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We study the coefficient of performance (COP) and its bounds for a Carnot-like refrigerator working between
two heat reservoirs at constant temperatures Th and Tc, under two optimization criteria χ and �. In view of the
fact that an “adiabatic” process usually takes finite time and is nonisentropic, the nonadiabatic dissipation and
the finite time required for the adiabatic processes are taken into account by assuming low dissipation. For given
optimization criteria, we find that the lower and upper bounds of the COP are the same as the corresponding
ones obtained from the previous idealized models where any adiabatic process is undergone instantaneously with
constant entropy. To describe some particular models with very fast adiabatic transitions, we also consider the
influence of the nonadiabatic dissipation on the bounds of the COP, under the assumption that the irreversible
entropy production in the adiabatic process is constant and independent of time. Our theoretical predictions match
the observed COPs of real refrigerators more closely than the ones derived in the previous models, providing a
strong argument in favor of our approach.
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I. INTRODUCTION

The issue of thermodynamic optimization of cyclic con-
verters has attracted much attention because of sustainable
development in relation to any energy converter operation.
Concerning this issue, a number of different performance
regimes [1–3] have been considered within different figures
of merit to disclose possible universal and unified features,
with special emphasis on the possible consistency between
theoretical predictions and experimental data. If heat engines,
or refrigerators, work between two heat reservoirs at constant
temperatures Th and Tc, in practice they operate far from the
ideal maximum Carnot efficiency (ηmax = ηC = 1 − Tc/Th),
or the maximum Carnot coefficient of performance (COP)
[εmax = εC = Tc/(Th − Tc)], which requires infinite time to
complete a cycle. By contrast, the maximum output for heat
engines, or the maximum cooling rate for refrigerators, can be
achieved within a finite cycle time. In most studies of Carnot-
like heat-engine models, the power output as a target function is
always maximized to find valuable and simple expressions for
the optimized efficiency [4–13]. Without assuming any specific
heat transfer law or the linear-response regime, Esposito
et al. [11] proposed the low-dissipation assumption that the
irreversible entropy production in a heat-exchange process is
inversely proportional to the time spent on the corresponding
process, and they rederived the paradigmatic Curzon-Ahlborn
value [14] ηCA = 1 − √

1 − ηC in the limit of symmetric
dissipation. In addition to the power output, the per-unit-time
efficiency, a compromise between the efficiency and the speed
of the whole heat-engine cycle, was considered as another
criterion [15] of optimization.

It is more difficult to adopt a suitable optimization criterion
and determine its corresponding COP for refrigerators, in
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comparison with dealing with the issue of the efficiency
at maximum power for heat engines. Various optimization
criteria [16–22] have been proposed in analysis of optimization
of a classical or quantum refrigeration cycle. Yan and Chen
[16] introduced the function χ = εQc/τcycle, with Qc the heat
transported from the cold reservoir and τcycle the cycle time, as
a target function within the context of finite-time thermody-
namics. Velasco et al. [17] adopted the per-unit-time COP as a
target function while Allahverdyan et al. [18] introduced εQc

as the target function. de Tomás et al. [20] proved that the COP
at maximum χ for symmetric low-dissipation refrigerators is
εCA = √

εC + 1 − 1, where εC = Tc/(Th − Tc) is the Carnot
COP. Based on the χ figure of merit, Wang et al. [21]
obtained the lower and upper bounds of the COP and showed
that these bounds can be achieved in extremely asymmetric
dissipation limits. Very recently, de Tomás et al. [19] studied
low-dissipation heat devices and obtained the bounds of the
COP under general and symmetric conditions, by applying
the unified � optimization criterion, which was first proposed
in [23] to consider a compromise between energy benefits and
losses for a specific job. This criterion, which takes advantage
of being independent of environmental parameters and does
not require explicit evaluation of the entropy generation, has
been applied to performance optimization for a wide variety
of energy converters [24–26].

Most of the previous studies about the performance in finite
time of heat devices did not take into account nonadiabatic
dissipation for the cyclic converter, assuming that the adiabatic
steps run instantaneously with constant entropy, although
the importance of nonadiabatic dissipation in an adiabatic
process was suggested by Novikov [27]. The influence on the
performance of a classical or quantum heat engine, induced
by internally dissipative dissipation (such as inner friction and
internal dynamics, etc.), has been discussed in several papers
[28–35]. To the best of our knowledge, so far little attention
has been paid to the effects of nonadiabatic dissipation on the
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performance characteristics of refrigerators. It is therefore of
significance to consider a more generalized refrigerator model
by involving the nonadiabatic dissipation and the time spent
on adiabatic processes.

