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Kinetics of deposition of oriented superdisks
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We use numerical Monte Carlo simulation to study the kinetics of the deposition of oriented superdisks,
bounded by the Lame curves of the form |x|2p + |y|2p = 1 on a regular planar substrate. Recently, it was shown
that the maximum packing density as well as jamming density ρJ exhibit a discontinuous derivative at p = 0.5
when the shape changes from convex to concave form. By careful examination of the late-stage approach to the
jamming limit, we find that the leading term in the temporal development is also nonanalytic at p = 0.5 and offer
heuristic excluded-area arguments for this behavior.
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Deposition, or adsorption, of extended objects at differ-
ent surfaces is of considerable interest for a wide range
of applications in biology, nanotechnology, device physics,
physical chemistry, and materials science [1,2]. Typically,
such objects range in size from submicrometer scale down
to nanometer scale, and, depending on the application in
question, the objects could be polymers, globular proteins,
nanotubes, DNA segments, or general geometrical shapes,
such as disks, polygons, etc. Early studies have focused on
the deposition of simple regular shapes (lines and needles)
on spatially homogeneous regular substrates [3], and the main
issue was the effect of shape, size, orientation, and symmetry of
the depositing objects on the late-stage kinetics of this process.

A typical physical situation is that the particles (objects)
are randomly deposited on the target surface with uniform
flux and that there are no equilibrium processes active at the
surface. Because of this, the final density of the deposited
objects, after which no additional deposition is possible, is
less than the maximum packing density. This final, or jamming
density ρJ , has recently been studied [4] for objects of different
geometrical shapes and symmetries, and it was shown that
ρJ exhibits singularity when the shape changes from convex
to concave. In a separate study of the densest packing of
nonoverlapping objects [5], the maximal packing density is
found to be nonanalytic at the point when objects become
noncircular. Additionally, it was found that the change in
shape away from rotational symmetry influences packing
characteristics in a nontrivial way.

Theoretically, several models have been developed to
capture the basic physics of deposition, and by far, the most
studied is that of random sequential adsorption (RSA) [3]. In
this model, particles (objects) are sequentially deposited on the
randomly chosen site on the substrate. When deposited, such
objects are irreversibly and permanently attached to that site.
If the randomly chosen site for deposition is already occupied
or the objects overlap due to their size or shape, the deposition
is rejected, the particle is discarded, and the deposition is
next attempted at a different randomly chosen site. Note that,
in this process, object-object and object-substrate interactions
are modeled solely by geometrical and other features included
in the deposition procedure [6–16].

Two main properties are of particular experimental and
theoretical interest in this process: (i) the final jamming density

of objects and (ii) the leading temporal approach to the
jammed state. This second property prominently features in
an experimental situation where it is important to understand
the process of approaching various specific morphological
properties as the deposit is formed, for example, avoiding
contact. Examples include depositions on prepatterned sur-
faces [17–19], nanoparticle sintering [20], or in inkjet printing
technology [21] where the evolution of surface morphology
plays a major role. Although the properties of the final
jammed state as a function of geometry and size of the
depositing objects are reasonably well understood [4], the
kinetic properties of the approach to this state have not been
studied extensively (see, for instance, concluding remarks in
Ref. [13]). It is the purpose of the present paper to address this
question.

In this paper, we consider the kinetics of the deposition of
oriented “superdisks” on homogeneous planar substrates. Such
shapes in two dimensions are defined by the expression |x|2p +
|y|2p � 1, where p is deformation parameter with values p ∈
(0,∞). As p varies, the shape changes from “cross” (p = 0),
to square (p = 0.5), to circle (p = 1), to “diamond” (p = ∞)
as illustrated in Fig. 1.

Note that, for p < 0.5, the depositing object is concave, of
general asteroid shape, and then becomes convex for p > 0.5.
Clearly, p = 0.5 is the special point in this respect (see below).
Also, when p = 1, the shape is a circle. For all p > 1, we
get the family of objects with quadratic symmetry, whereas,
for p < 1, the resulting family of objects also has quadratic
symmetry but is rotated by π/4 with respect to the first group
[5]. It is clear, generally, that by changing the deformation
parameter p, one can control both the convexity and the
symmetry of the object.

The deposition proceeds via the standard RSA algorithm:
The point on the surface is randomly chosen to place the center
of the object. If the object can “fit” at this point without
overlapping with neighboring deposited objects, it is placed
there. Otherwise, it is discarded, and the next deposition
is attempted at a different randomly chosen point. In our
simulation, we only used oriented objects.

