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Local immobilization of particles in mass transfer described by a Jeffreys-type equation

S. A. Rukolaine* and A. M. Samsonov†

The Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Polytekhnicheskaya, St. Petersburg 194021, Russia
(Received 26 June 2013; published 10 December 2013)

We consider the Jeffreys-type equation as the foundation in three different models of mass transfer, namely,
the Jeffreys-type and two-phase models and the D1 approximation to the linear Boltzmann equation. We study
two classic (1 + 1)-dimensional problems in the framework of each model. The first problem is the transfer of a
substance initially confined at a point. The second problem is the transfer of a substance from a stationary point
source. We calculate the mean-square displacement (MSD) for the solutions of the first problem. The temporal
behavior of the MSD in the framework of the first and third models is found to be the same as that in the Brownian
motion described by the standard Langevin equation. In addition, we find a remarkable phenomenon when a
portion of the substance does not move.
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I. INTRODUCTION

The classic diffusion equation, based on Fick’s law, is
widely used for the approximate description of nonanomalous
diffusion (dispersion of a substance or species) [1,2] and
Brownian motion [3–5]. However, Fick’s law neglects the
mass (inertia) of moving particles (molecules) and therefore
the diffusion equation gives an appropriate and accurate model
for diffusion phenomena only in weakly inhomogeneous
media and/or for slow processes when relaxation time is
short compared to a characteristic time scale. Otherwise, the
description of diffusion by the diffusion equation may fail [6].
Many biological media, e.g., cellular cytoplasm, are strongly
inhomogeneous, therefore, diffusion in them is not Fickian and
its description by the diffusion equation is questionable.

Note that the counterpart of Fick’s law is Fourier’s law in
the theory of heat conduction [1,2,7]. The latter leads to the
heat equation, similar to the diffusion equation. Fick’s law was
postulated by analogy with Fourier’s law, which was proposed
first [2].

The simplest modification of Fick’s law, taking into account
the inertia of moving particles, is Cattaneo’s equation [8–10].
Strictly speaking, Cattaneo’s equation modifies Fourier’s law
since Cattaneo considered heat conduction; however, one
can apply this to mass transfer as well. The modification
leads to the telegraph equation, providing the finite speed of
propagation [8,9,11–14]. The telegraph equation was proposed
to be a substitute for the diffusion and heat equations. However,
both two- and three-dimensional telegraph equations meet
formal obstacles since solutions to the initial-value problem
for them may become negative [15,16].

Long before Cattaneo, Jeffreys proposed a relation for the
rheological description of the earth’s core [17,18] that can be
considered as a combination of Fick’s (or Fourier’s) law and
Cattaneo’s equation. We define this law (relation) as being
of the Jeffreys type. This law leads to a partial differential
equation of third order, called a Jeffreys-type equation [8,9],
also known as the simplest equation of the dual-phase-lag
model of heat conduction [10,19,20]. We call this a Jeffreys-
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type model. This model was used to describe viscoelastic
fluids [8,21,22], Taylor dispersion [22,23], and heat transfer
[8–10,14,19,20,24–28].

There is another two-temperature [10,14,19,20,24] or two-
phase [29–32] model that also leads to a Jeffreys-type equation.
This model is qualitatively different from the Jeffreys-type
one. Nevertheless, there is no clear distinction between cases
when the Jeffreys-type equation describes the Jeffreys-type
model and the two-temperature (two-phase) model [14,20,24].
Moreover, in Ref. [24] the behavior of the two-temperature
model is illustrated by that of the Jeffreys-type model. In
Ref. [33] the authors erroneously state that the two models
are equivalent.

The diffusion equation is known to be the simplest approx-
imation to the linear Boltzmann equation [34] and the latter
can be considered as a mesoscopic model of the former. It is
notable that the telegraph equation is the P1 approximation
(the next after the diffusion one) to the linear Boltzmann
equation [34]. Recently, DN approximations to the linear
Boltzmann equation were proposed [35]. They generalize the
classic diffusion approximation, which corresponds to N = 0.
We have found that the DN=1 approximation (the next after
the telegraph one) leads to the Jeffreys-type equation, the
model being qualitatively different from both the Jeffreys
type and two-phase ones. Note that this model is similar to
the one of Guyer and Krumhansl in the theory of second
sound [10,14,36,37].

The primary motivation of this study was to investigate
the Jeffreys-type equation as a substitute for the diffusion
equation instead of the telegraph one for the description of
mass transfer. We study and compare eventually the three
models (the Jeffreys-type and two-phase models and the DN=1

approximation to the linear Boltzmann equation) as models
of mass transfer. We study two classic (1 + 1)-dimensional
problems, typical for mass transfer, in the framework of each
model, where studies of the problems are lacking. The first
problem is the transfer of a substance initially confined to
a point. The second problem is the transfer of a substance
from a stationary point source. We calculate the mean-square
displacement (MSD) for the solutions of the first problem
because the MSD is an integral quantity whose temporal
dependence characterizes diffusion and Brownian motion. The
temporal behavior of the MSD in the framework of the first and
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third models is found to be the same as that in the Brownian
motion described by the standard Langevin equation. We recall
here that the behavior of the MSD in the framework of the
diffusion equation is wrong for short times, where it must be
ballistic. Further, we find a remarkable phenomenon when a
portion of the substance does not move.

The rest of the paper is organized as follows. In Sec. II we
briefly recall the phenomenological derivation of the diffusion
equation. In Sec. III we briefly recall some facts about the
telegraph equation. In Sec. IV we describe the models of mass
transfer related to the Jeffreys-type equation. In Sec. V we
study the diffusion of a substance initially confined at a point
in the framework of the three models. In Sec. VI we calculate
the mean-square displacement for the solutions of the problems
considered in Sec. V. In Sec. VII we study the diffusion of a
substance from a stationary point source also in the framework
of the three models. Section VIII contains concluding remarks.

II. DIFFUSION EQUATION

The macroscopic law of mass balance for a substance is
expressed by the continuity equation [38]

∂u

∂t
+ div J = f, (2.1)

where u ≡ u(x,t) is the concentration of the substance, x =
(x1,x2,x3) is a point, t is time, J ≡ J(x,t) is the flux of the
substance, and f ≡ f (x,t,u) is the net rate of production
or absorption (degradation) of the substance. In the simplest
approximation the flux is related to the concentration by Fick’s
phenomenological (first) law [1,2,38]

J = −D∇u, (2.2)

where D is the diffusion coefficient. The continuity equation
(2.1) and Fick’s law lead to the reaction diffusion equation

∂u

∂t
− D�u = f. (2.3)

To determine a unique solution of the diffusion equation one
imposes the initial condition

u|t=0 = u0, (2.4)

where u0 ≡ u0(x) is the distribution of the concentration
at time t = 0. Note that the diffusion equation is the sim-
plest approximation to the linear Boltzmann equation [34]
[see Eq. (A4)].

III. TELEGRAPH EQUATION

Fick’s law neglects the inertia of moving particles. Catta-
neo’s equation [8–10]

τ
∂ J
∂t

+ J = −D∇u, (3.1)

where τ is the relaxation time, modifies Fick’s law, taking
the inertia into account. Indeed, Cattaneo’s equation can be
written in the equivalent integral form

J = −D

τ

∫ t

0
e−(t−t ′)/τ∇u(x,t ′)dt ′ + e−t/τ J0, (3.2)

where J0 ≡ J0(x) is the distribution of flux at time t = 0.
Equation (3.2) shows that Cattaneo’s equation takes into
account the prehistory of a process since flux depends on the
gradient of the concentration at earlier time, the dependence
being exponentially decreasing with time. If the relaxation
time τ in Cattaneo’s equation tends to zero, one obtains in the
limit Fick’s law.