In the present paper, we consider a low-dissipation Carnot-
like refrigeration cycle of two irreversible isothermal and
two irreversible adiabatic processes, and analyze its COP
under the χ and � conditions, respectively. Assuming that
the nonadiabatic dissipation can be described using the
low-dissipation assumption, we show that the inclusion of
nonadiabatic dissipation does not lead to any change in the
bounds of the COP at a given figure of merit. When the
dissipations of the two isothermal and two adiabatic processes
are symmetric, we find that our results agree well with the
data for real refrigerators, thereby indicating that inclusion
of nonadiabatic dissipation is essential. Moreover, we briefly
discuss the influence of the nonadiabatic dissipation on the
bounds of the COP with the χ and � figures of merit, by
assuming that the entropy production in the adiabatic process
is constant and independent of time. Throughout the paper, we
use the word “isothermal” to mean that the working substance
is coupled to a reservoir with constant temperature, while we
adopt the word “adiabatic” to indicate merely that there are
no heat exchanges between the working substance and its
surroundings.

II. MODEL

An irreversible Carnot-like refrigeration cycle A → B →
C → D → A is drawn in the (S,T ) plane (see Fig. 1). During
two isothermal processes A → B and C → D, the working
substance is in contact with a cold and a hot heat bath at
constant temperatures Tc and Th, respectively. In the adiabatic
process B → C (D → A), the working substance is decoupled
from the cold (hot) reservoir, and the entropy changes from SB

FIG. 1. (Color online) Schematic diagram of an irreversible
Carnot-like refrigeration cycle in the plane of the temperature T

and entropy S. The values of the entropy S at four special instants
are indicated by Si (i = 1,3,3,4). Here τh,c are the times spent on
the two isothermal process, while τa,b represent the times taken for
the two adiabatic processes. The blue areas defined by the rectangles
C,C ′,S2,S3 and D,D′,S1,S4 represent the total work done on the
system to overcome nonadiabatic dissipation in the two adiabatic
processes.

to SC (SD to SA). It can be seen from Fig. 1 that S1 = SA,
S2 = SB , S3 = SC , and S4 = SD . For the reversible cycle
where SB = SC and SA = SD , we recover the Carnot efficient
of performance εC = Tc

Th−Tc
, which is generically universal.

Now we turn to discussion of the Carnot-like cycle under a
finite-time operation that moves the working substance away
from equilibrium. In the isothermal process the system may
be out of equilibrium, but it must be in the equilibrium with
the heat reservoir at the special instants i with i = A,B,C,D,
at which the thermodynamic quantities of the system can be
defined well. Unlike in the ideal case where any adiabatic
process is isentropic, the adiabatic process is nonisentropic
because of nonadiabatic dissipation. This dissipation develops
additional heat and thus yields an increase in the entropy during
the so-called adiabatic process. An irreversible Carnot-like
refrigerator that consists of two adiabatic and two isothermal
processes is operated as follows (more details about the
isothermal processes can be seen in [21]).

(1) Isothermal expansion A → B. The working substance is
in contact with the cold reservoir at temperature Tc for a period
τc. In this expansion the constraint imposed on the system
is loosened according to the externally controlled parameter
λc(τ ) during the time interval 0 < τ < τc, where τ is the time
variable. A certain amount of heat Qc is absorbed from the
cold reservoir and the variation of entropy can be expressed as

�Sc = Qc/Tc + �Sir
c , (1)

with �Sir
c � 0 being the irreversible entropy production.

(2) Adiabatic compression B → C. The entropy is in-
creased due to irreversible entropy production caused by the
nonadiabatic dissipation, while the constraint on the system
is enhanced according to the externally controlled param-
eter λa(τ ) during the time interval τc < τ < τc + τa . The
irreversible entropy production arising from the nonadiabatic
dissipation is denoted by

�Sir
a = S3 − S2. (2)

(3) Isothermal compression C → D. The working sub-
stance is coupled to a hot reservoir at constant temperature Th

for time τh. The constraint on the system is further enhanced
with the externally controlled parameter λh(τ ) during the time
interval τc + τa < τ < τc + τa + τh. Let Qh be the amount of
heat released to the hot reservoir; we have the entropy variation

�Sh = −Qh/Th + �Sir
h , (3)

where �Sir
h � 0 is the irreversible entropy production.

(4) Adiabatic expansion D → A. As in adiabatic com-
pression, the working substance is decoupled from the hot
reservoir. During this process, the controlled parameter λb(τ )
changes from λb(τc + τa + τh) to λb(τc + τa + τh + τb), so the
constraint on the system is loosened. The entropy production
due to the nonadiabatic dissipation reads

�Sir
b = S1 − S4. (4)

The system recovers to its initial state after a single cycle,
and the total change of entropy of the system vanishes for a
whole cycle. That is, there exists the following relation:

�S + �Sir
a + �Sh + �Sir

b = 0, (5)
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where we have defined �S ≡ �Sc = S2 − S1. It is clear from
Eq. (5) that the variation of entropy �S (=�Sc) during the cold
isothermal process is quite different from that �Sh during the
hot isothermal process, when the entropy production during
any adiabatic process is nonvanishing.

