δ2
ϕ

, (3)

with pre
ϕ being the read-out probability distribution obtained in

a real (irreversible, nonideal) experiment, pid
ϕ being the read-

out probability distribution of an ideal (reversible) parameter
estimation protocol, and δϕ is the accuracy of the process. Here,
we refer to the ideal process as the limit process of the second
law, i.e., the adiabatic process where all the work in converted
into free energy (〈W〉 − �F = 0). By the real (irreversible)
experiment we mean that the parameter estimation apparatus
is nonideal in the sense that the process running in such an
apparatus will dissipate some amount of work (〈W〉 − �F >

0) due to fluctuations. In this case, we consider a slight nonideal
process working very near to the reversible limit, since we
are interested in a high-precision measurement apparatus.
The approximation presented in Eq. (3) is a very good
approximation in this setting (see Appendix C for details).

Next, we relate the Fisher information with information
loss and the dissipated work through a formal relation between
work and information (obtained in Appendix A). Considering
that a system is driven through the injection of work W by an
external agent from the initial equilibrium state to some final
one, Jarzynski proved that [17]

〈e−W/kBT 〉 = e−�F/kBT , (4)

where the mean is computed over the ensemble of realizations
and �F is the free-energy difference between the final and
the initial system’s states. T is the temperature of the initial
equilibrium state. In Appendix A, we obtain the following
information-theoretic relation:

〈W〉 − �F

kBT
= 〈

Ix,xϕ

〉
, (5)

where 〈Ix,xϕ
〉 is the mutual information between the readout

distribution for the final probe state (where the parameter ϕ

is encoded, ρϕ) and the distribution for the initial thermal
state (ρT ). x is some parameter characterizing the distribution.
It is possible to obtain the Jarzynski equality from this
development, as shown by Vedral [27] (see also Appendix A).

In addition to the above results, we can show that

〈
Ix,xϕ

〉
�

δ2
ϕ

2
F , (6)

where F is the Fisher information (classical or quantum) for
the encoded state ρϕ and(

δϕ

ϕid

)2

=
(

ϕre

ϕid
− 1

)2

� 1 (7)

is the relative accuracy of the estimation process. The approx-
imation in Eq. (7) means that the error in the measurement
must be much smaller than the parameter being measured.

This is quite a reasonable assumption since an error of the
same order of the parameter would render meaningless the
entire parameter estimation process.

Combining everything together, from Eqs. (2), (5), and (6),
we show that

(�ϕ)2 �
δ2
ϕ

2
〈
Ix,xϕ

〉 , (8)

which is our main result expressed in Eq. (1) as a tradeoff
relation.

IV. DISCUSSIONS

We introduced a physical principle that bounds information
acquisition, Eq. (1), derived from an information-theoretic
relation, connecting the Jarzynski equality [17] with the
Cramér-Rao [20,21] bound. This is a general result, applicable
to classical or quantum contexts, stating that the amount
of information that can be encoded by means of a unitary
process is limited by the dissipated work (due to logical
irreversibility) during the implementation of the estimation
process. This conclusion reveals a deep connection between
metrology and thermodynamics, implying that the physical
limit for the precision of a parameter estimation process (which
is equivalent to encoding and decoding information processes)
is given by thermodynamics. Moreover, the lower bound on
the uncertainty about the estimation of a given parameter is
zero only in the thermodynamic limit of reversible (adiabatic)
processes (imposed by the second law).

Inequality (1) could be conceived as a counterpart of
Landauer’s principle, as both of them are assertions about the
work cost of information (acquisition or erasure). Furthermore,
it would be interesting to investigate the relationship of the
results herein with generalized uncertainty relations. At this
point, it is reasonable to presume that the basic principles of
quantum mechanics itself are probably subtly connected to the
second law of thermodynamics [12,22,23] in an informational
scenario.