The continuity equations (2.1) and (3.2) lead to the integro-
differential equation

∂u

∂t
− D

τ

∫ t

0
e−(t−t ′)/τ�u(x,t ′)dt ′ + e−t/τ div J0 = f.

This equation, with the initial condition (2.4), is equivalent to
the reaction telegraph (or damped wave) equation [39,40]

τ
∂2u

∂t2
+

(
1 − τ

∂f

∂u

)
∂u

∂t
− D�u = f + τ

∂f

∂t
, (3.3)

with the initial conditions

u|t=0 = u0,
∂u

∂t

∣∣∣∣
t=0

= − div J0 + f0, (3.4)

where f0 ≡ f0(x,u0) = f |t=0 is the distribution of sources at
time t = 0. If τ = 0, the telegraph equation (3.3) becomes
the diffusion equation (2.3). The telegraph equation can also
be obtained as the P1 approximation to the linear Boltzmann
equation [34] [see Eq. (A6)].

The telegraph equation is hyperbolic, providing the finite
speed of signal propagation, and was proposed to be a
substitute for the parabolic diffusion and heat equations
[8,9,12–14]. However, two- and three-dimensional telegraph
equations have a formal flaw since their solutions may take
negative values even if the initial values are positive [15,16].
Besides, the applicability of the telegraph equation to the
description of heat transfer is doubtful [16,41,42].

IV. JEFFREYS-TYPE EQUATION

A. Jeffreys-type model

The relation combining Fick’s law and Cattaneo’s equation
has the form [8,9]

τ
∂ J
∂t

+ J = −τD1
∂∇u

∂t
− (D1 + D2)∇u

≡ −(D1 + D2)

[
τ2

∂∇u

∂t
+ ∇u

]
, (4.1)

where D1 > 0, D1 + D2 > 0, and

τ2 = τD1

D1 + D2

is another relaxation time or, equivalently, the integro-
differential form

J = −D1∇u − D2

τ

∫ t

0
e−(t−t ′)/τ∇u(x,t ′)dt ′

+ e−t/τ (D1∇u0 + J0), (4.2)

where u0 ≡ u0(x) and J0 ≡ J0(x) are the distributions of the
concentration and flux, respectively, at time t = 0. We call
relations (4.1) and (4.2) the Jeffreys-type law after Jeffreys,
who proposed similar relations for the rheological description
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of the earth’s core [17,18]. Fick’s law and Cattaneo’s equation
are particular cases of the Jeffreys-type law. Indeed, if τ in
Eqs. (4.1) and (4.2) tends to zero, one obtains in the limit Fick’s
law with D = D1 + D2, while D1 = 0 leads to Cattaneo’s
equation.

The Jeffreys-type law (4.1) includes two different cases,
τ > τ2 and τ < τ2, depending on whether the relaxation time
τ is higher or lower than τ2. Both cases are considered in the
literature; see, e.g., [19,25–27]. The first inequality τ > τ2 is
equivalent to D2 > 0. In this case the relation (4.2) means that
flux is determined by the concentration gradient both at the
same moment and preceding time, the dependence on the past
being exponentially decreased. The second inequality τ < τ2

is equivalent to D2 < 0. In this case the Jeffreys-type law can
be written in the equivalent form

∇u = 1

D1

[
−J + D2

τD1

∫ t

0
e−(t−t ′)/τ2 J(x,t ′)dt ′

+ e−t/τ2 (D1∇u0 + J0)

]
, (4.3)

which means that the gradient of the concentration is deter-
mined by flux both at the same moment and preceding time,
the dependence on the past being exponentially decreased.
Note that the relation (4.3) can be used for setting boundary
conditions for u if mass transfer is considered in a finite
domain.

The continuity equation (2.1) and the Jeffreys-type
integro-differential law (4.2) lead to the integro-differential
equation

∂u

∂t
− D1�u − D2

τ

∫ t

0
e−(t−t ′)/τ�u(x,t ′)dt ′

+ e−t/τ (D1�u0 + div J0) = f.

This equation with the initial condition (2.4) is equivalent to
the equation of third order

τ
∂2u

∂t2
+

(
1 − τ

∂f

∂u

)
∂u

∂t
− τD1

∂�u

∂t
− (D1 + D2)�u

= f + τ
∂f

∂t
, (4.4)

with the initial conditions (3.4). We call Eq. (4.4) the
Jeffreys-type equation [8]. The diffusion equation (2.3) and
the telegraph equation (3.3) are particular cases of the Jeffreys-
type equation for τ = 0 and D1 = 0, respectively.

Equation (4.1) can also be derived formally in the frame-
work of the dual-phase-lag model [10,19,20]. The model
applies heat transfer and Fourier’s law, however, one can
extend this to mass transfer and Fick’s law as well. In this
framework Fick’s law is replaced by the relation

J(x,t + τ ) = −D∇u(x,t + τ2), (4.5)

where τ and τ2 are the time lags of the flux and the gradient of
the concentration, respectively. Both sides of the relation are
expanded with the use of Taylor’s formula. If only terms up to
first order are retained one obtains the relation

τ
∂ J
∂t

+ J = −D

(
τ2

∂∇u

∂t
+ ∇u

)
,

which is nothing but Eq. (4.1) with D1 + D2 = D. Note that if
τ2 = 0 one obtains the single-phase-lag model and Cattaneo’s
equation.

However, Eq. (4.5) (for both τ2 > 0 and τ2 = 0) together
with the continuity equation yields delay equations leading
to ill-posed initial-value problems (with unstable solutions)
[43,44]. Therefore, the phase-lag models cannot be considered
as sensible physical ones. At the same time the formal
approximations to the phase-lag models lead to well-posed
initial-value problems.

B. Two-phase (two-temperature) model

In this model two phases of a substance (or species) are
considered: free (mobile) and bound (immobile) (see, e.g.,
[29–32]). The concentrations of these substances are denoted
by u ≡ u(x,t) and v ≡ v(x,t), respectively, and satisfy the
reaction diffusion system

∂u

∂t
− D1�u + k1u − k2v = f, (4.6a)

∂v

∂t
+ k2v − k1u = 0, (4.6b)

with the initial conditions

u|t=0 = u0, v|t=0 = v0, (4.7)

where D1 is the diffusion coefficient of the free substance,
k1 and k2 are the coefficients of interphase mass transfer,
f = f (x,t,u) is the net rate of production and absorption
(degradation) of the free substance, and v0 ≡ v0(x) is the the
distribution of the concentration of the immobile substance at
time t = 0. The coefficients k1 and k2 are evidently positive in
this model.

The concentration v can be expressed through u from
Eq. (4.6b) by

v = k1

∫ t

0
e−k2(t−t ′)u(x,t ′)dt ′ + e−k2t v0.

Then Eq. (4.6a) leads to the equation

∂u

∂t
− D1�u + k1u − k1k2

∫ t

0
e−k2(t−t ′)u(x,t ′)dt ′

− k2e
−k2t v0 = f.

This equation, with the first of the conditions (4.7), is
equivalent to the Jeffreys-type equation

∂2u

∂t2
+

(
k1 + k2 − ∂f

∂u

)
∂u

∂t
− D1

∂�u

∂t
− k2D1�u

= k2f + ∂f

∂t
, (4.8)

with the initial conditions

u|t=0 = u0,
∂u

∂t

∣∣∣∣
t=0

= D1�u0 − k1u0 + k2v0 + f0. (4.9)

The equation for v is

∂2v

∂t2
+ (k1 + k2)

∂v

∂t
− D1

∂�v

∂t
− k2D1�v

= k1f

(
x,t,

1

k1

(
∂v

∂t
+ k2v

))
, (4.10)
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which is different from Eq. (4.8), if f �= 0. The initial
conditions for v are

v|t=0 = v0,
∂v

∂t

∣∣∣∣
t=0

= k1u0 − k2v0. (4.11)

The counterpart of the two-phase model in the field of heat
transfer is the two-temperature model [19,24,41,45].