To continue our analysis, we denote by �Sir
κ ≡ Lκ (tκ )

[11,21,29,34] with κ = h,c,a,b the irreversible entropy pro-
duction for the optimized protocols. As emphasized, the
irreversible entropy production in any adiabatic process
[La(τa) or Lb(τb)] cannot be included within the irreversible
entropy production in any isothermal process [Lc(τc) or
Lh(τh)], because the irreversible entropy production Lκ (τκ )
as a function of the time τκ depends on the time taken for the
corresponding process κ . Here Lκ (τκ ) are process variables
depending on the detailed protocols.

Considering Eqs. (1), (2), (3), (4), and (5), the heat values
Qc and Qh are obtained,

Qc = Tc(�S − Lc) (6)

and

Qh = Th(�S + La + Lb + Lh). (7)

From Eqs. (6) and (7), we find the relation

Qh/Th − Qc/Tc = La + Lb + Lh + Lc. (8)

As a consequence, the work consumed by the system after a
single cycle (W ) and the COP of the refrigeration cycle (ε) are
derived as

W = Qh − Qc = (Th − Tc)�S + ThLh + TcLc

+ Th(La + Lb) (9)

and

ε = Qc

Qh − Qc

= Tc(�S − Lc)

(Th − Tc)�S + Th(La + Lb + Lh) + TcLc

. (10)

The last term in Eq. (9) represents the additional work
consumed by the system because of the dissipation in the
two adiabatic processes. This additional work to overcome the
internally nonadiabatic dissipation is represented by the two
blue areas in Fig. 1.

III. OPTIMIZATION ANALYSIS

In this section we present an optimization analysis of
a refrigerator with internal dissipation which accounts for
the irreversible entropy production during a nonisentropic
adiabatic process (more details about nonisentropic adiabatic
processes can be found in Ref. [29]). If the adiabatic processes
are assumed to proceed instantaneously with constant entropy,
we recall that [19,21] (i) the bounds of the COP under the
� criterion, between which there are small differences, are
in agreement with the real experimental data within a range
of temperatures of the working substance; (ii) under the χ

criterion, the upper bound of the COP fits well with the
experimental data, but the COP in the symmetric limit (ε
h=
c

χ )
seems to be considerably larger than the experimental data.
In what follows, our theoretical predictions are expected to
agree well with the experimental data. In particular, for the
χ criterion, our theoretical data in the symmetric limit should
match more closely with the experimental data than the ones
obtained from the previous models without consideration of
nonadiabatic dissipation [19].

A. COP at maximum χ figure of merit

In the following, we make the variable transformation
xκ = 1/τκ (κ = a,b,c,h) by taking the inverse of time instead
of the time itself as a variable, and then we can write the
total cycle time τcycle as τcycle = 1/xa + 1/xb + 1/xc + 1/xh.
Substitution of Eqs. (6) and (10) into the χ figure of merit as
the target function leads to

χ = εQc

τcycle
= T 2

c (�S − Lc)2

[(Th − Tc)�S + Th(La + Lb + Lh)+TcLc](1/xa + 1/xb + 1/xc + 1/xh)
. (11)

We optimize the target function χ over the time variables xκ

to specify the time spent on any thermodynamic process and
also to maximize this figure of merit. Considering ∂χ

∂xκ
= 0

(κ = a,b,c,h), we find the four following relations:

(Qh − Qc)xaxbxh = TcL
′
cxc(2Qh/Qc − 1)(xaxbxc + xaxbxh

+ xbxcxh + xaxcxh), (12)

(Qh − Qc)xbxcxh = ThL
′
axa(xaxbxc + xaxbxh

+ xbxcxh + xaxcxh), (13)

(Qh − Qc)xaxcxh = ThL
′
bxb(xaxbxc + xaxbxh

+ xbxcxh + xaxcxh), (14)

(Qh − Qc)xaxbxc = ThL
′
hxh(xaxbxc + xaxbxh

+ xbxcxh + xaxcxh). (15)

Here and hereafter we define L′
κ ≡ ∂Lκ

∂xκ
(κ = a,b,c,h). Divid-

ing Eq. (12) by Eq. (13), Eq. (14), and Eq. (15), respectively,
we obtain

ε∗
χThL

′
ax

2
a = (ε∗

χ + 2)TcL
′
cx

2
c , (16)