From the point of view of the experimental verification
of Eq. (1), it is important to precisely establish the system
in order to define all the quantities involved, such as the
work employed in the process and how the information is
encoded and read out. Discussing the fundamentals of physics,
Planck has argued that the number of dimensional fundamental
constants in nature should be equal to four [24]: the Newtonian
gravitational constant G, the speed of light c, and Planck’s and
Boltzmann’s constants h and kB , respectively. The authors of
Ref. [25] concluded that this number should be two, chosen
between G, c, and h, having discarded Boltzmann’s constant
for being a conversion factor between temperature and energy.
In Ref. [26], the viewpoint that Planck’s constant is superfluous
was advocated and kB was also discarded for the same reason
as given in [25]. If we define temperature as twice the mean
value of the energy stored in each degree of freedom of a
system in thermal equilibrium, T = 2〈E0〉, kB turns out to be
a dimensionless quantity equal to 1 and Eq. (1) becomes

〈WD〉
〈E0〉

(
�ϕ

δϕ

)2

� 1, (9)
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which means that the precision of the information acquired
in a parameter estimation process is limited by the mean
dissipated work per degree of freedom of the encoding
system. From a more practical standpoint, inequality (1) is
quite meaningful for technological applications in metrology
relating the reversibility of a high-precision measurement
device with its efficiency.
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APPENDIX A: INFORMATION-WORK RELATION

In this Appendix, we will obtain relation (5) of the main
text. Let us consider a quantum system externally driven
through some process such that its initial Hamiltonian is
described by H = ∑

n En |ψn〉〈ψn| (in the spectral basis) and
its final Hamiltonian reads H ′ = ∑

m E′
m |ψ ′

m〉〈ψ ′
m| . The initial

system state is taken as ρ0 and the probability distribution
for the occupation of the initial Hamiltonian eigenstates is
given by p(n) = Trρ0 |ψn〉〈ψn| . Considering that the system
evolves through some process to a final state ρ ′, we obtain a
distribution p(m) = Trρ ′ |ψ ′

m〉〈ψ ′
m| for the occupation of the

final Hamiltonian eigenstates. A key quantity in our derivation
is the mutual information between the joint probability
distribution of the outcomes in the measurements of the
initial and final Hamiltonian eigenstates, p(m,n). This mutual
information can be obtained from the information density,
In,m ≡ ln[p(n,m)/p(n)p(m)], as

〈In,m〉 =
∑
m,n

p(m,n) ln
p(m,n)

p(m)p(n)
. (A1)

The joint probability distribution p(m,n), which can be
written as p(m,n) = p(m|n)p(n) [where p(m|n) corresponds
to the transition probability from the initial state n to the final
state m], is not directly observable [28]. On the other hand,
we have direct access to the initial, p(n), and final, p(m), dis-
tributions. In a microscopic thermodynamics description, it is
possible to reach the Gibbs ensemble from a distribution which
maximizes the Shannon entropy—this means a maximization
over the fluctuations—satisfying normalization and thermal
energy constraints [29]. Employing the same reasoning, we
will find the distribution p(m,n) which provides us with the
maximal information 〈In,m〉 over the fluctuations, during the
process that drives the system Hamiltonian from H to H ′, with
the following constraints:∑

m,n

p(m,n) = 1, (A2)

∑
m,n

(E′
m − En)p(m,n) = 〈H ′〉 − 〈H 〉 = 〈�E〉, (A3)

where �E ≡ E′
m − En, the first condition is the normalization,

and the second one is an energy constraint in such a way that
the distribution p(m,n) gives us the mean energy variation
during the process. This approach is justified further, since

it implies known results of fluctuation theorems such as the
Jarzinski equality.

Assorting Lagrange multipliers λ0 and λ1 to the first and
second constraints, we have

p(k,l)

[∑
m,n

p(m,n) ln
p(m,n)

p(m)p(n)
+λ0

(∑
m,n

p(m,n) − 1

)

+λ1

(∑
m,n

(E′
m − En)p(m,n) − 〈�E〉

)]
= 0. (A4)

Since the variations on the probability distribution elements
are independent, Eq. (A4) is satisfied if

ln
p(k,l)

p(k)p(l)
+ 1 + λ0 + λ1(E′

k − El) = 0.