C. Relation between the coefficients of the two models

If sources and sinks (absorption) are absent, i.e., f = 0,
then the Jeffreys-type equations (4.4) and (4.8) are identical
and the coefficients are related by

τ = 1

k1 + k2
, D2 = − k1

k1 + k2
D1 (4.12a)

or, vice versa,

k1 = − 1

τ

D2

D1
≡ 1

τ
− 1

τ2
, k2 = 1

τ

(
1 + D2

D1

)
≡ 1

τ2
,

(4.12b)

the diffusion coefficient D1 being the same in the two models.
At the same time, the initial conditions (3.4) and (4.9) for
the equations concerning the time derivative are different. In
Sec. V it will be shown that this leads to qualitatively different
behavior of the solutions to the initial-value problems for the
Jeffreys-type equations.

It is necessary to emphasize here that the positive coefficient
k1 in the two-phase model (4.6) corresponds to the negative
coefficient D2 in the Jeffreys-type law (4.1)–(4.3). Conversely,
the positive coefficient D2 corresponds to the negative coeffi-
cient k1.

D. The DN=1 approximation to the linear Boltzmann equation

We consider here an approximation to the linear Boltzmann
equation (also referred to as the linear transport or radiative
transfer equation) [34,46,47], which describes, e.g., neutron
transport and radiative heat transfer (transport of thermal
energy by photons) (see Appendix A 3). We use the notation
DN=1 instead of D1 since the latter stands for the coefficient.

Consider the monoenergetic (one-speed) linear Boltzmann
equation

∂ψ

∂t
+ c� · ∇ψ + (κ + σ )ψ

= σ

∫
S2

K(� · �′)ψ(x,�′,t)d�′ + 1

4π
F, (4.13)

where ψ ≡ ψ(x,�,t) is the particle phase space density, i.e.,
the density of particles at the point x and at time t moving
along the direction � ∈ S2, S2 is the unit sphere in R3, c is the
velocity of particles, κ and σ are the absorption and scattering
rates, respectively, K is the collision (or scattering) kernel, and
F ≡ F (x,t) is the source density (due to isotropic sources for
simplicity).

Integration of the linear Boltzmann equation over the unit
sphere, together with the normalization

∫
S2 K(� · �′)d� = 1,

gives the continuity equation

∂u

∂t
+ div J + κu = F, (4.14)

where

u(x,t) =
∫
S2

ψ(x,�,t)d� (4.15)

is the particle density and

J(x,t) = c

∫
S2

�ψ(x,�,t)d� (4.16)

is flux. In the DN=1 approximation [35] the particle density
and flux are related by Eq. (A7), which can be written as

τ
∂ J
∂t

+ J = −(D1 + D2)∇u + τD1

4
(3�J + ∇ div J),

(4.17)

where

τ = 1

κ + σ1
, D1 = 4c2

15(κ + σ2)
,

D2 =
[

1

κ + σ1
− 4

5(κ + σ2)

]
c2

3
, γ = κ

(see Appendix A) (the parameter γ will be used elsewhere).
The continuity equation (4.14) and relation (4.17) imply

that the particle density satisfies the Jeffreys-type equation

τ
∂2u

∂t2
+ (1 + τγ )

∂u

∂t
− τD1

∂�u

∂t

− [(1 + τγ )D1 + D2]�u + γ u

= F + τ
∂F

∂t
− τD1�F, (4.18)

which is the same as Eq. (A8). The initial conditions for this
equation are

u|t=0 = u0,
∂u

∂t

∣∣∣∣
t=0

= −γ u0 − div J0 + F0, (4.19)

where F0 ≡ F0(x) = F |t=0 is the distribution of sources at
time t = 0. In the absence of sources and absorption, i.e., if
F = 0 and κ ≡ γ = 0, Eq. (4.18) takes the form

τ
∂2u

∂t2
+ ∂u

∂t
− τD1

∂�u

∂t
− (D1 + D2)�u = 0, (4.20)

which is the same as Eq. (4.4) with f = 0. In a steady state
the relation (4.17) takes the form

J = −(D1 + D2)∇u + τD1

4
(3�J + ∇ div J), (4.21)

which differs qualitatively from Fick’s law.
It is necessary to emphasize that the relation (4.17) is

similar to but not the same as the equation of Guyer and
Krumhansl (B4). The reason is that Guyer and Krumhansl
considered the linearized Boltzmann equation rather than the
linear one; the difference is explained in Ref. [46].

V. INITIAL-VALUE PROBLEMS FOR THE
HOMOGENEOUS JEFFREYS-TYPE

EQUATION WITH ABSORPTION

In this section we study the classic one-dimensional
transport problem for a substance initially confined at a
point. We suppose that sources are absent and the substance
is absorbed (degraded); therefore, we set f = −γ u, where
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γ is the absorption (degradation) rate. The study reveals a
remarkable phenomenon when a finite portion of the substance
does not move, though this portion diminishes exponentially
with time.

There is also a qualitative difference between the two cases
D2 > 0 and D2 < 0. In the first case the solution is wavelike
because the characteristic values take complex values. In the
second case the characteristic values are real and hence the
solution is not wavelike.

A. Jeffreys-type model

In the one-dimensional case the problem (3.4) and (4.4)
with f = −γ u takes the form

τ
∂2uJe

∂t2
+ (1 + τγ )

∂uJe

∂t
− τD1

∂3uJe

∂x2∂t

−(D1 + D2)
∂2uJe

∂x2
+ γ uJe = 0, x ∈ R, t > 0, (5.1)

uJe|t=0 = u0,
∂uJe

∂t

∣∣∣∣
t=0

= −γ u0 − ∂J0

∂x
. (5.2)

The one-dimensional continuity equation (2.1) implies that if
and only if γ = 0, i.e., absorption is absent, mass is conserved:∫ ∞
−∞ uJe(x,t)dx = ∫ ∞

−∞ u0(x)dx ≡ const.
Consider the particular initial conditions

u0(x) = δ(x), J0(x) = 0. (5.3)

The Fourier transform of the problem (5.1)–(5.3) yields

τ
∂2FuJe

∂t2
+ [1 + τ (D1ξ

2 + γ )]
∂FuJe

∂t

+[(D1 + D2)ξ 2 + γ ]FuJe = 0, ξ ∈ R, t > 0, (5.4)

FuJe|t=0 = 1,
∂FuJe

∂t

∣∣∣∣
t=0

= −γ, (5.5)

where

Fu(ξ,·) =
∫ ∞

−∞
u(x,·)eiξxdx

defines the Fourier transform. The solution to the original
problem is therefore given by

u(x,·) = 1

2π

∫ ∞

−∞
Fu(ξ,·)e−ixξ dξ.

The characteristic values of Eq. (5.4) are

λ1,2(ξ ) = 1

2τ
{−[1 + τ (D1ξ

2 + γ )]

±
√

[1 − τ (D1ξ 2 + γ )]2 − 4τD2ξ 2}, (5.6)

where the plus sign corresponds to λ1. Note that if −D1 <

D2 � 0, the characteristic values are real; otherwise, if D2 >

0, there are two intervals on the real line, symmetric with
respect to the origin, where the characteristic values are
complex conjugate.