ε∗
χThL

′
bx

2
b = (ε∗

χ + 2)TcL
′
cx

2
c , (17)

ε∗
χThL

′
hx

2
h = (ε∗

χ + 2)TcL
′
cx

2
c , (18)

where ε∗
χ is the COP under the maximum χ condition. From

Eqs. (16), (17), and (18), we find that the times spent on
the four thermodynamic processes are optimally distributed
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as

τκ/τh =
√

L′
κ/L

′
h(κ = a,b), τb/τa =

√
L′

b/L
′
a, (19)

and

τκ/τc = √
ThL′

κ/(mTcL′
c) (κ = a,b,h), (20)

where m ≡ (ε∗
χ + 2)/ε∗

χ has been adopted and can be determined through numerical calculation of ε∗
χ . Directly adding both sides

of Eqs. (12), (13), (14), and (15), we obtain

Qh − Qc = (2Qh/Qc − 1)TcL
′
cxc + Th(L′

axa + L′
bxb + L′

hxh). (21)

Based on Eqs. (8) and Eq. (21), it is not very difficult to find that (see the Appendix)

1

ε∗
χ

= 1

εC

+ 1

α1ε∗
χ + [(2εC − ε∗

χ )α2/(1 + εC)]
(22)

or

ε∗
χ = εC{α1 − 1 − 3α2 + (α1 − 1)εC +

√
[α1 − 1 − 3α2 + (α1 − 1)εC]2 + 8α2(α1 − α2 + α1εC)}
2(α1 − α2 + α1εC)

, (23)

where we have used α1 ≡ L′
axa+L′

bxb+L′
cxc+L′

hxh

La+Lb+Lc+Lh
and α2 ≡

L′
cxc

La+Lb+Lc+Lh
.

Now we turn to the low-dissipation case [11] where one
assumes L′

c = 
c and L′
h = 
h with 
c and 
h being the

dissipation constants. This assumption is quite plausible for
isothermal processes, since the larger the time for completing
the isothermal processes, the closer these steps are to qua-
sistatic processes taking infinitely long times. Usually, for a
Carnot (or Carnot-like) cycle that works with a classical gas,
the time required for completing an adiabatic process should be
very long in order for work to be produced during the adiabatic
process (for a quantum adiabatic process, the time must be long
enough such that the quantum adiabatic theorem can apply
[29]). It is therefore indicated that the irreversible entropy
production decreases as the time for the process increases, and
it tends to be vanishing when the time becomes long enough.
As for isothermal processes, we adopt the low-dissipation
assumption for such an adiabatic process [28,29,32–34] to
describe the nonadiabatic dissipation, assuming L′

a = 
a and
L′

b = 
b where 
a and 
b are constants independent of time.
This is physically reasonable since the irreversible entropy
production (�Sir

a or �Sir
b ) becomes much smaller and is

vanishing in the long-time limit. In this case, since α1 = 1,
Eq. (23) becomes

ε∗
χ = εC[

√
1 + 8(1 + εC)/α2 − 3]

2[(1 + εC)/α2 − 1]
, (24)

with

α2 = 
cxc


axa + 
bxb + 
cxc + 
hxh

. (25)

The expression for α2 is derived from the more general model
in which the nonadiabatic dissipation and the time spent on any
adiabatic process are involved. Since 0 � α2 � 1 and εC > 0,
ε∗
χ increases monotonically with α2, and vice versa. As a result,

we rederive the bounds of the COP at the maximum χ figure
of merit [21,36],

0 ≡ ε−
χ � ε∗

χ � ε+
χ ≡ (

√
9 + 8εC − 3)/2, (26)

whether or not the nonadiabatic dissipation in any adiabatic
process is considered. It is thus clear that the inclusion of
the nonadiabatic dissipation as well as the time taken for the
adiabatic process does not change the upper and lower bounds
of the COP at the maximum χ figure of merit. These lower and
upper bounds of ε∗

χ are achieved when α2 → 0 and α2 → 1,
respectively. Combination of Eqs. (20) and (25) yields

α2 = 1
√

m
(√

Tc
h

Th
c
+

√
Tc
a

Th
c
+

√
Tc
b

Th
c

)
+ 1

, (27)

where m was defined in Eq. (20) and xκ = 1/τκ (κ = a,b,c,h)
has been used. The complete asymmetric limits 
c/
κ → 0
and 
c/
κ → ∞, where κ represents h,a,b but not c, cause
the COP at the maximum χ merit of figure to approach its
upper and lower bounds, ε−