Therefore, p(k,l) = p(k)p(l)e−1−λ0−λ1(E′
k−El ). From the nor-

malization constraint introduced in Eq. (A2), it follows that

∑
m,n

p(m)p(n)e−1−λ0−λ1(E′
m−En)

= e−1−λ0
∑
m,n

p(m)p(n)e−λ1(E′
m−En) = 1, (A5)

which implies e1+λ0 = Z , where we have defined Z ≡∑
m,n p(m)p(n)e−λ1(E′

m−En). In this way, we can rewrite the
joint probability distribution of the initial and final outcomes
as

p(m,n) = p(m)p(n)
1

Z e−λ1(E′
m−En). (A6)

The conditional probability for the occurrence of out-
come m in a measurement, on ρ ′, of the final Hamilto-
nian eigenstates, H ′, given that the initial outcome was
n, is given by p(m|n) = p(n,m)/p(n), which, from the
above relations, turns out to be p(m|n) = e−λ1(E′

m−En)p(m)/Z
[
∑

m p(m|n) = 1].
From the energy constraint in Eq. (A3), we obtain∑

m,n

E′
mp(m,n) =

∑
m

E′
mp(m) = 〈H ′〉,

∑
m,n

Enp(m,n) =
∑

n

Enp(n) = 〈H 〉.

We note that p(n) is independent of λ1, so 〈H 〉 does not fix the
λ1 value, since λ1 is taken as an arbitrary constant expressed in
the inverse of energy unit. For any finite λ1 (with |λ1| < ∞),
we can use Eq. (A6) to write∑

m,n

(E′
m − En)p(m)p(n)

1

Z e−λ1(E′
m−En) = 〈�E〉. (A7)

It is easy to see that −λ1 = 〈�E〉. Now, let us employ the
above relation to rewrite the mutual information between
the outcomes in the measurements of the initial and final
Hamiltonian eigenstates as

〈In,m〉 = − lnZ − λ1〈�E〉. (A8)

Taking the variation of 〈In,m〉 relative to 〈�E〉, we have

〈�E〉 = −λ1〈�E〉 − 〈�E〉〈�E〉 − λ1 = −λ1. (A9)
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Since λ1(E′
m − En) must be dimensionless and 〈In,m〉 is a

kind of entropy variation, we can assume −λ1 = β = 1/kBT

(where kB is the Boltzmann constant and T is the absolute
temperature). Here, we have also considered that the evolution
should produce some entropy.

Finally, considering the initial system state as an equi-
librium Gibbs state ρ0 = e−βH /Z (with Z ≡ Tre−βH and a
unitary transformation driving H to H ′), we have p(m|n) =
|〈ψ ′

m| U |ψn〉|2. From Eq. (A6), we can obtain p(m)p(n) =
Ze−β(E′

m−En)p(m,n). Summing it over the initial and final
states, it follows that

∑
m,n p(m)p(n) = 1. So, we can write

[30]∑
m,n

p(m)p(n) =
∑
m,n

Ze−β(E′
m−En)p(m,n)

= Z
∑
m,n

e−β(E′
m−En)p(n)p(m|n)

= Z
∑
m,n

e−β(E′
m−En) e

−βEn

Z
|〈ψ ′

m| U |ψn〉|2

= Z 1

Z

∑
m

e−βE′
m

∑
n

〈ψ ′
m| U |ψn〉〈ψn| U † |ψ ′

m〉

= Z 1

Z

∑
m

e−βE′
m

= ZZ′

Z
= 1. (A10)

This implies Z = Z/Z′, where Z′ ≡ ∑
m e−βE′

m . We note that
the final state ρ ′ is not necessarily an equilibrium state in
the above development and the system evolution is also not
necessarily adiabatic or energy-conserving [30]. Z′ works as
a partition function for the final Hamiltonian H ′. In fact, this
quantity will introduce a connection between equilibrium and
nonequilibrium system properties.