The solution to the problem (5.4) and (5.5) is

FuJe(ξ,t) = 1

λ1(ξ ) − λ2(ξ )
{[λ1(ξ )eλ2(ξ )t − λ2(ξ )eλ1(ξ )t ]

− γ [eλ1(ξ )t − eλ2(ξ )t ]}. (5.7)

The asymptotic behavior of the characteristic values is de-
scribed by

λ1(ξ ) = − 1

τ

(
1 + D2

D1

)
+ O

(
1

ξ 2

)

≡ −k2 + O

(
1

ξ 2

)
, (5.8a)

λ2(ξ ) = −D1ξ
2 + D2

τD1
− γ + O

(
1

ξ 2

)

≡ −(D1ξ
2 + k1 + γ ) + O

(
1

ξ 2

)
(5.8b)

as ξ → ±∞, where we have used the relations (4.13) between
the coefficients of the two models. Therefore, the asymptotic
behavior of the Fourier transform (5.7) with respect to ξ is

FuJe(ξ,t) = e−k2t + O

(
1

ξ 2

)
as ξ → ±∞. (5.9)

This means that the solution uJe has the form

uJe(x,t) = us
Je(x,t) + ur

Je(x,t), (5.10)

where

us
Je(x,t) = e−k2t δ(x) (5.11)

is the singular term, while the regular term ur
Je is a continuous

function [48]. The presence of the singular term means that in
the Jeffreys-type model a finite portion of the substance does
not move, though this portion diminishes exponentially with
time.

If τγ < 1 the asymptotic behavior of the regular term with
respect to t is

eγ tFur
Je

(
ξ√
t
,t

)
→ e−DJeξ

2
as t → +∞,

with

DJe = D1 + D2

1 − τγ
,

which leads to the asymptotic behavior

eγ t
√

tur
Je(

√
tx,t) → 1

2
√

πDJe
exp

(
− x2

4DJe

)
as t → +∞. This means that if τγ < 1 the solution uJe

behaves asymptotically as t → +∞ as the solution

uDE(x,t) = 1

2
√

πDJet
exp

(
− x2

4DJet
− γ t

)
(5.12)

of the diffusion equation

∂uDE

∂t
− DJe

∂2uDE

∂2x
+ γ uDE = 0, x ∈ R, t > 0,

with the initial condition

uDE|t=0 = δ(x). (5.13)

Figures 1–3 show two solutions uJe. In both cases ab-
sorption is absent, i.e., γ = 0, and therefore the mass of the
substance is conserved. The solution, shown in Figs. 1 and 2,
is obtained with the parameters τ = 1, D1 = 1, and D2 = 4.
The solution, shown in Fig. 3, is obtained with the parameters
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FIG. 1. (Color online) Solution uJe to the problem (5.1)–(5.3) with τ = 1, D1 = 1, D2 = 4, and γ = 0 in comparison with those of the
diffusion and telegraph equations (see the text). The vertical lines stand for the singular terms us

TE and us
Je. The portions of the regular term are∫ ∞

−∞ ur
Je(x,0.02)dx ≈ 0.10,

∫ ∞
−∞ ur

Je(x,0.2)dx ≈ 0.63,
∫ ∞

−∞ ur
Je(x,0.6)dx ≈ 0.95, and

∫ ∞
−∞ ur

Je(x,2)dx ≈ 1.0000.

τ = 1, D1 = 1, and D2 = −0.5 (which corresponds to k1 =
0.5 and k2 = 0.5). The solution, shown in Fig. 1, is wavelike
because the characteristic values (5.6) take complex values
due to D2 > 0. In the second case D2 < 0, therefore the
characteristic values are real and for this reason the solution,
shown in Fig. 3, is not wavelike. All the figures show also
the diffusion asymptotics (5.12) with γ = 0, in this case
DJe = D1 + D2.

Figure 1 shows also the solution of the telegraph equation

τ
∂2uTE

∂t2
+ ∂uTE

∂t
− (D1 + D2)

∂2uTE

∂x2
= 0, x ∈ R, t > 0

[this is Eq. (5.1) with ∂xxtuJe = 0 and γ = 0] with the initial
conditions

uTE|t=0 = δ(x),
∂uTE

∂t

∣∣∣∣
t=0

= 0.

This solution is given by [11,12]

uTE(x,t) = us
TE(x,t) + ur

TE(x,t),

where

us
TE(x,t) = e−t/2τ

2v

[
δ

(
x

v
− t

)
+ δ

(
x

v
+ t

)]

is the singular term and

ur
TE(x,t) = e−t/2τ

2v

1

2τ

[
I0

(
1

2τ

√
t2 − x2

v2

)

+ t

(√
t2 − x2

v2

)−1

I1

(
1

2τ

√
t2 − x2

v2

)]

×H

(
t − |x|

v

)

is the regular term, where v = √
(D1 + D2)/τ is the velocity,

I0 and I1 are the modified Bessel functions, and H (·) is the
Heaviside step function. The regular term is discontinuous at
x = ±vt .

The solution (5.7) and the one-dimensional continuity
equation (2.1) with f = 0 imply that the Fourier transform
of flux is

FJ (ξ,t) = i

ξ

λ1(ξ )λ2(ξ )

λ1(ξ ) − λ2(ξ )
[eλ1(ξ )t − eλ2(ξ )t ].

The asymptotic behavior of the Fourier transform of flux is
described by(

F ∂J

∂x

)
(ξ,t) ≡ −iξFJ (ξ,t) → k2e

−k2t

FIG. 2. (Color online) Spatiotemporal images of solutions uDE and ur
Je as in Fig. 1 with t ∈ [0.02,4].
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FIG. 3. (Color online) Solution uJe to the problem (5.1)–(5.3) with τ = 1, D1 = 1, D2 = −0.5, and γ = 0 in comparison with that of the
diffusion equation (see the text). The vertical lines stand for the singular term us

Je. The portions of the regular term are
∫ ∞

−∞ ur
Je(x,0.1)dx ≈ 0.05,∫ ∞

−∞ ur
Je(x,1)dx ≈ 0.39, and

∫ ∞
−∞ ur

Je(x,10)dx ≈ 0.99.

as ξ → ±∞, which means that flux J (x,t) has a finite
discontinuity at x = 0, equal to k2e

−k2t , which tends to zero as
t → +∞. Note that flux J (x,t) is an odd function with respect
to x.

B. Two-phase model

Here we study the behavior of the net concentration wTP =
uTP + vTP, where uTP and vTP are the concentrations of the free
and bound phases, respectively. In the one-dimensional case
the problem (4.8) and (4.9) and the problem (4.10) and (4.11)
with f = −γ u lead to the problem

∂2wTP

∂t2
+ (k1 + k2 + γ )

∂wTP

∂t
− D1

∂3wTP

∂x2∂t
− k2D1

∂2wTP

∂x2

+k2γwTP = 0, x ∈ R, t > 0, (5.14)

wTP|t=0 = u0 + v0,
∂wTP

∂t

∣∣∣∣
t=0

= D1
∂2u0

∂x2
. (5.15)

The total mass of the free and bound phases is conserved if and
only if γ = 0, i.e., absorption is absent:

∫ ∞
−∞ wTP(x,t)dx =∫ ∞

−∞[u0(x) + v0(x)]dx ≡ const. Indeed, Eqs. (4.7) imply that
the total mass obeys the equation ∂twTP − D1�uTP = −γ uTP,
or in Fourier space ∂tFwTP + ξ 2D1FuTP = −γFuTP.

