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Scaling behavior of the Heisenberg model in three dimensions
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We report on extensive numerical simulations of the three-dimensional Heisenberg model and its analysis
through finite-size scaling of Lee-Yang zeros. Besides the critical regime, we also investigate scaling in the
ferromagnetic phase. We show that, in this case of broken symmetry, the corrections to scaling contain information
on the Goldstone modes. We present a comprehensive Lee-Yang analysis, including the density of zeros, and
confirm recent numerical estimates for critical exponents.
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I. INTRODUCTION

The universality concept is commonly stated together
with the hypotheses of scaling and finite-size scaling for
thermodynamic functions close to the critical points associated
with continuous phase transitions. The theory of finite-size
scaling has been very successful in predicting critical and
noncritical properties of bulk systems from those of their
finite or partially finite counterparts [1]. Although comparisons
between experiment and theory, as well as between the variety
of theoretical approaches, yield good overall agreement in
the main, difficulties in reconciling details of scaling in a
number of important experiments remain [2,3]. These include
some experimental realizations of systems with continuous
symmetry groups, such as the those in the three-dimensional
O(3) Heisenberg universality class, including isotropic ferro-
magnets with and without quenched disorder, e.g., Ni, EuO,
and La1−xAxMnO3. Precise theoretical estimates for the crit-
ical temperature and critical exponents are contained in Refs.
[4–6] for the pure and site-diluted Heisenberg models with
quenched disorder. A review of theoretical and experimental
measurements of critical exponents for the Heisenberg model
is contained in Ref. [7].

Here we present results from a theoretical study of the
Heisenberg model in three dimensions. Our objective is not to
revisit old ground but to investigate the Lee-Yang (LY) zeros
[8] of this continuous-symmetry-group model through Monte
Carlo simulations. We do this through finite-size scaling,
primarily at the critical point, but also in the ferromagnetic
regime.

A first motivation is to investigate the Goldstone modes
in the broken phase, which affect the corrections to scaling
there. Although there are many studies in the literature of
how Goldstone modes are manifest in terms of the physics
of such systems (e.g., see Ref. [9]), their effects on complex
singularities have not previously been investigated. In partic-
ular, Refs. [10,11] contained finite-size investigations of the
critical behavior of vector models, taking into account the
Goldstone modes,1 theoretical results that subsequently were

1Note that Ref. [11] works in the limit hV = constant, where h is
the magnetic field and V the volume of the system. Here, we have

tested numerically in Ref. [12]. More recently, for instance,
Dohm studied the influence of Goldstone modes on the Casimir
effect [13].

Physical interpretations for complex singularities are es-
tablished in Ref. [14]. In particular, the Yang-Lee edge is
a manifestation of the symmetric phase, and this has not
previously been analyzed numerically in the Heisenberg
model. We also investigate the crossover in the detailed
behavior of zeros from the ferromagnetic to critical phases.
We show that a simple scaling prescription in terms of the
index of zeros ceases to be valid as criticality is approached.
The change in behavior of the density of zeros between the
phases is also investigated. Another motivation, therefore, is
to compute critical exponents using a technique not used so
far in this model in order to provide numerical data from an
independent angle.

Finally, full understanding of the scaling behavior (includ-
ing the associated correction-to-scaling) of the LY zeros in
the ferromagnetic region for Heisenberg models is further
motivated by its relevance for the understanding of the Griffiths
phase in disordered models with continuous symmetry, which
have been of increased interest in recent years, mainly
in experimental studies.2 Colossal magnetoresistance is an
example of a Griffiths singularity for Heisenberg materials
[17].

In the next section we outline the Heisenberg model and
briefly discuss the observables we focus on in this paper.
In Sec. III we give details of the Monte Carlo simulations.

performed all the numerical simulations at h = 0, so this limit is not
directly applicable to our work.

2In diluted ferromagnets, for example, the region above the
critical temperature of the disordered model and below the critical
temperature of the pure model is called the Griffiths phase. In this
phase the free energy is not analytic as it is in a typical paramagnetic
phase. The nonanalyticity of the free energy does not induce
a phase transition in the static but changes the functional form of
the equilibrium correlation function [15]. Griffiths showed how this
phase can be interpreted in terms of the LY zeros [16]. In the Griffiths
phase, the LY zeros associated with large and ordered spin domains
reach the real axis, but with a density of the zeros insufficient to
induce a true phase transition in the static of the model.
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The outcomes of the simulations are analyzed in Sec. IV.
A compact scaling description in terms of densities of zeros
is given in Sec. V, and we conclude in Sec. VI. Finally, in
the Appendix we describe the limitations of our numerical
method for characterizing the Yang-Lee edge (YL edge) in the
paramagnetic phase.

