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Conciliating synchronicity with spatial discretization, exclusion, interactions, and detailed balance
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The construction of a discrete stochastic system of interacting particles that evolves through a fully synchronous
evolution rule while satisfying detailed balance is a highly demanding task. As a consequence, the presence of
nontrivial interaction fields can make synchronicity and thermodynamic equilibrium look as two conflicting
counterparts. We show that, with the proper prescriptions, the process of migration of particles in a lattice of
mutually exclusive nodes can be simulated with a fully synchronous algorithm, which we call parallel Kawasaki
dynamics (PKD), that incorporates site exclusion, local interactions, and detailed balance without the need
of system partitioning schemes. We show that the underlying pseudo-Hamiltonian (which is derived from the
PKD dynamics instead of being assumed a priori as usual in a sequential Monte Carlo scheme) is temperature
dependent and causes the resulting equilibrium properties to differ substantially from the conventional hopping
model when the system is near critical conditions.
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With their multifarious applications and simple imple-
mentation, lattice gases represent a branch of computational
modeling where a physical system, parametrized in a state
space of highly reduced complexity (at least in comparison
with off-lattice molecular systems) and equipped with op-
portune evolutionary laws, can return an approximate but
indeed reasonable meso- or macroscale representation of a
great variety of chemical and physical phenomena [1–8].
Remarkable attention is still devoted to the Ising model [9] and
all the variations on it. Among them, the (sequential) Kawasaki
dynamics, where spin exchanges replace the Ising spin flips
to mimic the displacement of a particle from a lattice node
to another [10], is one of the most widely known. However,
a synchronous formulation satisfying detailed balance (DB)
does exist for the Ising model [11], but it does not for the
Kawasaki dynamics. This is because, whereas imposing DB in
a sequential Monte Carlo (MC) lattice gas is a relatively simple
matter, even in the presence of highly nontrivial interaction
fields [12–14], it might turn out to be much more tricky
for a synchronous evolution mechanism. The most evident
symptom of the conflict among full synchronicity, mutual
exclusion, interactions, and thermodynamic equilibrium is
that, at least to our knowledge, up to now there is no lattice
model that can be considered as the parallel counterpart of
the Kawasaki dynamics, i.e., there is no particle-conserving
cellular automata (CA) rule satisfying all these requirements
at the same time. Even if we do not consider explicit particle-
particle interaction fields, very few fully synchronous discrete
systems exist which satisfy DB or at least the semi-DB
property—in these models the mutual exclusion, if present
[15], is the only form of interaction and it holds on the
channels that connect neighboring nodes rather than on the
nodes themselves, causing the node occupation state to range
between zero and the number of channels per node and
therefore not to satisfy a total exclusion principle [16,17].
On the other hand, partitioning strategies exist that allow
restraints and conservation laws to be implemented just
like in sequential MC algorithms [18,19] and are perfectly
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suitable in many physical problems. Nevertheless, although
near critical conditions the lack of DB does not prevent
certain classes of nonequilibrium CA rules from possessing
an underlying Hamiltonian at large scales [20], and although
the nonequilibrium nature of a model does not prevent it from
properly reproducing real physical phenomena, nor from being
amenable to thorough analysis and classification [21], the
formulation of a proper synchronous evolution rule for the
Kawasaki dynamics satisfying DB at the microscopic level
and obeying some known lattice Hamiltonian (or pseudo-
Hamiltonian) without space decomposition nor demons [22]
is still of remarkable interest.

Starting from a recently proposed equilibrium CA of mutu-
ally exclusive nodes [23] we introduce a fully synchronous
interacting model for the Kawasaki dynamics of particles
traveling in a lattice under the DB restraint. Our model, which
we call parallel Kawasaki dynamics (PKD), is synchronous
in its very nature rather than being a parallelization scheme
for the sequential Kawasaki dynamics (SKD). In this work we
derive the underlying pseudo-Hamiltonian and show how the
equilibrium properties it produces differ from those obtained
in SKD.

Let us consider a system made of a lattice L of L nodes
arbitrarily arranged (each denoted by r) and N indistinguish-
able particles (each occupying one of the lattice nodes). An
exclusion principle holds on the nodes so every node occu-
pancy, denoted n(r), can have value 0 or 1, respectively, if the
node is empty or occupied by one particle. As a consequence,
the lattice density, ρ = N/L, satisfies 0 � ρ � 1. We indicate
as η = ∪rn(r) any of the possible occupancy configurations
[satisfying