Consider the particular initial conditions

u0(x) = αδ(x), v0(x) = (1 − α)δ(x), 0 � α � 1. (5.16)

The Fourier transform of the problem (5.14)–(5.16) yields

∂2FwTP

∂t2
+ (k1 + k2 + γ + D1ξ

2)
∂FwTP

∂t

+ k2(D1ξ
2 + γ )FwTP = 0, ξ ∈ R, t > 0, (5.17)

FwTP|t=0 = 1,
∂FwTP

∂t

∣∣∣∣
t=0

= −αD1ξ
2. (5.18)

The characteristic values of Eq. (5.17) are

λ1,2(ξ ) = 1
2 [−(k1 + k2 + γ + D1ξ

2)

±
√

(k1 − k2 + γ + D1ξ 2)2 + 4k1k2], (5.19)

where the plus sign corresponds to λ1. These values differ
from the characteristic values (5.6) if γ �= 0, however, their
asymptotic behavior is the same [see (5.8)].

The solution to the problem (5.17) and (5.18) is

FwTP(ξ,t) = 1

λ1(ξ ) − λ2(ξ )
{[λ1(ξ )eλ2(ξ )t − λ2(ξ )eλ1(ξ )t ]

−α[eλ1(ξ )t − eλ2(ξ )t ]D1ξ
2}. (5.20)

Taking into account the asymptotic behavior of the character-
istic values, one can conclude that the asymptotic behavior of
the Fourier transform of the solution is

FwTP(ξ,t) = (1 − α)e−k2t + O

(
1

ξ 2

)
as ξ → ±∞

[cf. with the asymptotics (5.9)]. This means that the solution
wTP has the form

wTP(x,t) = ws
TP(x,t) + wr

TP(x,t), (5.21)

where

ws
TP(x,t) = (1 − α)e−k2t δ(x) (5.22)

is the singular term, while the regular term wr
TP is a continuous

function [48]. The presence of the singular term means that if
α < 1 in the two-phase model a finite portion of the substance
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does not move, though this portion diminishes exponentially
with time.

The asymptotic behavior of the Fourier transform (5.20)
with respect to t is

eγTPtFwr
TP

(
ξ√
t
,t

)
→ 1

2

(
1 + k+

s

)
e−DTPξ 2

as t → +∞, where

DTP = 1

2

(
1 − k−

s

)
D1, γTP = k+ − s

2
,

k± = k1 + γ ± k2, s =
√

k2− + 4k1k2.

This means that as t → +∞ the solution uTP behaves
asymptotically as

w∞
TP ≡ 1

2

(
1 + k+

s

)
uDE(x,t), (5.23)

where

uDE(x,t) = 1

2
√

πDTPt
exp

(
− x2

4DTPt
− γTPt

)

is the solution of the diffusion equation

∂uDE

∂t
− DTP

∂2uDE

∂2x
+ γTPuDE = 0, x ∈ R, t > 0,

with the initial condition (5.13). If γ = 0 then k+ = s and

DTP = k2

k1 + k2
D1 ≡ D1 + D2.

Figure 4 shows the solution wTP with α = 1, i.e., u0 = δ(x)
and v0 = 0. The parameters are D1 = 1, k1 = 0.5, k2 = 0.5
(which corresponds to τ = 1 and D2 = −0.5; cf. Fig. 3), and
γ = 0. The total mass of wTP is conserved. The figure shows

also the diffusion asymptotics (5.23) with γ = 0, which is the
same as the asymptotics (5.12) with γ = 0. For comparison the
figure shows the solution u0

DE to the problem for the diffusion
equation (4.6a) with k1 = k2 = 0, f = −γ u, and the initial
condition u0 = δ(x), i.e., this would be the concentration of
the free substance if interphase mass transfer were absent. Note
that the solution wTP with α = 0, i.e., u0 = 0 and v0 = δ(x),
is the same as the solution uJe to the problem (5.1)–(5.3) with
the same parameters (see Fig. 3).

C. The DN=1 approximation to the linear Boltzmann equation

In the one-dimensional case Eq. (4.18) with F = 0 takes
the form

τ
∂2uBo

∂t2
+ (1 + τγ )

∂uBo

∂t
− τD1

∂3uBo

∂x2∂t

−(D1 + D′
2)

∂2uBo

∂x2
+ γ uBo = 0, x ∈ R, t > 0,

with D′
2 = D2 + τγD1. The initial conditions (4.19) in this

case are

uBo|t=0 = u0,
∂uBo

∂t

∣∣∣∣
t=0

= −γ u0 − ∂J0

∂x
.

This problem is similar to the problem (5.1) and (5.2) in the
framework of the Jeffreys-type model.

VI. MEAN-SQUARE DISPLACEMENT

The MSD is an integral quantity whose temporal depen-
dence characterizes diffusion and Brownian motion. It is of
interest to calculate the MSD in the framework of each model
for comparison with that in diffusion and Brownian motion.
This comparison is of particular interest for small t since the
asymptotics of the above solutions for large t is diffusive.

FIG. 4. (Color online) Solution wTP to the problem (5.14)–(5.16) with D1 = 1, k1 = 0.5, k2 = 0.5, γ = 0, and α = 1 in comparison with
that of the diffusion equation and the diffusion asymptotics w∞

TP (5.23) with γ = 0 (see the text).
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In this section we calculate the MSD, defined by 〈x2(t)〉 ≡∫ ∞
−∞ x2u(x,t)dx, for the solutions of the problems, considered

in the previous section, with the initial condition u|t=0 = δ(x).
The solution u(·,t) is to be a probability distribution function
for any t �0, i.e., the necessary condition is

∫ ∞
−∞ u(x,t)dx = 1.

Therefore, absorption is necessarily absent, i.e., γ = 0.
Concerning the diffusion equation, it is well known that the

MSD for the solution to the problem

∂uDE

∂t
− D

∂2uDE

∂2x
= 0, x ∈ R, t > 0,

uDE|t=0 = δ(x)

linearly depends on time and is equal to〈
x2

DE(t)
〉 = 2Dt, t � 0.

However, this temporal behavior of the MSD is wrong at short
times, where it must be ballistic.

The MSD in the framework of the Jeffreys-type model is
defined through the solution uJe to the problem (5.1)–(5.3)
with γ = 0. Therefore, the MSD is the solution to the problem

τ
d2

dt2

〈
x2

Je

〉 + d

dt

〈
x2

Je

〉 = 2(D1 + D2), t > 0,

〈
x2

Je

〉∣∣
t=0 = 0,

d

dt

〈
x2

Je

〉∣∣
t=0 = 0.

Hence, the MSD is equal to〈
x2

Je(t)
〉 = 2(D1 + D2)[t − τ (1 − e−t/τ )]

∼
{

D1 + D2

τ
t2 as t → 0

2(D1 + D2)t as t → ∞.
(6.1)

The MSD in the framework of the DN=1 approximation to the
linear Boltzmann equation with γ = 0 is the same.

The temporal behavior of the MSD given by Eq. (6.1) is the
same as that in the Brownian motion described by the standard
Langevin equation with initial velocities having Maxwellian
distribution [3–5]: It is ballistic as t → 0 and diffusive as
t → ∞. Therefore, the behavior of the MSD in the two models
is consistent with that in the normal diffusion and Brownian
motion.

The MSD in the framework of the two-phase model is
defined through the solution wTP to the problem (5.14)–(5.16)
with γ = 0. Therefore, the MSD is the solution to the problem

τ
d2

dt2

〈
x2

TP

〉 + d

dt

〈
x2

TP

〉 = 2(D1 + D2), t > 0,

〈
x2

TP

〉∣∣
t=0 = 0,

d

dt

〈
x2

TP

〉∣∣
t=0 = 2αD1.