Defining the Helmholtz free energy as F ≡ −kBT ln Z, we
can write

〈In,m〉 = − ln
Z

Z′ + 1

kBT
〈W〉

= 〈W〉 − �F

kBT

= β(〈W〉 − �F ). (A11)

The preceding equation is compatible with the result obtained
by other methods in Ref. [27]. If one takes the averaged
exponential of the information density, In,m, it results in
〈e−In,m〉 = 〈e−β(W−�F )〉 = 1 (according to the previous devel-
opment), which implies the Jarzinski equality,

〈e−βW〉 = e−β�F . (A12)

This result was also pointed out in Ref. [27] using a different
approach.

APPENDIX B: DISSIPATION-INFORMATION
ACQUISITION INEQUALITY

In this Appendix, we return to our general description of a
parameter estimation process described in Fig. 1(a) of the main
text. Using the results introduced in the preceding Appendix,

we will obtain an inequality for the acquired information in a
parameter estimation process and the work dissipated during
the process. In this scenario, the mutual information introduced
above quantifies the correlations between the probe system in
the thermal state (before the initial probe preparation) and the
encoded probe (after the encoding process). Let us suppose that
during the parameter estimation protocol, the probe system is
driven from the thermal ρT to an encoded state ρϕ such that
the initial Hamiltonian is H = ∑

n En |ψn〉〈ψn| and the final
one reads H ′ = ∑

m E′
m |ψ ′

m〉〈ψ ′
m| , in a similar way to what

was done in the preceding Appendix.
Here, we consider two distinct processes, i.e., the ideal (re-

versible, theoretical) and the real (irreversible, experimental).
The difference between them is that the second one includes
a small deviation from the reversible (ideal) dynamics due to
fluctuations. We are interested in a high-precision parameter
estimation device. Such a device should work closely with
reversible dynamics in order to obtain high precision. In that
sense, we consider that the actual (real) dynamics includes
fluctuations as a slight deviation from ideal dynamics. Below
we will consider this scenario.

Defining p0ϕ(m,n) as the joint probability to find the final
state in m when the initial state is n, pϕ(m) is the final
state distribution, and p0(n) is the initial state distribution, we
start by considering the differences in the mutual information
densities between the ideal (id) and the real (re) processes,
given by

I re
0:ϕ(j,k) − I id

0:ϕ(j,k) = ln pre
0ϕ(j,k) − ln

[
pre

0 (j )pre
ϕ (k)

]
− ln pid

0ϕ(j,k) + ln
[
pid

0 (j )pid
ϕ (k)

]
= ln

pre
0ϕt(j,k)

pid
0ϕ(j,k)

− ln
pre

0 (j )

pid
0 (j )

− ln
pre

ϕ (k)

pid
ϕ (k)

. (B1)

Multiplying this last equation by pre
0ϕ(j,k) and summing over

j and k, we obtain〈
I re

0:ϕ(j,k)
〉
re − 〈

I id
0:ϕ(j,k)

〉
re

=
∑
j,k

pre
0ϕ(j,k)

[
ln

pre
0ϕ(j,k)

pid
0ϕ(j,k)

− ln
pre

0 (j )

pid
0 (j )

− ln
pre

ϕ (k)

pid
ϕ (k)

]

= S
(
pre

0ϕ

∣∣∣∣pid
0ϕ

) − S
(
pre

0

∣∣∣∣pid
0

) − S
(
pre

ϕ

∣∣∣∣pid
ϕ

)
. (B2)

In this last expression, S(p||q) = ∑
a p(a) ln[p(a)/q(a)] is the

relative entropy between distributions p and q. 〈·〉re means that
the average is taken over the real (nonideal) process probability
distribution.