II. MODEL AND OBSERVABLES

The Heisenberg model in d dimensions may be defined in
terms of O(3) spin variables placed at the nodes of a cubic
lattice. The volume of the lattice is V = Ld , where L is its
linear size and the lattice constant has been set to one. The
model is governed by a Hamiltonian H given by

βH = −β
∑
〈i,j〉

Si · S j − h ·
∑

i

Si . (2.1)

Here β = 1/(kBT ), where T is the temperature and h is an
external magnetic field. The Si are three-dimensional vectors
of unit modulus, and the first sum is extended only over nearest
neighbors. We henceforth set the Boltzmann constant kB to
unity. We define the total nearest-neighbor energy as

E = −
∑
〈i,j〉

Si · S j (2.2)

and the total magnetization density as a three-component
vector

M = (Mx,My,Mz) =
∑

i

Si . (2.3)

The partition function is

ZL(T ,h) =
∑
{Si }

exp (−βH) =
∑
{Si }

exp (−βE + h · M). (2.4)

The susceptibility is defined through the derivatives

∇h ln Z = 1

V
〈M〉 , (2.5)

χL(T ,h) = 1

V
∇h

2 ln ZL(T ,h) = 1

V
(〈M2〉 − 〈M〉2), (2.6)

in which the thermal average is denoted by 〈· · · 〉. Because
the probability of reaching every minimal value for the free
energy is nonvanishing, the thermal average of Eq. (2.3) is zero
in the absence of an external field, for a finite lattice. While
this is an accurate finite-size counterpart for the susceptibility
in the symmetric phase, it cannot be used to capture the
connected susceptibility in the broken phase. Therefore we
have to introduce separate definitions for the connected and
nonconnected finite-size susceptibilities, namely,

χ̃L(T ,h = 0) = 1

V
(〈M2〉 − 〈|M|〉2) (2.7)

and

χ
(nc)
L (T ,h = 0) = 1

V
〈M2〉. (2.8)

For numerical measurements on a finite lattice it is appropriate
to use χ̃L and χ

(nc)
L in the ferromagnetic and paramagnetic

regimes, respectively. One should not use χ̃L in the para-
magnetic phase because, unlike 〈M〉, 〈|M|〉 does not vanish
there for finite-size systems. Indeed, the usage of 〈|M|〉 in

the symmetric phase would be tantamount to the introduction
of a nonvanishing external field there. There is no order
parameter for finite-size systems (because they do not manifest
a phase transition), but χ

(nc)
L and χ̃L each approach χ∞ in the

thermodynamic limit.
Inspired by the fundamental theorem of algebra, Lee and

Yang introduced the idea of complex zeros of the partition
function as a way to investigate the onset and properties of
phase transitions [8]. The resulting approach constitutes a fun-
damental theory of phase transitions [18]. In the paramagnetic
phase, the LY zeros in the complex h plane remain away from
the real magnetic-field axis, as proved in Ref. [19]. This means
there exists a gap on the imaginary h axis in which the density
of zeros is zero. The free energy is analytic in h in the gap
and no phase transition can occur as a function of h. The
ends of the nonvanishing distribution of zeros was termed the
Yang-Lee edge in Ref. [20]. The proof that the LY zeros of
the partition function are located on the imaginary h axis for
the Heisenberg ferromagnet was given in Ref. [21]. Here we
present a numerical investigation into the LY zeros for the
model in three dimensions.

Following Ref. [22], for example, in order to find the LY
zeros of the system we write the partition function in an
imaginary field of strength ir as

ZL(T ,ir) = ZL(T ,0)〈cos(rM) + i sin(rM)〉, (2.9)

where M is the component of M picked out by the field.
Here the thermal average is a real measure, taken with
Z(T ,h = 0). Since the mean value of an observable which is
not invariant under O(3) is automatically zero, odd moments
of the magnetization vanish. Therefore the partition function
in a pure imaginary magnetic field is real and the zeros are
given by 〈cos(rM)〉 = 0. In the ferromagnetic phase, and in
analogy with Eq. (2.7), one may use for M the modulus |M|.
Then one seeks the zeros as solutions to

〈cos(r|M|)〉 = 0. (2.10)

However, just as Eq. (2.7) is inappropriate in the high-
temperature phase, so is Eq. (2.10) unsuitable there. Instead,
and in analogy to Eq. (2.8), one has to use an explicit
component for M , say M = Mx :

〈cos(rMx)〉 = 0. (2.11)

In this way we can attempt to obtain the zeros of the partition
function for each L in the various regimes. The resulting j th,
temperature-dependent, LY zero is denoted by rj (T ; L), the
zero with j = 1 being the smallest.

A. Scaling of the thermodynamic functions and zeros

In the limit of infinite volume, the standard expressions for
the leading thermal scaling are χ∞(T ) ∼ |t |−γ , m∞(h) ∼ h1/δ ,
ξ∞(T ) ∼ |t |−ν , and r1(T ) ∼ t�, for t > 0. Here, t is the
reduced temperature, (T − Tc)/Tc, and we suppress writing
explicit dependency on h or t when they vanish. In the
following, we focus on the finite-size scaling (FSS) of the
susceptibility and zeros. According to standard FSS theory,
these are obtained through the substitution ξ∞(T ) → ξL(Tc) ∼
L or t → L−1/ν . Therefore we expect to extract the leading

062117-2



SCALING BEHAVIOR OF THE HEISENBERG MODEL IN . . . PHYSICAL REVIEW E 88, 062117 (2013)

scaling behavior through

χL(Tc) ∼ L
γ

ν , rj (Tc; L) ∼ L− �
ν . (2.12)

We can estimate γ /ν and �/ν through the scaling relations

γ

ν
= 2 − η and

�

ν
= d + 2 − η

2
, (2.13)

provided the anomalous dimension η is known. The most
recent measurement of this critical exponent is η = 0.0378(3)
[6], and from this one obtains

γ

ν
= 1.9622(3) and

�

ν
= 2.4811(2). (2.14)

These values are used throughout this work.