Hence the MSD is equal to〈
x2

TP(t)
〉 = 2{(D1 + D2)[t − τ (1 − e−t/τ )]

+αD1τ (1 − e−t/τ )}, t � 0,

where D2 and τ are given by the relations (4.12a). This differs
from the behavior (6.1) if α > 0.

VII. INITIAL-VALUE PROBLEMS FOR THE
JEFFREYS-TYPE EQUATION WITH ABSORPTION

AND A STATIONARY POINT SOURCE

In this section we study the classic problem of the diffusion
of a substance from a stationary point source. We suppose that
the substance is absorbed (degraded), therefore, we set f =
−γ u + δ(x). We suppose also that the initial concentrations
and flux are equal to zero.

The study reveals that in the model described by the DN=1

approximation to the linear Boltzmann equation a finite portion
of the substance does not move and this portion increases with
time, approaching a limit. Alternatively, in the Jeffreys-type
and two-phase models the substance always moves.

A. Jeffreys-type model

In the one-dimensional case the problem (3.4) and (4.4)
with f = −γ u + δ(x), u0 = 0, and J0 = 0 takes the form

τ
∂2uJe

∂t2
+ (1 + τγ )

∂uJe

∂t
− τD1

∂3uJe

∂x2∂t

−(D1 + D2)
∂2uJe

∂x2
+ γ uJe = δ(x), x ∈ R, t > 0, (7.1)

uJe|t=0 = 0,
∂uJe

∂t

∣∣∣∣
t=0

= δ(x). (7.2)

The Fourier transform of this problem yields

τ
∂2FuJe

∂t2
+ [1 + τ (D1ξ

2 + γ )]
∂FuJe

∂t

+ [(D1 + D2)ξ 2 + γ ]FuJe = 1, ξ ∈ R, t > 0,

FuJe(ξ,t) = 1

λ1(ξ ) − λ2(ξ )

{
1

τ

[
eλ1(ξ )t − 1

λ1(ξ )
− eλ2(ξ )t − 1

λ2(ξ )

]

+ [eλ1(ξ )t − eλ2(ξ )t ]

}
,

where λ1,2 are the characteristic values, given by Eq. (5.6). The
asymptotic behavior (5.8) of the characteristic values leads to
the asymptotic behavior

FuJe(ξ,t) = O

(
1

ξ 2

)
as ξ → ±∞.

Hence the solution uJe is a continuous function of x [48].
The mass of the substance is equal at any time to that in

similar problems for the diffusion and telegraph equations∫ ∞

−∞
uDE(x,t)dx =

∫ ∞

−∞
uTE(x,t)dx =

∫ ∞

−∞
uJe(x,t)dx

= 1 − e−γ t

γ
, t � 0, (7.3)

where uDE is the solution of the diffusion equation

∂uDE

∂t
− (D1 + D2)

∂2uDE

∂2x

+γ uDE = δ(x), x ∈ R, t > 0,

with the initial condition

uDE|t=0 = 0,
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FIG. 5. (Color online) Solution uJe to the problem (7.1) and (7.2) with τ = 1, D1 = 1, D2 = 4, and γ = 1 in comparison with those of the
diffusion and telegraph equations (see the text).

and uTE is the solution of the telegraph equation

τ
∂2uTE

∂t2
+ (1 + τγ )

∂uTE

∂t
− (D1 + D2)

∂2uTE

∂2x

+ γ uTE = δ(x), x ∈ R, t > 0,

with the initial conditions

uTE|t=0 = 0,
∂uTE

∂t

∣∣∣∣
t=0

= δ(x).

Note that the mass does not depend on τ .
Fig. 5 shows the solution uJe, obtained with the parameters

τ = 1, D1 = 1, D2 = 4 and γ = 1. The figure shows also the
steady state solution u∞

Je of the equation (7.1).
For comparison the figure shows also the solutions uDE

and uTE. One can see the vertical front of the solution uTE.
The solution uJe is intermediate between the solutions of the
diffusion and telegraph equations.

B. Two-phase model

Here we study the behavior of the net concentration wTP =
uTP + vTP, where uTP and vTP are the concentrations of the free
and bound phases, respectively. In the one-dimensional case
the problem (4.8) and (4.9) and the problem (4.10) and (4.11)
with f = −γ u + δ(x), u0 = 0, and v0 = 0 lead to the problem

∂2wTP

∂t2
+ (k1 + k2 + γ )

∂wTP

∂t
− D1

∂3wTP

∂x2∂t
− k2D1

∂2wTP

∂x2

+ k2γwTP = (k1 + k2)δ(x), x ∈ R, t > 0, (7.4)

wTP|t=0 = 0,
∂wTP

∂t

∣∣∣∣
t=0

= δ(x). (7.5)

Note that Eq. (7.4), expressed through the parameters τ , D1,
and D2, takes the form

τ
∂2wTP

∂t2
+ (1 + τγ )

∂wTP

∂t
− τD1

∂3wTP

∂x2∂t

− (D1 + D2)
∂2wTP

∂x2
+

(
1 + D2

D1

)
γwTP = δ(x)

[cf. with Eq. (7.1); the difference is in the last term on the
left-hand side].

The Fourier transform of the problem (7.4) and (7.5) yields

∂2FwTP

∂t2
+ (k1 + k2 + γ + D1ξ

2)
∂FwTP

∂t

+ k2(D1ξ
2 + γ )FwTP = k1 + k2, ξ ∈ R, t > 0,

FwTP|t=0 = 0,
∂FwTP

∂t

∣∣∣∣
t=0

= 1.

The solution to this problem is

FwTP(ξ,t)

= 1

λ1(ξ ) − λ2(ξ )

{
(k1 + k2)

[
eλ1(ξ )t − 1

λ1(ξ )
− eλ2(ξ )t − 1

λ2(ξ )

]

+ [eλ1(ξ )t − eλ2(ξ )t ]

}
,

where λ1,2 are the characteristic values, given by Eq. (5.19).
The asymptotic behavior (5.8) of the characteristic values

leads to the asymptotic behavior

FwTP(ξ,t) = O

(
1

ξ 2

)
as ξ → ±∞.

This means that the solution wTP is a continuous function of
x [48].
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FIG. 6. (Color online) Solution wTP to the problem (7.4) and (7.5) with D1 = 1, k1 = 0.5, k2 = 0.5, and γ = 1 in comparison with that of
the diffusion equation (see the text).

Figure 6 shows the solution wTP, obtained with the
parameters D1 = 1, k1 = 0.5, k2 = 0.5 (which corresponds
to τ = 1 and D2 = −0.5), and γ = 1. The figure shows also
the steady state solution w∞

TP of Eq. (7.4). For comparison the
figure shows the solution u0

DE to the problem for Eq. (4.6a)
with k1 = k2 = 0, f = −γ u + δ(x), and the homogeneous
initial condition, i.e., this would be the concentration of the
free substance if the interphase mass transfer were absent.