χ = 0 and ε+
χ = (

√
9 + 8εC − 3)/2,

respectively.
When the dissipations in the two adiabatic and two

isothermal processes are respectively symmetric, we have

a = 
b = r
h = r
c, with r being the ratio. In such a case
we consider three special situations: (i) r → 0. The nona-
diabatic dissipations for the two adiabatic processes vanish,
while the dissipations during the two isothermal processes are
symmetric. Making use of Eq. (24), the Curzon-Ahlborn (CA)
COP is recovered, ε
h=
c

χ = εCA = √
1 + εC − 1, which is

also the upper bound of the COP in this case. (ii) r → ∞.
The lower bound of the COP is achieved, ε−

χ = 0. (iii)r = 1.
The dissipations in the four thermodynamic processes are
symmetric. Here εS

χ ≡ ε∗
χ (r = 1) is defined for convenience,

and its value can be obtained numerically based on Eqs.
(24) and (27) for any given value of Th/Tc (i.e., the value
of εC). At this supersymmetric limit we obtain readily from
Eqs. (19) and (20) that the time ratios of τκ/τc (κ = a,b,h)
are τκ/τc = √

Th/(mTc) with m = (ε∗
χ + 2)/ε∗

χ , and that the
time allocations for the remaining three processes are equal
(τh = τa = τb). In Fig. 2(a) we plot the COP εS

χ as a function of
εC , comparing εCA with the upper bound ε+

χ of the Carnot-like
refrigeration cycle.

For an adiabatic process of some heat devices [12], in
the sudden limit there is no time for relaxation and heat
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(a) (b)

FIG. 2. (Color online) (a) The values of εχ in the three limits ε+
χ (dotted blue line), εCA (= ε
h=
c

χ ) (black solid line), and εS
χ (red dot-dashed

line) versus the Carnot COP εC . (b) The values of ε� in the four cases ε+
� (blue dashed line), ε


h=
c

� (green dotted line), εS
� (black solid line),

and ε−
� (red dot-dashed line) versus the Carnot COP εC.

losses to the environment can be minimized. To describe
such an adiabatic process for these special systems, we
assume that the entropy production in an adiabatic process
with vanishing time (τa = 1/xa → 0 and τb = 1/xb → 0) is
constant and independent of time, while the low-dissipation
assumption holds well for an isothermal process. That is, we
set La = 
a and Lb = 
b with 
a and 
b being constants
independent of time, and we have L′

a = L′
b = 0. Then the

expressions for α1 and α2 below Eq. (23) become α1 =

cxc+
hxh


a+
b+
cxc+
hxh
and α2 = 
cxc


a+
b+
cxc+
hxh
. For the strong-

nonadiabatic-dissipation limit, 
a → ∞ or 
b → ∞, we
find from Eq. (22) that the COP at the maximum χ figure
of merit, ε∗

χ , becomes vanishing, since α1 as well as α2

tends to zero. On the contrary, when 
a = 0 and 
b = 0,
our result is reduced to the one derived in the idealized
nonadiabatic dissipation model, as discussed above. Therefore,
if the entropy production in the adiabatic process is constant
and independent of time, the lower and upper bounds of ε∗

χ are
also given by Eq. (26) which was derived under the assumption
that Lκ = 
κxκ with κ = a,b,c,h.

B. COP at maximum �̇ figure of merit

The � criterion, a trade-off between maximum cooling and
lost cooling loads, is defined as � = (2ε − εmax)W [23]. The
target function �̇ = (2ε − εmax) W

τcycle
can be expressed as

�̇ = [2Qc − εC(Qh − Qc)]xaxbxcxh/

(xaxbxc + xaxbxh + xbxcxh + xaxcxh), (28)

where we have made the variable transformation xκ = 1/τκ

(κ = h,c,a,b). Setting the derivatives of �̇ with respect to xκ

(κ = h,c,a,b) equal to zero, we derive the optimal equations

[2Qc − εC(Qh − Qc)]
xbxcxh

xa

= ThL
′
aεC(xaxbxc + xaxbxh + xbxcxh + xaxcxh), (29)

[2Qc − εC(Qh − Qc)]
xaxcxh

xb

= ThL
′
bεC(xaxbxc + xaxbxh + xbxcxh + xaxcxh), (30)

[2Qc − εC(Qh − Qc)]
xaxbxc

xh

= ThL
′
hεC(xaxbxc + xaxbxh + xbxcxh + xaxcxh), (31)

[2Qc − εC(Qh − Qc)]
xaxbxh

xc

= TcL
′
c(2 + εC)(xaxbxc + xaxbxh + xbxcxh + xaxcxh).