B. Compact scaling of Lee-Yang zeros

In Ref. [23], it was suggested that the partition function
zeros could scale, in the critical region, as a fraction of the
total number of zeros, i.e., as a function of j/Ld , for large
values of the index j . In fact, many models give scaling in the
ratio (j − ε)/Ld in which ε = 1/2 [24,25]. If such a functional
form is widespread for LY zeros, it suggests that Eq. (2.12) be
promoted to the more comprehensive form

rj (T ; L) ∼
(

j − ε

Ld

)C(T )

(2.15)

for T � Tc. To investigate this further, first write the finite-size
partition function in terms of its LY zeros as

ZL(T ,h) = A

V/2∏
j=1

(h − hj )(h − h∗
j ), (2.16)

where A is nonvanishing (as a function of h) and ∗ means
complex conjugation. Then the susceptibility is

χL(T ) = − 1

V

V/2∑
j=1

(
1

h2
j

+ 1

h∗
j

2

)
. (2.17)

When the Lee-Yang theorem [8] holds and hj = irj is purely
imaginary, this gives that

χL(T ) = 2

V

V/2∑
j=1

1

r2
j (T ; L)

. (2.18)

Equation (2.18) relates the LY zeros to the susceptibility
defined through Eq. (2.6), i.e., through the second derivative
of the partition function. To gain insight into the behavior
of the zeros away from criticality, we consider the T → 0
and T → ∞ limits of this susceptibility. For a finite-size
system, the full susceptibility χL from Eq. (2.6) coincides
with the nonconnected version χ

(nc)
L defined through Eq. (2.8),

and at low temperatures, χL(T � 1) = χ
(nc)
L (T � 1) 	 V .

If T → ∞, on the other hand, χL(T → ∞) = χ
(nc)
L (T →

∞) = 1. Note that these are different from the modified
susceptibility χ̃L(T ) as defined in Eq. (2.7). This is only used as
a replacement for χL(T ) below Tc and, in the low-temperature
limit where the spins align, it is χ̃L(T = 0) = 0. However,
even in the paramagnetic phase, it is the susceptibility χL

(equivalently χ
(nc)
L ) and not χ̃L that is related to the LY zeros

through Eq. (2.18).
In the absence of a YL edge, when the zeros can pinch the

real axis, we assume the form (2.15) for the comprehensive
scaling of the zeros. Inserting into Eq. (2.18), one finds that
the leading finite-size behavior of the susceptibility is

χL(T ) ∼ Ld(2C−1), (2.19)

which comes from the contributions from the lowest zeros.
This recovers the FSS formula (2.12) in the critical

regime provided C(Tc) = �/νd . It also recovers the scaling
χL(T < Tc) ∼ Ld in the ferromagnetic phase if C = 1 there.
The ansatz (2.15) fails in the paramagnetic phase, however,
because, it does not take into account the Yang-Lee edge and,
plugged into Eq. (2.18), it would lead to a spurious logarithmic
divergence in the susceptibility there.

C. Corrections to scaling

At the critical point, the corrections to leading finite-size
scaling are governed by the ω exponent. For the susceptibility
and LY zeros, one expects

χL(Tc) ∼ L
γ

ν [1 + O(L−ω)], (2.20)

rj (Tc; L) ∼ L− �
ν [1 + O(L−ω)]. (2.21)

The widely accepted measured value for the correction
exponent is ω ≈ 0.8 [5,7].

Away from the critical temperature one may also expect
corrections to scaling. Since the model under consideration has
a continuous symmetry group, the effects of Goldstone modes
in the ferromagnetic regime are of interest (the ferromagnetic
phase is also critical). Since these modes are massless,
the corresponding propagator is 1/p2 in momentum space,
producing an L2 divergence in the connected susceptibility.
The longitudinal susceptibility, on the other hand, diverges
as 1/p4−d = 1/p, inducing a correction proportional to L.
Therefore the susceptibility for the Heisenberg model in the
ferromagnetic phase (in the presence of Goldstone modes)
may be expected to scale as (see also Refs. [11,12])

χL(T < Tc) ∼ L3[1 + O(L−1) + O(L−2)]. (2.22)

In the Ising case, on the other hand, the absence of Goldstone
modes suggests the absence of such correction. There, one
expects Eq. (2.22) to be replaced by χL(T < Tc) ∼ L3[1 +
O(L−3) + O(L−3 exp(−L/ξ ))], where we have added the
(next-to-leading) finite-size correction (the exponential term),
where ξ is the correlation length. Notice that the leading
corrections are given by the bulk behavior of the connected
susceptibility (divergent in vector models due to the transverse
and longitudinal modes) and constant (proportional to 1/ξ 2)
in the Ising case.