Using the results of the preceding Appendix, we can write
the averaged value of the information density as

〈
I re

0ϕ(j,k)
〉
re = β(〈W re〉 − �F re) =

〈
W re

D

〉
kBT

, (B3)

with 〈W re
D 〉 being the mean dissipated work during the

real (nonideal) implementation of the parameter estimation
process.

In the next Appendix, we show that

S
(
pre

0ϕ

∣∣∣∣pid
0ϕ

) ≈ δ2
ϕ

2
F

(
pid

0ϕ

)
, (B4)
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with δϕ being the accuracy of the implementation of the
process and F(pid

0ϕ) the Fisher information of the final ideal
distribution (see the main text and the next Appendix for the
physical significance and precise mathematical definition of
these quantities).

Putting all these results together, we obtain〈
W re

D

〉
kBT

− δ2
ϕ

2
F

(
pid

0ϕ

) = ,

with

 = 〈
I id

0ϕ(j,k)
〉
re − S

(
pre

0

∣∣∣∣pid
0

) − S
(
pre

ϕ

∣∣∣∣pid
ϕ

)
. (B5)

As a consequence of the inequality in the Cramér-Rao
relation (Refs. [20,21]), our main result, Eq. (1) of the main
text, is also an inequality. Therefore, to prove it, all we have to
do is to prove that  � 0 for all distributions. Thus

 =
∑
j,k

pre
0ϕ(j,k)

[
ln pid

0ϕ(j,k) − ln pid
0 (j ) − ln pid

ϕ (k)
]

−
∑

j

pre
0 (j )

[
ln pre

0 (j ) − ln pid
0 (j )

]
−

∑
k

pre
ϕ (k)

[
ln pre

ϕ (k) − ln pid
ϕ (k)

]
=

∑
j,k

pre
0ϕ(j,k) ln pid

0ϕ(j,k) + H
(
pre

0

) + H
(
pre

ϕ

)
, (B6)

where H (p) = −∑
k p(k) ln p(k) is the Shannon entropy. The

first term of this expression measures our lack of knowledge
about the ideal probability distribution. In fact, ln pid

0ϕ is a
measure of the information contained in the ideal distribution
(the one we expected to happen). However, events occur
according to the real distribution pre

0ϕ (due to the finite precision
of the experimental apparatus). This is the cause of the loss of
information. It is not difficult to show that

H
(
pre

0ϕ

)
� −

∑
j,k

pre
0ϕ(j,k) ln pid

0ϕ(j,k) (B7)

for every probability distribution. Then, in order to have  �
0, the following relation must be obeyed:

H
(
pre

0

) + H
(
pre

ϕ

)
� −

∑
j,k

pre
0ϕ(j,k) ln pid

0ϕ(j,k)

� H
(
pre

0ϕ

)
, (B8)

which is the well-known superadditivity relation for the
entropy. Thus, we are led to conclude that〈

W re
D

〉
kBT

− δ2
ϕ

2
F

(
pid

0ϕ

)
� 0, (B9)

which proves Eq. (9).

APPENDIX C: FISHER INFORMATION
AND RELATIVE ENTROPY

One way to define the Fisher information of a probability
distribution pϕ is through the calculation of the relative entropy

between pϕ and pϕ+δϕ
yielded by a small shift δϕ in the

parameter ϕ. δϕ is then a measure of the accuracy of the
process, i.e., the minimum error compatible with the specific
process under consideration. It quantifies how much the real
probability distribution diverges from the ideal one. We can
write the relative entropy S(pϕ‖pϕ+δϕ

) as (see Refs. [15,16])

S(pϕ‖pϕ+δϕ
) =

∑
j,k

pϕ(j,k) ln
pϕ(j,k)

pϕ+δϕ
(j,k)

= −
∑
j,k

pϕ(j,k) ln
pϕ+δϕ

(j,k)

pϕ(j,k)
. (C1)