(32)

Dividing Eq. (32) by Eqs. (29), (30), and (31), respectively,
we have

xc

xa

=
√

L′
a(1 + εC)

L′
c(2 + εC)

, (33)

xc

xb

=
√

L′
b(1 + εC)

L′
c(2 + εC)

, (34)

xc

xh

=
√

L′
h(1 + εC)

L′
c(2 + εC)

. (35)

It follows, by substitution of τκ = 1/xκ (κ = h,c,a,b) into
Eqs. (33), (34), and (35), that the optimal ratios of the time
τκ/τh(κ = a,b) as well as τb/τa are still given by Eq. (19),
but that under the � criterion the time ratio τκ/τc(κ = h,a,b)
becomes

τκ

τc

=
√

L′
κ (1 + εC)

L′
c(2 + εC)

(κ = a,b,h). (36)

Directly adding both sides of Eqs. (29), (30), (31), and (32),
we obtain

2Qc − εC(Qh − Qc)

= Th(L′
axa + L′

bxb + L′
hxh)εC + TcL

′
cxc(2 + εC). (37)

Substitution of Eqs. (6) and (7) into Eq. (37) leads to

�S = (2 + εC)(Lc + L′
cxc)

+ (1 + εC)(La + Lb + Lh + L′
axa + L′

bxb + L′
hxh).

(38)
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It follows, after substituting Eq. (38) into Eq. (10), that the COP for the maximum �̇ condition is

ε∗
� = (2 + εC)L′

cxc + (1 + εC)(La + Lb + Lh + L′
axa + L′

bxb + L′
hxh + Lc)

(2 + εC)L′
cxc + 2(1 + εC)(La + Lb + Lh + Lc) + (1 + εC)(L′

axa + L′
bxb + L′

hxh)
εC. (39)

Assuming that the irreversible entropy production for an
isothermal or an adiabatic step is inversely proportional to the
time for completing that process, i.e., L′

κ = 
κ (κ = a,b,c,h),
Eq. (39) becomes

ε∗
� = 3 + 2εC + 2γ

4 + 3εC + 3γ
εC, (40)

where γ = √
(1 + εC)(2 + εC)
a/
c +√

(1 + εC)(2 + εC)
b/
c + √
(1 + εC)(2 + εC)
h/
c,

which simplifies to γ = √
(1 + εC)(2 + εC)
h/
c in the

ideal adiabatic refrigeration cycle, with use of Eqs. (33), (34),
and (35). The value of γ is a non-negative number, varying
from 0 to ∞. Hence, the COP at the maximum �̇ figure of
merit, ε∗

�, must be situated in the range

ε−
� ≡ 2

3
εC � ε∗

� � 3 + 2εC

4 + 3εC

εC ≡ ε+
�. (41)

The upper and lower bounds for the optimized COP at the
maximum �̇ figure of merit, ε−

� and ε+
� , versus the Carnot

COP εC , are plotted in Fig. 2(b).
As in the case of the χ figure of merit, the expression

for the COP at the maximum �̇ condition is similar to the
corresponding one obtained in the model [19] with idealized
adiabatic processes, and the internally nonadiabatic dissipation
has no influence on the bounds of the COP. Here the optimal
value of the COP, however, represents a broader context by
including the nonadiabatic dissipation and the time required
for completing any adiabat.

If the dissipations of the two adiabatic and two isothermal
processes are respectively symmetric, i.e., 
a = 
b = r
c =
r
h, then γ = (2

√
r + 1)

√
(1 + εC)(2 + εC), and Eq. (39)

becomes

ε∗
�(r) = 3 + 2εC + (4

√
r + 2)

√
(1 + εC)(2 + εC)

4 + 3εC + (6
√

r + 3)
√

(1 + εC)(2 + εC)
εC.

(42)

From Eq. (42), we find in such a case that the bounds of the
COP for the maximum �̇ figure of merit are achieved, 2

3εC �
ε∗
�(r) � 3+2εC+2

√
(1+εC )(2+εC )

4+3εC+3
√

(1+εC )(2+εC )
εC , when r → ∞ and r → 0,

respectively. In the particular case when the dissipations of
the four thermodynamic processes are symmetric, the COP
can be obtained by the use of r = 1,

εS
� ≡ ε∗

�(r = 1) = 3 + 2εC + 6
√

(1 + εC)(2 + εC)

4 + 3εC + 9
√

(1 + εC)(2 + εC)
εC.

(43)

Then the optimal time ratio of τκ/τc(κ = h,a,b) in Eq.
(36) simplifies to τκ/τc = √

Tc/(2Th − Tc)(κ = h,a,b) in this
superasymmetric case, while the optimized times spent on
the other three processes are equal (τa = τb = τh). At the
supersymmetric limit, the time ratios of τκ/τν with κ = h,a,b

and ν = h,c as functions of the Carnot COP εC , under the �

and χ criteria, are plotted in Fig. 3 by using Eqs. (19), (20), and
(36). Figure 3 shows that, whether under the χ or � criterion,
the time taken for the cold isothermal process is larger than the
ones for the other three processes, on which the times spent
are equal to each other. This result is in contrast to the fact
that, for an irreversible heat engine [29], the hot isothermal
process proceeds most slowly during a cycle, with equal times
required for completing the cold isothermal and two adiabatic
processes. This is not surprising, since the heat is transported
into the system during the cold (hot) isothermal process for the
refrigerator (heat engine), and the additional heat developed by
the nonadiabatic dissipation is related to the high temperature
Th (low temperature Tc) for the refrigerator (heat engine).