C. The DN=1 approximation to the linear Boltzmann equation

In the one-dimensional case the problem (4.18) and (4.19)
with F = δ(x), u0 = 0, and J0 = 0 takes the form

τ
∂2uBo

∂t2
+ (1 + τγ )

∂uBo

∂t
− τD1

∂3uBo

∂x2∂t

−(D1 + D′
2)

∂2uBo

∂x2
+ γ uBo

= δ(x) − τD1
∂2δ(x)

∂x2
, x ∈ R, t > 0, (7.6)

uBo|t=0 = 0,
∂uBo

∂t

∣∣∣∣
t=0

= δ(x), (7.7)

with D′
2 = D2 + τγD1. The Fourier transform of this problem

yields

τ
∂2FuBo

∂t2
+ [1 + τ (D1ξ

2 + γ )]
∂FuBo

∂t

+ [(D1 + D′
2)ξ 2 + γ ]FuBo

= 1 + τD1ξ
2, ξ ∈ R, t > 0,

FuBo|t=0 = 0,
∂FuBo

∂t

∣∣∣∣
t=0

= 1

and leads to the following solution:

FuBo(ξ,t)

= 1

λ1(ξ ) − λ2(ξ )

{(
1

τ
+ D1ξ

2

)[
eλ1(ξ )t − 1

λ1(ξ )
− eλ2(ξ )t − 1

λ2(ξ )

]

+ [eλ1(ξ )t − eλ2(ξ )t ]

}
,

where λ1,2 are the characteristic values, given by Eq. (5.6) with
D′

2 instead of D2.
The asymptotic behavior (5.8) of the characteristic values

leads to the asymptotic behavior

FuBo(ξ,t) = 1 − e−k′
2t

k′
2

+ O

(
1

ξ 2

)
as ξ → ±∞,

where k′
2 is given by the relation (4.12b) for k2 with D′

2 instead
of D2, i.e.,

k′
2 = 1

τ

(
1 + D′

2

D1

)
.

Therefore, the solution uBo has the form

uBo(x,t) = us
Bo(x,t) + ur

Bo(x,t),

where

us
Bo(x,t) = 1 − e−k′

2t

k′
2

δ(x)

is the singular term, while the regular term ur
Bo is a continuous

function. The presence of the singular term means that in this
model a finite portion of the substance does not move and this
portion increases with time up to the value 1/k′

2 as t → ∞.
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FIG. 7. (Color online) Solution uBo to the problem (7.6) and (7.7) with τ = 1, D1 = 1, D2 = 0.25, and γ = 0.5 in comparison with those
of the diffusion and telegraph equations (see the text). The vertical lines stand for the singular term us

Bo.

The steady state solution of Eq. (7.6) satisfies the equation

−(D1 + D′
2)

∂2u∞
Bo

∂x2
+ γ u∞

Bo = δ(x) − τD1
∂2δ(x)

∂x2
,

x ∈ R. The Fourier transform of the steady state solution is

Fu∞
Bo(ξ ) = 1 + τD1ξ

2

(D1 + D′
2)ξ 2 + γ

≡ 1

D1 + D′
2

[
τD1 + D1 + D2

(D1 + D′
2)ξ 2 + γ

]
.

Therefore, the steady state solution is

u∞
Bo(x) = us

Bo(x) + ur
Bo(x), (7.8)

where

us
Bo(x) = τD1

D1 + D′
2

δ(x) ≡ 1

k′
2

δ(x) (7.9)

is the singular term and

ur
Bo(x) = D1 + D2

2
√

(D1 + D′
2)3γ

exp

(
−

√
γ

D1 + D′
2

|x|
)

(7.10)

is the regular (continuous) term.
Figure 7 shows the solution uBo, obtained with the param-

eters c = √
15/4, κ = 0.5, σ = 0.5, isotropic scattering, i.e.,

K ≡ (4π )−1 (therefore, σ1 = σ and σ2 = σ ), and F = δ(x)
(which corresponds to τ = 1, D1 = 1, D2 = 0.25, D′

2 = 0.75,
and γ = 0.5). All the figures show also the steady state solution
u∞

Bo, given by Eqs. (7.8)–(7.10).
For comparison the figure shows also the diffusion approx-

imation uDE to the Boltzmann equation, given by Eq. (A4)
with the first of the initial conditions (7.7), and the telegraph
approximation uTE, given by Eq. (A6) with the initial condi-

tions (7.7). The figure shows also the steady state diffusion
approximation u∞

DE.
There are two qualitative peculiarities that distinguish the

DN=1 approximation from the diffusion and the telegraph
ones. First, a finite portion of the substance in the DN=1

approximation does not move. Second, the steady state
distribution for the DN=1 approximation is different from that
for the diffusion and telegraph approximations. Nevertheless,
the mass of the substance in all these approximations is the
same at any time:∫ ∞

−∞
uDE(x,t)dx =

∫ ∞

−∞
uTE(x,t)dx =

∫ ∞

−∞
uBo(x,t)dx

= 1 − e−γ t

γ
, t � 0

[cf. with the same relation (7.3) in the Jeffreys-type model].

VIII. CONCLUSION

We have considered three models of nonanomalous mass
transfer, leading to the Jeffreys-type equation. In the frame-
work of the Jeffreys-type model this equation combines the
diffusion and telegraph ones through the Jeffreys-type law,
which combines in turn Fick’s law and Cattaneo’s equation.
In the framework of the two-phase model the Jeffreys-type
equation describes the concentrations of the free (mobile)
and bound (immobile) phases of a substance as well as the
net concentration. The Jeffreys-type equation in the form
of the DN=1 approximation ranks after the diffusion and
telegraph equations in the hierarchy of the spherical harmonics
approximations to the linear Boltzmann equation.

Solutions of the Jeffreys-type equation show qualitatively
different behavior in all these models. The two-phase model
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shows nothing unusual, while the Jeffreys-type model and the
DN=1 approximation to the linear Boltzmann equation exhibit
distinctive features.

The first problem we studied is the transfer of a substance
initially confined at a point. In this case the Jeffreys-type model
and DN=1 approximation coincide. The study has revealed
that in these models a finite portion of the substance does not
move, though this portion diminishes exponentially with time.
In addition, we have calculated the mean-square displacement
for the solutions of the first problem. The temporal behavior
of the MSD in the Jeffreys-type model and in the DN=1

approximation is found to be the same as that in the Brownian
motion described by the standard Langevin equation, i.e., it is
ballistic as t → 0 and diffusive as t → ∞.

The second problem we have studied is the transfer of
a substance from a stationary point source. The study has
revealed that in the DN=1 approximation a finite portion of the
substance does not move and this portion increases with time
up to a value as t → ∞.

A tentative interpretation of the local immobilization
phenomena is that in a dense crowd inner particles have no
space to move, but when the crowd is scattered the particles
become mobile.

The two problems we have studied are one dimensional.
An important question requires further consideration: Are the
solutions of the three-dimensional problems for the Jeffreys-
type equation left non-negative?
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APPENDIX A: APPROXIMATIONS TO THE LINEAR
BOLTZMANN EQUATION IN THE FRAMEWORK

OF THE SPHERICAL HARMONICS METHOD

One of the methods to obtain approximate solutions of the
linear Boltzmann equation (4.13) is the spherical harmonics
method [34,47]. In this method the particle phase space density
is expanded into the generalized Fourier series

ψ(x,�,t) =
∞∑

n=0

n∑
m=−n

ψm
n (x,t)Ym

n (�), (A1)

where Ym
n are the spherical harmonics [49] and the coefficients

are expressed by

ψm
n (x,t) =

∫
S2

ψ(x,�,t)Ym
n (�)d�,

where the overline means the complex conjugate. Note that the
expansion (A1) can be expressed through the particle density
u (4.15) and flux J (4.16). Indeed, note that

ψ0
0 (x,t)Y 0

0 ≡ 1

4π
u(x,t)

and

1∑
m=−1

ψm
1 (x,t)Ym

1 (�) ≡ 3

4πc2
J(x,t) · �.

Therefore, the expansion (A1) takes the form

ψ(x,�,t) = 1

4π
u(x,t) + 3

4πc2
J(x,t) · �

+
∞∑

n=2

n∑
m=−n

ψm
n (x,t)Ym

n (�).