By using a Taylor expansion about δϕ , we can write

ln pϕ+δϕ
− ln pϕ = δϕ

∂ ln pϕ

∂ϕ
+ δ2

ϕ

2

∂2 ln pϕ

∂ϕ2
+ O

(
δ3
ϕ

)
. (C2)

Now, substituting (C2) in (C1), the first-order term yields

−δ
∑
j,k

pϕ(j,k)

pϕ(j,k)

∂pϕ(j,k)

∂ϕ
= −δϕ

∂

∂ϕ

∑
j,k

pϕ(j,k) = 0 (C3)

while the second-order one leads us to

−δ2
ϕ

2

∑
j,k

pϕ(j,k)
∂2 ln pϕ

∂ϕ2

= −δ2
ϕ

2

∑
j,k

pϕ(j,k)

pϕ(j,k)

∂2pϕ(j,k)

∂ϕ2

+ δ2
ϕ

2

∑
j,k

pϕ(j,k)

(
1

pϕ(j,k)

∂pϕ(j,k)

∂ϕ

)2

. (C4)

Since the probability distribution is normalized,

∑
j,k

∂2pϕ

∂ϕ2
= 0, (C5)

and keeping terms up to second order, we obtain

S
(
pϕ

∣∣∣∣pϕ+δϕ

) ≈ δ2
ϕ

2

∑
j,k

pϕ(j,k)

(
∂

∂ϕ
ln pϕ(j,k)

)2

= δ2
ϕ

2
F(pϕ), (C6)

where F(pϕ) is the Fisher information of pϕ . This approxima-
tion implies that we must have∣∣∣∣δϕ

ϕ

∣∣∣∣ � 1, (C7)

meaning that the error in the measurement is much smaller than
the parameter we are measuring. This is quite a reasonable
assumption since an error of the same order of magnitude
of the parameter would render the measurement process
meaningless.
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To prove Eq. (B4), let us introduce the Jeffreys divergence
(Ref. [15]),

J
(
pϕ,pϕ+δϕ

) = S
(
pϕ

∣∣∣∣pϕ+δϕ

) + S
(
pϕ+δϕ

∣∣∣∣pϕ

)
=

∑
j,k

[
pϕ(j,k) − pϕ+δϕ

(j,k)
]

ln
pϕ(j,k)

pϕ+δϕ
(j,k)

.

(C8)

Since (C8) is symmetrical, we may rewrite it as

J
(
pϕ,pϕ+δϕ

) =
∑
j,k

�pϕ+δϕ
(j,k) ln

(
1 + �pϕ+δϕ

(j,k)

pϕ(j,k)

)
,

(C9)

where �pϕ+δϕ
= pϕ+δϕ

− pϕ . Due to the fact that δϕ is small,
the distribution pϕ+δϕ

will be close to pϕ . Therefore,

ln

(
1 + �pϕ+δϕ

(j,k)

pϕ(j,k)

)
≈ �pϕ+δϕ

(j,k)

pϕ(j,k)
, (C10)

allowing us to write

J
(
pϕ,pϕ+δϕ

) ≈
∑
j,k

pϕ(j,k)

(
�pϕ+δϕ

(j,k)

pϕ(j,k)

)2

=
∑
j,k

pϕ(j,k)

(
δϕ

pϕ

�pϕ+δϕ
(j,k)

δϕ

)2

= δ2
ϕ

∑
j,k

pϕ(j,k)

(
1

pϕ(j,k)

∂pϕ(j,k)

∂ϕ

)2

= δ2
ϕF(pϕ). (C11)

From Eq. (C8) we have S(pϕ+δϕ
‖pϕ) = J (pϕ,pϕ+δϕ

) −
S(pϕ‖pϕ+δϕ

), so

S(pϕ+δϕ
‖pϕ) ≈ δ2

ϕ

2
F(pϕ). (C12)

Finally, making the identifications pϕ ≡ pid
0ϕ and pϕ+δϕ

≡
pre

0ϕ , we obtain Eq. (B4), thus proving our main claim, Eq. (1)
of the main text.
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