If an adiabatic process is ideal and thus isentropic (La =
Lb = 0), for low-dissipation refrigerators with L′

c = 
c and
L′

h = 
h, the symmetric limit (
c = 
h) gives rise to the
following form of Eq. (39):

ε

c=
h

� ≡ ε∗
�(
a = 
b = 0,
h = 
c)

= 3 + 2εC + 2
√

(1 + εC)(2 + εC)

4 + 3εC + 3
√

(1 + εC)(2 + εC)
εC, (44)

which can be simplified as

ε

c=
h

� = εC√
(1 + εC)(2 + εC) − εC

. (45)

In deriving Eq. (44), we have used Eq. (35). When the
nonadiabatic dissipation is negligible and the low dissipations
for the two isothermal processes are symmetric, the COP at
maximum �̇ as given in Eq. (45) is identical to the COP for

FIG. 3. (Color online) The ratios of τκ/τν (κ = h,a,b, and ν =
h,c) within the maximum χ as well as the �̇ figure of merit versus the
Carnot COP εC at the supersymmetric limit. Here the optimal values
of τκ/τc (κ = h,a,b) under the χ and � criteria, are indicated by a
black dash-dotted line and a blue solid line, respectively. The values
of τκ/τh (κ = a,b) are equal to 1 under both χ and � criteria, and
are represented by a red dashed line.

062115-6



COEFFICIENT OF PERFORMANCE FOR A LOW- . . . PHYSICAL REVIEW E 88, 062115 (2013)

FIG. 4. (Color online) Comparison between theoretical results
(lines) and three sets of experimental results (points). Here ε�, εC/2,
ε+

χ , εCA, and εS
χ are indicated by a blue dashed line, a cyan dot-

dot-dashed line, a green dotted line, a black solid line, and a red
dot-dashed line, respectively. The values in the four cases of ε∗

�, ε+
� ,

ε

h=
c

� , εS
�, and ε−

� , are indistinguishable and collapse into a single
curve on this plotted scale and thus all of these values are denoted
by ε�.

Carnot-like refrigerators with the same optimization criterion
but within the finite-time thermodynamics context and under
the endoreversible assumption [23]. At the symmetric limits
(either with or without nonadiabatic dissipation) for the
optimal COPs, εS

� determined according to Eq. (43) and ε

c=
h

�

given by Eq. (45), are also shown in Fig. 2(b). It is clear from
Fig. 2(b) that the nonadiabatic dissipation leads to a very slight
decrease in the COP.

The irreversible entropy production for the instantaneous
adiabatic process in which τa = 1/xa → 0 and τb = 1/xb →
0 may be assumed to be constant and independent of time,
while low dissipation is adopted to describe the irreversible
isothermal process, because of the fact pointed out in Sec. III A.
That is, La = 
a and Lb = 
b, while Lc = 
cxc and Lh =

hxh, with 
κ (κ = a,b,c,h) being constants independent of
time. Substituting these relations into Eq. (39), we find that
the value of εC/2 as the lower bound of ε∗

� is achieved when

a → ∞ or 
b → ∞. Thus the values of ε∗

� are situated in the
range εC/2 � ε∗

� � ε+
� , where the upper bound �+, defined

by Eq. (41), can be achieved for the two isentropic adiabatic
processes (
a = 
b = 0).

Note that even the lower bound of COP under the � criterion
is finite and considerably larger than the upper bound obtained
under the χ optimization criterion, as shown in Fig. 4. It is
therefore indicated that, in comparison with the χ criterion,
the objective function �̇ can be adopted as one guide to design
more efficient refrigerators.