∑
r n(r) = N ]. The system evolves in discrete time

steps t = 0,τ,2τ, . . . of arbitrary duration τ . During each
step, every node, say, r , can either retain or try to release
its guest particle to one of the νr nodes connected to it if it is
occupied, otherwise it can remain empty or receive a particle
from one of the connected νr nodes. If we define the quantity
νm = supr∈L νr as the highest node connectivity in the lattice,
the neighborhood of r , indicated as Ir , then can be defined
as Ir := {r ′ ∈ L|p(r → r ′) > 0 ∧ r �= r ′}, where p(r → r ′)
is the probability of a lone particle to jump into node r ′ given
that it is currently located at node r . In analogy with Ref. [23],
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we have p(r → r ′) = exp{βn(r)[ε(r) − ψ(r,r ′)]}/νm (with
r �= r ′), where β = (kBT )−1, where kB is the Boltzmann
constant and T is the temperature, ε(r) � 0 is the adsorption
energy at the node r , and the term ψ(r,r ′) = ψ(r ′,r) � 0 is the
energy barrier between the nodes r and r ′. The probability of
the host node itself to be chosen as the destination node reads,
consequently, p(r → r) = 1 − ∑

r ′∈Ir
p(r → r ′). In order to

coexist with synchronicity, we require the jump probability at
each time step to depend only on the current configuration.
This implies that we need to discard any conventional Monte
Carlo scheme based on trial moves and acceptance-rejection
criteria. Furthermore, mutual interactions among occupied
nodes must be defined accordingly. Our choice is that the
configuration in the neighborhood of an occupied node
changes its probability of releasing its guest particle from
p(r → r ′) into p̃(r → r ′|ηr ), called pointing probability and
defined as the probability of a particle in r to attempt a jump
into r ′ (or, in order to introduce a terminology that we will use
throughout the rest of the paper, to point towards r ′), given
that the current local configuration is ηr ,

p̃(r → r ′|ηr ) = p(r → r ′)
Z(r,ηr )

[n(r ′) + n(r ′)φ(r,r ′)], (1)

where ηr = ∪r ′∈Ir
n(r ′) is the configuration of the occupancies

in the neighborhood of node r , n(·) is a shorthand notation
for 1 − n(·) and φ(r,r ′), satisfying φ(r,r) = 1 and φ(r,r ′) =
φ(r ′,r) � 0, is a dimensionless interaction parameter that
modifies the tendency of the particle in r to point towards
the node r ′ if that node is occupied. If it is, a repulsive,
noninteracting, or attractive effect is produced respectively
through 0 � φ(r,r ′) < 1, φ(r,r ′) = 1, and φ(r,r ′) > 1 [e.g.,
φ could be formulated as exp(−βεφ), where εφ ∈ R is an
interaction energy]. In Eq. (1), p̃ is normalized by

Z(r,ηr ) =
∑
r ′∈I0

r

p(r → r ′)[n(r ′) + n(r ′)φ(r,r ′)], (2)

where I0
r := r ∪ Ir is the extended neighborhood of node r

(i.e., the neighborhood Ir plus the node r itself). Z(r,ηr ) turns
out to be a key quantity since its negative logarithm represents
the interacting part of the lattice Hamiltonian on the node r

when the configuration is η.
Given this apparatus, we implement a synchronous evo-

lution rule allowing particle migration while preventing any
conflicts to arise by means of the following three prescriptions
[23]: (i) Empty sites can be pointed to and reached by a particle
in a neighboring site, whereas occupied sites can be pointed
to but cannot be reached; (ii) if two or more particles point to
the same site, no one of them will be allowed to reach it; and
(iii) if one or more particles are pointing to a site occupied by
another particle, that particle must stay at rest.

At each time step, say t , at every occupied node (inde-
pendently of the other nodes), say r , whose neighborhood
occupancies are configured as ηr , we select a target node
by associating to the site r itself and to each neighbor
r ′ ∈ Ir the random Boolean ξ t (r → r ′), having value 1 with
probability p̃(r → r ′|ηr ) and 0 otherwise. The matrix ξ t is
called the matrix of directions at time t . Obviously we impose∑

r ′∈I0
r
ξ t (r → r ′) = 1, so every particle can choose only one

target node at a time. Once ξ t is determined, we move the

particles according to a discrete evolution equation of the form

ηt+τ = ω̂ξ t ◦ ηt , (3)

where t is the time and ω̂ξ t is an evolution operator that
transforms the input configuration, ηt , into the output con-
figuration, ηt+τ , according to the matrix of directions ξ t and
the prescriptions (i)–(iii). A detailed mathematical formulation
of prescriptions (i)–(iii) can be found in our previous work
[24]. However, although the evolution rule is the same as
in Ref. [24], since the probability distribution governing the
matrix of directions of the PKD, Eqs. (1) and (2), differs
markedly and is much more general than the noninteracting
counterpart, the PKD model shown in this work turns out to
be able to behave very differently from the model studied in
our seminal paper.