Therefore the corrections to scaling in the broken phase
deliver information on the existence of Goldstone modes.
As we have seen, the LY zeros are closely related to the
susceptibility. They may therefore be expected to carry the
same correction-to-scaling behavior. One then expects, for
the zeros in the low-temperature phase,

rj (T < Tc; L) ∼ L−d [1 + O(L−1)]. (2.23)
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FIG. 1. (Color online) Log-binning of susceptibility for five
random chosen independent Monte Carlo runs with L = 64 simulated
at T = Tc/2. Error bars are typical deviations in each bin. The first
bin only includes seven measurements, explaining the deviations for
small times.

Combining with the index dependency suggested in the
previous subsection, one expects a comprehensive scaling
behavior for the LY zeros for the Heisenberg model as

rj (T ; L) =
(

j − ε

Ld

)C

[1 + O(L−E)], (2.24)

with C = �/νd and E = ω when T ≈ Tc, and C = 1 and
E = 1 when T � Tc.

III. SIMULATION DETAILS

We simulated the Heisenberg model on regular, cubic
lattices with linear sizes L = 8, 12, 16, 24, 32, 48, and 64.
We used periodic boundary conditions, and in each case 20
independent Monte Carlo runs (pseudosamples) were used to
average out the thermal noise. We performed our simulations at
several different values of the system temperature. We use the
estimate for the critical temperature βc = 1/Tc = 0.693 from
Ref. [26]. Apart from this value, we also simulated at two
lower temperatures, T = 2Tc/3 (β = 1.039 5) and T = Tc/2
(β = 1.386), both in the ferromagnetic regime.

TABLE I. The Monte Carlo sweep size for each system size L.
Here, NWolff denotes the number of Wolff updates performed after the
partial Metropolis update.

L 8 12 16 24 32 48 64
NWolff 10 20 25 40 50 75 100

The update scheme involved the Metropolis method applied
to over 10% of the individual spins, chosen at random,
followed by a number (increasing with L) of cluster updates
using a Wolff cluster method. See Table I for details. We
refer to each one of these combined updates as a Monte
Carlo sweep. After every Monte Carlo sweep we measure
magnetization and energy, performing 106 measurements for
every pseudosample.

In order to work with thermally equilibrated systems,
we performed 105 Monte Carlo sweeps before starting
measurements. We start the simulations from hot (random)
distributions of the spin variables, although we have checked
that the averages do not change if we begin with cold
configurations (i.e., all spins pointing in the same direction).
In Fig. 1, we compare the thermalization of the different
pseudosamples in the most challenging case, i.e., our largest
system at the lowest temperature. We performed a similar
check for the log-binning of the specific heat.

IV. FINITE-SIZE SCALING

We begin our analysis with a brief discussion of FSS of
the susceptibility in the critical and ferromagnetic regimes. As
mentioned in the Introduction, our aim is not to generate new
estimates for the critical temperature and critical exponents.
Rather, we wish to examine some of the under-researched
aspects of the Heisenberg model outlined in Sec. I. Therefore,
we first check the consistency of our results with earlier studies
before moving on to the LY zeros, which form the focus for
our work. In Fig. 2 (left panel), the critical susceptibility
data are plotted with a best fit to Eq. (2.20). We obtain
acceptable fits using the data for L > 16. If we include the
next scaling correction term, O(L−2ω), we obtain a good fit
using all the system sizes. The estimates γ /ν = 1.962 2(3)
and ω = 0.79 from Ref. [6] are used. The fit confirms these
estimates for the data. The susceptibility is also plotted in
the ferromagnetic phase in Fig. 2 (right panel). The scaling
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FIG. 2. (Color online) Finite-size scaling of the susceptibility at the critical point (left) and in the ferromagnetic regime (right), supporting
the forms (2.20) and (2.22), respectively. In the left panel the dotted line includes next-to-leading corrections of the form L−2ω in the fit. The
error bars are smaller than the size of the symbols in each case.
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TABLE II. The first four LY zeros for different lattice sizes at T = Tc.

L r1(L) r2(L) r3(L) r4(L)

8 0.00825415(59) 0.0243727(17) 0.0396287(27) 0.0541716(40)
12 0.00300815(27) 0.00888260(73) 0.0144417(12) 0.0197404(21)
16 0.00147165(14) 0.00434424(34) 0.00706250(50) 0.0096533(9)
24 0.000537193(39) 0.00158625(11) 0.00257895(18) 0.0035250(3)
32 0.000262952(19) 0.000776455(47) 0.001262269(74) 0.00172516(17)
48 0.000096098(9) 0.000283759(24) 0.000461266(37) 0.00063038(6)
64 0.000047062(4) 0.000138962(10) 0.000225888(16) 0.00030869(3)

form (2.22) is confirmed, including the corrections coming
from the Goldstone modes.

To achieve relatively small error bars in estimating the
zeros, we follow an iterative approach whereby we first
estimate the location of the zeros by detecting changes in
the sign of Eq. (2.10) using a relatively large interpolation
step and, from this estimation, we restart the search with a
smaller interpolation step. We terminate this iterative search
once the error bars do not further decrease upon reducing the
interpolation step size. The estimates for zeros at Tc and below
Tc are listed in Tables II, III, and IV, respectively.