C. Comparison between our prediction and experimental data

It would be instructive to compare our theoretical predic-
tions with the observed COPs of some real refrigerators. Our
theoretical prediction versus the data for real refrigerators
[37] at different values of temperature are plotted in Fig. 4,

which shows that the theoretical results agree well with the
experimental refrigerator data, whether at maximum χ or
maximum �̇ figure of merit. In the case when the low-
dissipation assumption is valid for the isothermal as well as the
adiabatic processes, applying the � criterion to optimization
of the refrigerator cycle, we find that there are relatively
small differences even between the lower and upper bounds
(ε+

� and ε−
�) of the COP for the refrigerator cycle. If the

entropy production in the adiabatic process is assumed to be
constant and independent of time, while the low-dissipation
assumption is valid for the two isothermal processes, the
bounds of ε∗

� are given by εC/2 � ε∗
� � ε+

� . The values of
ε∗
�, ε+

�,ε

h=
c

� , εS
�, and ε−

� are indistinguishable in the plotted
scale of Fig. 4, where we use ε� to represent these values.
These values, together with the value of εC/2, are in good
agreement with experimental data, particularly for some values
of εC . Under the maximum χ condition, our calculation of the
COP in the symmetric limit, εS

χ , matches more closely with
the experimental data than the corresponding ones obtained
in the previous model with idealized adiabatic processes,
εCA = ε
h=
c

χ , as expected. Hence, our result suggests that
internally nonadiabatic dissipation indeed induces effects on
the performance of heat devices and thus cannot be considered
negligible in comparisons with the experimental data.

IV. CONCLUSION

In conclusion, we have analyzed the COP with the χ and
�̇ figures of merit for an irreversible Carnot-like refrigerator
with nonadiabatic dissipation, assuming that the irreversible
entropy production during the isothermal process is inversely
proportional to the time required for completing this process. In
the case when the low-dissipation condition holds well not only
in the isothermal but also in the adiabatic processes, we have
found the following. (i) The limits of extremely asymmetric
dissipation lead to the fact that the COP, either under the χ

or under the � criterion, converges to the same bounds as
the corresponding ones obtained from previous models with
idealized adiabatic processes. (ii) When the dissipations in the
two isothermal and two adiabatic processes are respectively
symmetric, comparison between our theoretical predictions of
the COP with the maximum χ figure of merit and the observed
COPs of real refrigerators shows that our values match the
experimental results more closely than the ones derived in
previous models with no inclusion of nonadiabatic dissipation.
If the nonadiabatic dissipation for the instantaneous adiabatic
process is describe as a constant independent of time, we have
shownthe following. (1) The bounds of the COP under the χ

criterion are the same as those obtained in the case when the
nonadiabatic dissipation is depicted using the low-dissipation
assumption. (2) In the strong limit of nonadiabatic dissipation,
the lower bound of the COP with the maximum �̇ figure of
merit becomes equal to εC/2, while its upper bound is reduced
to that for the previous model without nonadiabatic dissipation.
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APPENDIX: DERIVATION OF EQUATION (22)

Using Eq. (8), we can rewrite Eq. (21) as

(Qh − Qc)(La + Lb + Lh + Lc)

Qh/Th − Qc/Tc

= 2QhTcL
′
cxc − TcL

′
cxcQc + QcTh(L′

axa + L′
bxb + L′

hxh)

Qc

(A1)

or

ThTc(Qh − Qc)(La + Lb + Lh + Lc)

QhTc − QcTh

= 2QhTcL
′
cxc − TcL

′
cxcQc + QcTh(L′

axa + L′
bxb + L′

hxh)

Qc

. (A2)

Equation (A2), together with ε∗
χ = Qc

Qh−Qc
and εC = Tc

Th−Tc
, can be used to derive Eq. (A3):

1

ε∗
χ

− 1

εC

= Th(La + Lb + Lc + Lh)(Qh − Qc)

2QhTcL′
cxc − TcL′

cxcQc + QcTh(L′
axa + L′

bxb + L′
hxh)

= 1
2TcL′

cxc(Qh−QC )+ThL′
cxcQc+QcTh(L′

axa+L′
bxb+L′

hxh)−L′
cxcQc(Th−Tc)

Th(La+Lb+Lc+Lh)(Qh−Qc)

= 1
2Tc(Th−Tc)
Th(Th−Tc)

L′
cxc

(La+Lb+Lh+Lc) + ThQc(L′
axa+L′

bxb+L′
hxh+L′

cxc)−QcL′
cxc(Th−Tc)

Th(La+Lb+Lh+Lc)(Qh−Qc)

. (A3)

After some simple reshuffling, Eq. (A3) can be expressed in the form

1

ε∗
χ

− 1

εC

= 1[ 2Tc(Th−Tc)
Th(Th−Tc) − Qc(Th−Tc)

Th(Qh−Qc)

] L′
cxc

(La+Lb+Lh+Lc) + ε∗
χ

L′
axa+Lbx

′
b+L′

cxc+L′
hxh

(La+Lb+Lh+Lc)

= 1

ε∗
χ

L′
axa+Lbx

′
b+L′

cxc+L′
hxh

(La+Lb+Lh+Lc) + 2εC−ε∗
χ

1+εC

L′
cxc

(La+Lb+Lh+Lc)

. (A4)
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