The most important aspect of PKD is that the pointing
probability p̃(r → r ′|ηr ), Eq. (1), and the evolution rule,
Eq. (3), couple perfectly in a CA dynamics that satisfies the
DB requirement, i.e., [P (ηi)/P (ηo)][�(ηi → ηo)/�(ηo →
ηi)] = 1, where P (η) is the equilibrium probability of the
system to be configured as η, and �(ηi → ηo) is the transition
probability from ηi (input) to ηo (output), given by

�(ηi → ηo) =
∑

ξ

δ[ηo − ω̂ξ ◦ ηi]

×
∏
r∈L

∑
r ′∈I0

r

ξ (r → r ′)p̃
(
r → r ′|ηi

r

)
, (4)

where δ[·] is the Krœnecker δ function, taking the value 1 if
ω̂ξ ◦ ηi = ηo and zero otherwise. Once one becomes familiar
with the PKD evolution criteria, realizing that DB holds is
straightforward. Here we discuss the DB relation in PKD and
we derive the equilibrium distribution by using very intuitive
arguments. The reader interested in a more in-depth study
of this subject can find it in the Supplemental Material [25].
Together with prescriptions (i)–(iii), which solve any kind of
competition in the collective migration process, the fact that
every particle interacts only with the nodes it can point to [this
can be seen from Eq. (1)] allows us to factorize the right-
hand side of Eq. (4) into two contributions, respectively, from
the moving and from the resting particles, i.e., �(ηi → ηo) =
�mov(ηi → ηo)�rest(ηi → ηo). By realizing that (1) every time
a particle jumps from r to r ′ it is necessarily verified that the
pointed node (r ′) was free before the jump and that no other
particles were pointing to it nor to r and that (2) all the possible
combinations of particle directions that cause one or many of
them to stay at rest during the forward transformation ηi → ηo

also cause them to rest during the backward process ηo → ηi

and vice versa, we can write

�α(ηi → ηo)

�α(ηo → ηi)
=

∏
r∈L

[
eβε(r)

Z
(
r,ηi

r

)]�io
α (r)[

eβε(r)

Z
(
r,ηo

r

)]−�oi
α (r)

(5)

with α = mov,rest and �io
mov(r) = ni(r)no(r), �oi

mov(r) =
no(r)ni(r), and �io

rest(r) = �oi
rest(r) = ni(r)no(r). If we use

Eq. (5) to compute the transition probability ratio �(ηi → ηo)/
�(ηo → ηi) and we put that ratio in the detailed bal-
ance relation, we find that the equilibrium distribution of
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configurations is given by

P (η) ∝
∏
r∈L

[e−βε(r)Z(r,ηr )]n(r). (6)

As it happens in the case of full synchronization of the Ising
model [26], the distribution function P (η) of the PKD is
non-Gibbsian and is characterized by a pseudo-Hamiltonian
which, if we formally cast the right-hand side of the relation (6)
into the form e−βHβ (η), can be written as Hβ(η) = H(0)(η) +
Hpp

β (η), whereH(0)(η) = ∑
r n(r)ε(r) is the interaction energy

of the guest particles with the host lattice and the particle-
particle interactions (besides mutual exclusion) are defined as

Hpp
β (η) = −

∑
r∈L

n(r)

β
ln

{
1 − 1

νm

∑
r ′∈Ir

n(r ′)

× eβ[ε(r)−ψ(r,r ′)][1 − φ(r,r ′)]
}
. (7)

The first peculiarity we notice in Eq. (7) is that the temperature
dependence of Hpp

β cannot be eliminated. Analogously to the
pseudo-Hamiltonian of Little’s model, this causes conven-
tional thermodynamic relations involving partial derivatives
with respect to the temperature to be no longer applicable [27].
Second, since the interaction between a particle in r and a
particle in the neighbor site r ′ depends on the configuration
of both the neighborhoods of r and r ′, the nature of PKD
interactions is multibody rather than pairwise. The equilibrium
properties arising from performing a PKD algorithm over a
lattice do not differ qualitatively from the ones shown by
a lattice obeying standard Kawasaki dynamics, except for
the critical behavior in the case of repulsive interactions.
For simplicity, let us assume L to be one-dimensional with
periodic boundary conditions (ν = νm = 2), φ and ε to be
space independent, and ψ = 0 everywhere in the system. Since
the pseudo-Hamiltonian, Eq. (7), in this case reads Hβ(r) =
n(r){ε − β−1 ln[1 − 1