The scaling dependency of the zeros on the system size is
obtained by fitting to

rj (L) = a + bL−c(1 + f L−e). (4.1)

In the absence of the Yang-Lee edge (i.e., at criticality
and in the ferromagnetic phase), we expect that a should
be compatible with zero. At the critical point, Eq. (2.24)
predicts that c = �/ν and e = ω. In the ferromagnetic regime,
on the other hand, we expect c = 3 and e = 1. In the
paramagnetic region, where the Yang-Lee edge is manifest,
accurate estimates for the zeros should generate a nonvanishing
value for a.

The FSS for the first four zeros at T = Tc using the full
magnetization (|M|), through solving Eq. (2.10), is given in
Fig. 3. A fit to the form (4.1) clearly points to a value a ≈ 0.
Fixing this value for a and also fixing e = ω = 0.79 leads to
the estimates for �/ν listed in Table V. All of the estimates are
in agreement with the estimate �/ν = 2.481 1(2) coming from
Ref. [6]. Fixing f = 0, on the other hand, leads to unacceptable
fits. In this table we also present results whereby the zeros
are obtained using just one of the individual components of
the magnetization vector, in this case Mx . Clearly the scaling
results do not depend on the selection of a specific component.

Next, we have tried a global fit to Eq. (4.1), i.e., we have
enforced that the exponents c and e are the same for the
first four zeros (for a detailed description of the procedure
of the global fit, see, for instance, [25]). We have obtained a
good fit (χ2/ndf = 22.3/14, using only the lattice sizes with
L � 12) with c = �/ν = 2.479 4(9) and e = ω = 0.80(25).
In addition, we have repeated the previous procedure but fixing
c to �/ν = 2.481 1(2) (the most accurate value reported in
the literature), obtaining an acceptable fit (χ2/ndf = 23/15,
using only the lattice sizes with L � 12), which provides
ω = 1.24(8)[10] (the second error bar in ω are induced by
the error bar in �/ν). The values of �/ν and ω are in very
good agreement with the published values.3

Next we study the FSS of the zeros below the critical
temperature. The FSS behavior is plotted in Fig. 4. Again,
we obtain clear indications that a = 0, as expected, and again,
we do not obtain acceptable fits for the remaining scaling if we
do not include a correction-to-scaling term. Fitting for both the
leading and subleading behavior delivers the estimates listed
Table VI. The leading scaling exponent is clearly equal to 3
in each case, and the correction exponents are very close to
1, indicating the presence of Goldstone modes, as discussed
around Eq. (2.23). We have also tried in the ferromagnetic
phase a global fit of the four first zeros (as described above)
for the T = 2Tc/3 case, obtaining c = 3.000 20(4) and e =
0.967 5(25) (with χ2/ndf = 0.586 4/2, using L � 12). The
very residual discrepancies are due to the presence of the
longitudinal mode (which would induce 1/L2 corrections).

3In numerical simulations of the Heisenberg model was obtained:
ω = 0.64(13) and ω = 0.71(15) [26] and ω = 0.96(15) and 1.07(9)
[5]. Simulating a model in the same Universality class was obtained:
ω = 0.782(13) and 0.794(18) [27].

TABLE III. The first four LY zeros for different lattice sizes at T = Tc/2.

L r1(L) r2(L) r3(L) r4(L)

8 0.00378744(2) 0.01136228(5) 0.01893702(8) 0.0265116(1)
12 0.001133597(3) 0.003400788(9) 0.00566797(2) 0.00793514(2)
16 0.0004806650(8) 0.001441994(2) 0.002403321(4) 0.003364646(6)
24 0.0001431430(2) 0.0004294297(6) 0.000715716(1) 0.001002002(1)
32 0.00006054220(4) 0.0001816267(1) 0.0003027111(2) 0.0004237954(3)
48 0.000017984100(9) 0.00005395236(3) 0.00008992060(5) 0.00012588883(7)
64 0.000007596710(4) 0.00002279013(1) 0.00003798356(2) 0.00005317698(2)
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TABLE IV. The first four LY zeros for different lattice sizes at T = 2Tc/3.

L r1(L) r2(L) r3(L) r4(L)

8 0.00424297(3) 0.01272866(8) 0.0212137(1) 0.02969766(18)
12 0.001278891(5) 0.00383666(2) 0.00639437(2) 0.008952016(34)
16 0.000544175(2) 0.001632521(7) 0.00272086(1) 0.003809186(16)
24 0.0001626250(4) 0.000487875(1) 0.000813124(2) 0.001138372(3)
32 0.0000689022(1) 0.0002067065(3) 0.0003445107(5) 0.0004823147(7)
48 0.00002050330(2) 0.00006150994(6) 0.0001025166(1) 0.0001435232(2)
64 0.000008668430(7) 0.00002600530(2)) 0.00004334215(4) 0.00006067901(5)

We also investigate scaling with the index of the zeros,
beginning with the ferromagnetic region. There, Eq. (2.24)
predicts

rj (L)

r1(L)
= j − ε

1 − ε
. (4.2)

This is also investigated in Fig. 5 for two values of T < Tc.
The two panels clearly indicate that rj /r1 is independent of T

and of L. Moreover, their numerical values indicate that

ε = 1
2 for T < Tc. (4.3)

Therefore the functional form involving the fractional number
of zeros, previously suggested at criticality, extends to the
ferromagnetic region too.