The collision kernel is also expanded into the spherical
harmonics:

K(� · �′) =
∞∑

n=0

Kn

n∑
m=−n

Ym
n (�)Ym

n (�′), (A2)

where

Kn = 2π

∫ 1

−1
K(μ)Pn(μ)dμ,

Pn are the Legendre polynomials, with K0 = 1 due to the
normalization

∫
S2 K(� · �′)d� = 1, which is equivalent to∫ 1

−1 K(μ)dμ = (2π )−1. The expansions (A1) and (A2) are
substituted into the linear Boltzmann equation. Due to orthogo-
nality of the spherical harmonics this leads to an infinite system
of coupled partial differential equations for the functions ψm

n .
The first equation of the infinite system is the continuity

equation (4.14). The second (vector) equation can be obtained
with the help of integrating the linear Boltzmann equation,
multiplied by �, over the unit sphere. The second equation
relates the gradient of the particle density ∇u, flux J , its time
derivative ∂ J/∂t , and coefficients ψm

2 .

1. Diffusion approximation

The classic diffusion approximation is obtained if the co-
efficients ψm

n , n > 1, in the expansion (A1) are negligible and
the coefficients ψm

1 are quasistationary. The latter condition
is equivalent to quasistationarity of flux J , i.e., ∂ J/∂t ≈ 0.
In this case the particle density and flux are related by the
(truncated second) equation

(κ + σ1) J + c2

3
∇u = 0, (A3)

where

σn = σ (1 − Kn), n = 1,2, . . . ;

clearly, σn > 0. Note that Eq. (A3) is identical to Fick’s
law (2.2). The continuity equation (4.14) and Eq. (A3) imply
that the particle density satisfies the diffusion equation

∂u

∂t
− c2

3 (κ + σ1)
�u + κu = F. (A4)

2. The PN approximations

The classic PN approximations are obtained if the coeffi-
cients ψm

n , n > N � 1, in the expansion (A1) are negligible.
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Particularly in the P1 approximation the particle density and
flux are related by the (truncated second) equation

∂ J
∂t

+ (κ + σ1) J + c2

3
∇u = 0, (A5)

which is an extension of Eq. (A3). Note that Eq. (A5) is similar
to Cattaneo’s equation (3.1). The continuity equation (4.14)
and Eq. (A5) imply that the particle density satisfies the
telegraph equation

∂2u

∂t2
+ (2κ + σ1)

∂u

∂t
− c2

3
�u + κ(κ + σ1)u

= (κ + σ1) F + ∂F

∂t
. (A6)

3. The DN approximations

Recently, DN approximations were proposed [35]. They
generalize the diffusion approximation, which can be consid-
ered as the D0 approximation. The DN approximations are ob-
tained if the coefficients ψm

n , n > N + 1, in the expansion (A1)
are negligible and the coefficients ψm

N+1 are quasistationary.
The coefficients ψm

N+1 can be expressed through ψm
N and the

DN approximation is described by ψm
n , n = 0, . . . ,N . In the

case N = 1 the coefficients ψm
2 can be expressed through flux

J . As a result, in the DN=1 approximation the particle density
and flux are related by the equation

∂ J
∂t

+ (κ + σ1) J + c2

3
∇u

= c2

15(κ + σ2)
(3�J + ∇ div J), (A7)

which is a generalization of Eq. (A5). (We used the notation
DN=1 instead of D1 since the latter stands for the coefficient.)
The continuity equation (4.14) and (A7) imply that the particle
density satisfies the Jeffreys-type equation

∂2u

∂t2
+ (2κ + σ1)

∂u

∂t
− 4c2

15(κ + σ2)

∂�u

∂t

−
[
c2

3
+ 4c2

15(κ + σ2)
κ

]
�u + κ(κ + σ1)u

= (κ + σ1)F + ∂F

∂t
− 4c2

15(κ + σ2)
�F. (A8)

APPENDIX B: GUYER-KRUMHANSL MODEL

In this section we consider heat transfer. The energy
equation without sources and sinks has the form

C
∂T

∂t
+ div q = 0, (B1)

where T ≡ T (x,t) is temperature, q ≡ q(x,t) is heat flux, and
C is the volumetric heat capacity. The equation of Guyer and
Krumhansl relating heat flux and temperature is [8,10,36]

∂q
∂t

+ 1

τR

q = −c2C

3
∇T + τNc2

5
(�q + 2∇ div q), (B2)

where c is the average speed of phonons, τN is a relaxation time
for momentum-conserving collisions (normal process), and τR

is a relaxation time for momentum-nonconserving collisions
(umklapp process) in the phonon gas. An equivalent equation
was obtained in the framework of extended irreversible
thermodynamics [14].

The energy equation (B1) and the equation of Guyer and
Krumhansl imply that temperature satisfies the homogeneous
Jeffreys-type equation

∂2T

∂t2
+ 1

τR

∂T

∂t
− 3τNc2

5

∂�T

∂t
− c2

3
�T = 0. (B3)

This equation is related to Eq. (4.20) by τ = τR , D1 =
3τNc2/5, and D2 = (τR/3 − 3τN/5)c2; in addition, the in-
equalities D2 ≷ 0 are equivalent to 5τR ≷ 9τN . The initial
conditions for Eq. (B3) are

T |t=0 = T0,
∂T

∂t

∣∣∣∣
t=0

= − 1

C
div q0,

where T0 ≡ T0(x) and q0 ≡ q0(x) are the initial temperature
and heat flux, respectively. These are the same as the initial
conditions (4.19) with F = 0 and γ = 0.

The equation of Guyer and Krumhansl (B2), written
through τ , D1, and D2, has the form

τ
∂q
∂t

+ q = −(D1 + D2)C∇T + τD1

3
(�q + 2∇ div q),

(B4)

which differs from the similar equation (4.17) in the frame-
work of the DN=1 approximation to the linear Boltzmann
equation. In a steady state Eq. (B4) takes the
form

q = −(D1 + D2)C∇T + τD1

3
(�q + 2∇ div q),

which differs qualitatively from Fourier’s law.

[1] D. Kondepudi and I. Prigogine, Modern Thermodynamics:
From Heat Engines to Dissipative Structures (Wiley, Chichester,
1998).

[2] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport
Phenomena, 2nd ed. (Wiley, New York, 2002).

[3] H. Risken, The Fokker-Plank Equation: Methods of Solution and
Applications, 2nd ed. (Springer, Berlin, 1989).

[4] R. M. Mazo, Brownian Motion: Fluctuations, Dynamics, and
Applications (Oxford University Press, Oxford, 2002).

[5] W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin
Equation: With Applications to Stochastic Problems in Physics,
Chemistry and Electrical Engineering (World Scientific,
Singapore, 2004).

[6] S. A. Rice, Diffusion-Limited Reactions (Elsevier, Amsterdam,
1985).

[7] J. B. Fourier, The Analytical Theory of Heat (Cambridge
University Press, Cambridge, 2009).

[8] D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 61, 41 (1989).

062116-14

http://dx.doi.org/10.1103/RevModPhys.61.41


LOCAL IMMOBILIZATION OF PARTICLES IN MASS . . . PHYSICAL REVIEW E 88, 062116 (2013)

[9] D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 62, 375 (1990).
[10] B. Straughan, Heat Waves (Springer, New York, 2011).
[11] P. M. Morse and H. Feshbach, Methods of Theoretical Physics,

Vol. 1 (McGraw-Hill, New York, 1953).
[12] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics:

Mechanics of Turbulence, Vol. 1 (MIT Press, Cambridge, 1971).
[13] G. H. Weiss, Physica A 311, 381 (2002).
[14] D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible

Thermodynamics, 4th ed. (Springer, New York, 2010).
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