2eβε(1 − φ)Nr ]}, where Nr is the number
of occupied first neighbors of site r , we achieve the situation of
strongest repulsion for φ = 0 and ε = 0 that causesHβ (r) to go
to +∞ when the number of occupied neighbors of r is Nr = 2.
This means that the two allowed saturation configurations
show pairs of neighboring occupied nodes separated by one
empty node, i.e., · · · ��������� · · · , giving a criti-
cal occupancy of Nm = 2Q{L

3 } + Q{[L − 3Q{L
3 }]/2}, where

Q{A/B} denotes the quotient between the two integers A and
B. Therefore, for φ = 0 and ε = 0 a critical loading ρc :=
limL→∞ Nm

L
= 2

3 exists at which an infinite chemical potential
is required to add a new particle in the system. This behavior
is a consequence of the form that the grand partition function,
� = ∑

N λNQN (where QN is the canonical Partition func-
tion, λ = eβμ, and μ is the chemical potential), assumes near
critical conditions. One can easily show that, starting from the
expression for Hβ(r) for the one-dimensional lattice,

lim
ε→0−

� =
∑
N

λNφ1−�(Nm−N)
∑

k

ck,Nφk,

where �(q) is the discrete Heaviside step function (taking
the value 0 if q < 0 and 1 otherwise) and the ck,N > 0
for N = 0, . . . ,L ∨ k = 0, . . . ,N and ck,N = 0 otherwise.
This is due to the fact that, when N > Nm, every possible
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FIG. 1. Adsorption isotherms (chemical potential, μ, in units of
kJ mol−1, vs site density, ρ, dimensionless) for the one-dimensional
PKD lattice with φ = 0 for several values of adsorption energy ε. The
temperature is fixed at 300 K. The size of the systems is L = 8192
for d = 1 and L = 1282 for d = 2. For each point in the figure,
simulation data were obtained by up to 20 simulations, each one
made of 107 steps (after equilibration). Error bars are smaller than
the size of the points.

configuration contains at least one local arrangement in which
the two first-neighboring sites around a particle are both
occupied. For such a situation the contribution from site r , i.e.,
e−βHβ (r), reads eβε[1 − eβε(1 − φ)], which becomes φ in the
limit ε → 0−. For 0 � φ � 1, the weight of the configurations
with N > Nm decreases until it becomes null when φ = 0. On
the other hand, as ε becomes slightly less than zero (as well
as for φ slightly greater than zero), Hβ and μ turn out to be
always finite, causing the isotherm to show a finite step around
ρc. Once the value of chemical potential at the top of the step is
reached, the system has enough energy to host more particles
until there is complete saturation of the lattice. The effect on the
chemical potential step caused by the departure of ε from zero
to more negative values is shown in Fig. 1(a), where isotherms
for a one-dimensional lattice are obtained from simulations in
the canonical ensemble using the sublattice method [24] in all
cases except ε < 103 ∧ ρ > ρc, where the grand-canonical
ensemble was adopted instead (with sequential insertion or
deletion but parallel displacement moves) due to the drastic
dynamical slowdown which causes the sublattice method to
be less accurate. As we can see, the more ε departs from zero,
the more the μ step decreases until it disappears completely.
The effect of increasingly positive φ is qualitatively the same.
Analogous behavior is shown for a square lattice (ν = 4),
Fig. 1(b), but with the slightly higher critical loading of
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ρc ∼ 0.78, due to the fact that in critical conditions the
saturation configurations are those in which every particle is
surrounded by one empty neighbor and three occupied ones.

We remark on some major differences with respect to
the SKD with infinite lateral repulsion. First, in SKD the
critical loading in the one-dimensional system is ρ

seq
c = 1/2,

corresponding to the two configurations where filled and empty
sites are alternating in the one-dimensional lattice, because the
interaction energy is infinite for a particle having one as well
as two occupied neighboring sites [28]. Second, in SKD an
infinitely large lateral repulsion causes μ → ∞ for ρ → ρ

seq
c

for ε = 0 as well as for ε < 0.
In conclusion, although the resulting non-Gibbsian charac-

ter of the equilibrium distribution of configurations (whose
critical behavior differs substantially from the sequential

Kawasaki counterpart) seems to limit its applicability to
isothermal systems far from critical conditions, the PKD
evolution rule represents a further, meaningful step toward
the formulation of general parallel evolution algorithms
where full synchronicity does not conflict with strict detailed
balance.
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[1] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys.
17, 10 (1975).

[2] H. C. Kang and W. H. Weinberg, J. Chem. Phys. 90, 2824
(1989).

[3] Y. He and R. B. Pandey, Phys. Rev. Lett. 71, 565
(1993).

[4] J. J. Alonso, J. Marro, and J. M. Gonzaléz-Miranda, Phys. Rev.
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