The j dependency at the critical point is investigated in
Fig. 6. One observes that rj (L)/r1(L) is also independent of
L at Tc. The values of rj (L)/r1(L) are, however, less easy
to interpret than they were in the ferromagnetic case. The
counterpart to Eq. (4.2) is

rj (L)

r1(L)
=

(
j − ε

1 − ε

) �
νd

{
1 + O

(
j − ε

Ld

) ω
d

}
, (4.4)

and attempts to extract a precise estimate for ε from this
formula are beset by large errors. Indeed, we cannot discount
a functional dependency of ε on j . Instead the full dependency
may be interpreted in terms of the density of zeros, and this is
analyzed in Sec. V.

Numerical determination of the locations of the LY zeros
in the paramagnetic phase is hampered by considerable
limitations in algorithmic accuracy. In fact, these problems

are intrinsically so severe as to yield spurious zeros and hinder
meaningful analysis of the Yang-Lee edge. For this reason, we
relegate the discussion to the Appendix.

V. DENSITY OF ZEROS

A numerical approach to the determination of the density
of partition function zeros was developed in Refs. [24,28]. The
cumulative density for a finite-size system is defined as

G[rj (T ; L)] = 2j − 1

2Ld
. (5.1)

At the infinite-volume critical point Tc this scales in the LY
case as

G(r) ∼ r
1
δ
+1 = r

νd
� , (5.2)

which is compatible with the compact description of scaling
given in Sec. II B. In the ferromagnetic regime, on the other
hand, one expects the linear behavior [24,28],

G(r) ∼ r. (5.3)

Differentiating Eq. (5.2) gives a density of zeros g(r) ∼ r1/δ ,
commensurate with the magnetic scaling form m∞(Tc,h) ∼
h

1
δ . Differentiating Eq. (5.3), on the other hand, gives a non-

vanishing density of zeros, ensuring a discontinuous transition
across h = 0. Here, we wish to test these expectations for the
three-dimensional Heisenberg model. To do this, we fit our
numerical data to the form

GL[rj (L)] = a1[rj (L)]a2 + a3, (5.4)
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FIG. 3. (Color online) Scaling of the first four LY zeros at the critical temperature. The left panel confirms the leading finite-size scaling
at the critical point as χL(0) ∼ L�/ν = L−2.4811 following Eq. (2.20). The right panel lends support for the accepted value of the finite-size
correction exponent ω = 0.79. There the dashed line includes next-to-leading scaling corrections in the fit. The error bars are smaller than the
size of the symbols.
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TABLE V. Scaling exponent of the LY zeros measured at the
critical temperature. The estimates for the critical exponents are
independent of the manner in which the zeros were determined,
indicated by Eq. (2.10) and Eq. (2.11). ndf is the number of degrees
of freedom of the fit.

T = Tc

〈cos (r|M|)〉 = 0 〈cos (rMx)〉 = 0

c = �/ν χ 2/ndf c = �/ν χ 2/ndf

r1(L) 2.4774(12) 0.11/2 2.4792(7) 2.57/5
r2(L) 2.4789(28) 2.52/4 2.4845(17) 0.52/4
r3(L) 2.4791(3) 5.36/4 2.4811(26) 0.89/5
r4(L) 2.4793(4) 5.48/4 2.4779(52) 4.98/5

where the coefficients depend on the temperature. We employ
the fitting procedure used in Refs. [24] and [28], whereby in
the absence of error bars for the density estimates in Eq. (5.1),
one assumes an error of σ/Ld and then tunes σ to deliver a best
fit with χ -squared per degree of freedom of one. This method
delivers error estimates for the fitted parameters but precludes
an independent goodness-of-fit test.

The data are plotted Fig. 7 for T = Tc/2, T = 2Tc/3, and
T = Tc. Fitting to Eq. (5.4) yields a3 ≈ 10−7 ± 10−7 in each
case. For the ferromagnetic data, fixing a3 = 0 and fitting
for the remaining parameters delivers a2 compatible with 1
and supportive of Eq. (5.3). (a2 = 1.004(1) and a2 = 1.007(1)
for T = Tc/2 and T = 2Tc/3, respectively, when all data
points are included in the fits, reducing to a2 = 1.001(1)
and a2 = 1.002(1) when only the eight points closest to the
origin are used in the fits.) At the critical point itself, using
all data, one estimates a2 = 1.203(5). In comparison, the

TABLE VI. Scaling and correction to scaling exponents, c and
e in Eq. (4.1), obtained from the LY zeros below the critical
temperature. The results confirm the prediction c = d = 3 and e = 1
from Eq. (2.24).

T = Tc/2 T = 2Tc/3

c e χ 2/ndf c e χ 2/ndf

r1(L) 3.00024(8) 0.962(7) 2.98/2 3.0006(2) 0.949(8) 3.88/2
r2(L) 3.00023(8) 0.963(7) 2.06/2 3.0005(2) 0.952(9) 3.68/2
r3(L) 3.00022(8) 0.964(7) 1.78/2 3.0004(2) 0.956(9) 2.92/2
r4(L) 3.00021(8) 0.965(7) 1.51/2 3.0003(2) 0.962(9) 1.84/2

estimate η = 0.037 8(9) from Ref. [6] delivers a2 = νd/� =
2d/(d + 2 − η) = 1.209 1(1).

While the density plots give a reasonable collapse in lattice
sizes, we can also analyze each L independently for greater
precision. In Table VII we report the exponents we have
obtained assuming a fit, including scaling corrections, of the
form

rj (L) = b1G
b2
L

(
1 + b3G

b4
L

)
, (5.5)

using error bars in rj (L) and not in GL. With a2 = 1/b2 and
ω = db4, we have also obtained reasonable agreement with
the value ω 	 0.8 quoted in the literature [7].

Finally, although there is no order parameter for the finite-
size system, according to Lee and Yang’s fundamental theory
of phase transitions, one can relate the density of zeros to the
value of the spontaneous magnetization and one expects [8]

Msp = πa1. (5.6)

We compare measurements of Msp via Eq. (5.6) with direct
estimates of Msp = 〈|M|〉, where M is defined in Eq. (2.3).
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FIG. 4. (Color online) Scaling of the first four LY zeros below the critical temperature. The upper panels confirm the leading finite-size
scaling at the critical point as χL(0) ∼ L−d = L−3. The bottom panels confirm that the associated correction term is L−1, indicative of the
presence of Goldstone bosons. The error bars are smaller than the size of the symbols.
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We perform the comparison using the full data sets for each
T < Tc, as well as for each lattice size independently. We
have checked that the data for each lattice follows a straight
line according with the theoretical expectation and present
our results in Table VIII. We list in Table VIII the different
estimates of the spontaneous magnetization for T < Tc for
the different lattice sizes. The agreement between them is
excellent.

VI. CONCLUSIONS

We have performed a numerical analysis of the Heisenberg
model in three dimensions, paying special attention to the
LY zeros, the scaling properties of which contain information
on Goldstone modes. Besides FSS for individual zeros in the
critical and paramagnetic regimes, we have looked at the index
of zeros and shown that a comprehensive description extends
to both regions. This allows us to obtain very precise estimates
for the critical exponents and correction-to-scaling terms.

A first attempt to numerically examine scaling associated
with the Yang-Lee edge in the paramagnetic region encounters
obstacles which we elucidate directly and through analogy
with the one-dimensional Ising model.

We confirm that study of the density of zeros for finite
size offers a compact and very accurate way to investigate
the onset of spontaneous magnetization, although the latter is
only manifest in infinite volume. Moreover, we have obtained
a good estimate of the correction-to-scaling exponent using the
behavior of the density of zeros. Finally, we have found that the
discretization method proposed for the density of zeros (which
induces the factor 2j − 1) in the literature works really well

TABLE VII. a2 and ω from the density of zeros via Eq. (5.5).

j a2 ω

1 1.2097(4) 0.9(3)
2 1.2094(3) 1.1(2)
3 1.2092(2) 1.23(6)
4 1.2090(3) 1.3(3)
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TABLE VIII. Sample averaged spontaneous magnetization below
the critical temperature measured directly and measured via Eq. (5.6)
below the critical temperature using data for each lattice size
individually.

Msp measured directly Msp measured via density

L T = 2Tc/3 T = Tc/2 T = 2Tc/3 T = Tc/2

8 0.723070(4) 0.810036(3) 0.723078(3) 0.810038(3)
12 0.710792(3) 0.801895(2) 0.710794(2) 0.801898(2)
16 0.704728(3) 0.797844(1) 0.7047315(20) 0.7978451(7)
24 0.698713(2) 0.793808(1) 0.6987122(8) 0.7938082(6)
32 0.695724(1) 0.791793(1) 0.6957245(5) 0.7917944(3)
64 0.691257(1) 0.7887771(4) 0.6912572(3) 0.7887785(2)

only in the ferromagnetic phase but is at best an approximation
at the critical point.
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APPENDIX: SPURIOUS ZEROS IN THE
PARAMAGNETIC PHASE

Figure 8 shows the evolution of the expectation of the cosine
in Eq. (2.11) through which the zeros are detected. One notices

-0.2
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FIG. 8. (Color online) Behavior of 〈cos (rMx)〉 for the three-
dimensional Heisenberg model with L = 32 below, at, and above
criticality. In the inset, we have also plotted the same quantity in
the paramagnetic phase in order to show the very different behavior
there. For the sake of clarity, we only plot the lines joining the data
points, except for the two highest temperatures (in the inset) in which
real data points are plotted. For these highest temperatures we also
plotted the prediction from the Gaussian approximation (red and blue
continuous lines) [see Eq. (A3)]. There are no free parameters, since
we have used the susceptibility which was computed numerically.
Notice the good agreement.

a remarkable difference between the amplitudes of the function
below and above criticality; in the paramagnetic phase the
amplitude of 〈cos(rMx)〉 is dampened as r increases, an effect
not present at or below criticality. This leads to algorithmic
detection of spurious LY zeros in the symmetric phase.

That the detected zeros are indeed spurious is indicated first
by a straightforward fit to Eq. (4.1), which delivers a ≈ 0. The
fact that the estimated zeros do not settle onto a Yang-Lee edge
already hints that they are spurious. A second feature is that the
scaling appears to indicate a leading exponent c ≈ 1.5 = d/2.
That this is also spurious is indicated as follows.

It is well known that the probability distribution of the mag-
netization in the paramagnetic phase follows an approximate
Gaussian probability distribution. We write this distribution as
(considering a single dimension here for simplicity)

P (M) = 1√
2πV χ

(nc)
L

exp

[
− M2

2χ
(nc)
L V

]
, (A1)

where M is the total magnetization, V is the volume, and
χ

(nc)
L = 〈M2〉/V is the susceptibility, which is finite in the

paramagnetic phase. The algorithm detects zeros through
Eq. (2.11), and with the Gaussian distribution governing the
high-temperature phase,

〈cos(rM)〉 = exp

[
−1

2
χ

(nc)
L V r2

]
(A2)

there. Here we have assumed V � 1 (otherwise this result
would be modulated by an error-function factor). Therefore
〈cos(rM)〉 decays exponentially quickly in the paramagnetic
phase.4 The reader can see the suitability of the Gaussian
approximation in the inset of Fig. 8.

Numerically we compute c(r) = 〈cos(rM)〉 with a given
statistical error (which is also r dependent) that we will denote
δ(r). When c(r∗) ∼ δ(r∗), a statistical fluctuation can induce
a spurious zero at r∗. Hence, if we have similar error bars
for all the lattice sizes, this implies [see Eq. (A2)] that the
spurious zero scales as 1/

√
V . This explains the origin and

scaling of the spurious paramagnetic zeros—the behavior is
simply due to finite statistics associated with the numerical
approach. Instead, if we improve the statistics, reducing the
value of δ(r∗), the spurious zero should disappear.

We can gain further insight by examining slope of
〈cos(rM)〉, which is

d

dr
〈cos(rM)〉 = −〈M sin(rM)〉. (A4)

We can examine this slope in the three different regimes. At
and below the critical point, we use the fact that M 	

√
〈M2〉

to see that in both cases r1M is O(1), where r1 is a genuine
zero (and having used the scaling of the zeros in each of these
two regions). Therefore, close to r1,

d

dr
〈cos(rM)〉

∣∣∣∣
r1

∼ |M|. (A5)

4In O(N ) models, one obtains

〈cos(rMx)〉 = exp

[
− 1

2N
χ

(nc)
L V r2

]
. (A3)
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Since |M| ∼ V in the ferromagnetic phase, and its typical
value at criticality is |M| 	

√
〈M2〉 =

√
V χ

(nc)
L , it is clear

that at and below the critical temperature the slope is large.
Since the algorithm detects zeros through changes in the sign
of 〈cos(rM)〉, it is robust in the critical and ferromagnetic
regions. In the paramagnetic region, however, the Gaussian
approximation gives

d

dr
〈cos(rM)〉

∣∣∣∣
r1

= −r1V χ exp

[
−1

2
χV r2

1

]
. (A6)

This gives an exponentially depressed slope in the paramag-
netic phase, rendering detection of genuine zeros difficult and
spurious zeros (as noise) feasible.

To check the above interpretation, we refer to the Ising
model in one dimension, where the partition function in a
magnetic field can be analytically determined using periodic
boundary conditions and where the entire T > 0 region is
paramagnetic [8]. The two eigenvalues of the transfer matrix
are

λ±(β,H ) = eβ[cosh(H ) ±
√

e−4β + sinh2(H )], (A7)

and the partition function of a chain of L spins is

Z(β,H ) = λ+(β,H )L + λ−(β,H )L. (A8)

By introducing a pure imaginary magnetic field by defining
H = ir , the eigenvalues can be written

λ±(β,ir) = eβ [cos(r) ±
√

e−4β − sin2(r)]. (A9)

Notice that for e−2β < sin2(r), the eigenvalues λ± are complex
numbers but satisfying λ∗

+ = λ−. This confirms our earlier
statement that the partition function in a pure imaginary
magnetic field is real. One finds [29]

〈cos(rM)〉 = Z(β,ir)

Z(β,0)
= λ+(β,ir)L + λ−(β,ir)L

λ+(β,0)L + λ−(β,0)L
. (A10)

Therefore the zeros in the paramagnetic phase of the one-
dimensional Ising model can be exactly determined. In Fig. 9,
the first zero for such a system is depicted as a disk (red
online). This figure also depicts the results for 〈cos (rM)〉
from two Monte Carlo simulations and for the exact solution.
As expected, the numerically computed 〈cos (rM)〉 decays
rapidly with increasing r; it then remains very close to
zero and traverses the axis well before the true zero is
reached (green line). Although the situation improves with
increased numerical accuracy (see red line), the figure clearly
demonstrates that the Yang-Lee edge is not reliably accessible
using this numerical technique.
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