At the very early stages of the deposition, we expect that the
density of the deposited objects will grow linearly with time
since almost any randomly chosen point for the deposition
attempt will be unoccupied. However, as more and more
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FIG. 1. Superdisk shapes for different values of deformation
parameter p. (a) p = 0.35, (b) p = 0.5, (c) p = 0.75, (d) p = 1.0,
(e) p = 1.5, and (f) p = 5.0. Note the change in shape from concave
to convex at p = 0.5.

objects are deposited, it becomes harder to find an available
spot to place an object without overlap, and the density of
deposited objects ρ(t) grows much more slowly, until it reaches
jamming density ρJ after which no more objects can be placed
on the substrate. This final jammed-state configuration is not
unique, and objects do not cover the substrate with maximum
packing density [3]. Indeed, the jamming density, or the density
of deposited particles per unit area, is simply related to the
jamming coverage or the fraction of the covered area by
the simple relation A(p)ρJ (p), where A(p) is the area of
the superdisk (see below) and we have explicitly indicated p

dependence of the relevant quantities. Of course, the details of
the approach to the jammed state, i.e., the late-stage deposition
kinetics as well as the jamming density itself, will depend
on the shape of the objects. Recall that this shape can be
continually tuned by varying the deformation parameter p. As
mentioned, in a recent study, Gromenko and Privman [4] have
shown that the jamming density ρJ is nonanalytic at p = 0.5,
i.e., when the object’s shape changes from convex to concave.

Turning back to the approach to the jamming density, recall
that, in RSA, the process is described by the standard Pomeau
[22] and Swendsen [23] conjectures, which give asymptotic
results for oriented simple shapes that are in agreement with
numerical simulations [24]. These conjectures, however, may
not be correct for nonoriented objects [25,26]. In the rest of
this paper, we describe the numerical procedure used and
the results obtained for the deposition kinetics of oriented
superdisks with the deformation parameter in the range of
0 � p � 1.

In our Monte Carlo (MC) procedure, the substrate was of
the size 500D × 500D, where D is the typical “diameter” of
the depositing object [5]. In our simulation, D = 2. Once the
point for the center of the object is selected randomly on this
substrate, we tested if the whole object can fit without overlap
with neighboring objects already deposited. It is not necessary
to check overlapping with all neighbors but only with nearby
points with centers not closer than D from the new point.
Overlap testing is a computationally “expensive” operation,
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FIG. 2. Exclusion regions for concave and convex superdisks
(outer envelopes). The example illustrates cases with (a) p = 0.3
and (b) p = 0.75.

so this approach makes simulation much faster than checking
all previously deposited points for every new candidate point.
We performed two implementations, one in the “C” and one
in the “JAVA” programming languages. It appears that JAVA is
more reliable as a random number generator.

With very simple objects, such as line segments and the
like, this test is straightforward but becomes more involved
in the case of superdisks. Namely, each superdisk of the form
|x|2p + |y|2p � 1 has the area,

A(p) = 4
�2

(
1 + 1

2p

)

�
(
1 + 1

p

) , (1)

where � is the standard � function. No point encompassed by
this area can be shared with any other superdisk (nonoverlap
condition). This means that there is an exclusion region around
the deposited superdisk within which no center of another
superdisk can be placed. For example, when p = 1, the object
is a circle with a unit radius with an area of A(1) = π , and
the corresponding exclusion region is a circle but with a radius
equal to 2 and an area of 4π .

In general, the exclusion region for the convex superdisks
of the form |x|2p + |y|2p � 1 is another superdisk of the
form |x|2p + |y|2p � 22p, and the area of this region is
Acx = 4A(p), where A(p) is given by (1) and the subscript
“cx” indicates that p � 0.5, i.e., the object is convex. Within
this region, no center of another superdisk can be placed.

For concave superdisks, the situation is slightly more
involved. The exclusion region is shown in Fig. 2. Its
boundary consists of the external envelope formed by four
superdisks centered at the corners of the original superdisk
|x|2p + |y|2p � 1.

The exclusion area of this region is calculated easily
and is given by Acc = 4 + 2A(p), where A(p) is given by
Eq. (1) and the subscript “cc” indicates that p � 0.5, i.e.,
the superdisk is concave. Recall that A(0.5) = 2 so that
Acx(p = 0.5) = Acc(p = 0.5), and the exclusion areas are
equal as expected. However, the derivative of the excluded
area has a discontinuity at p = 0.5. This clearly is visible in
Fig. 3. Solid lines mark the parts of Acc and Acx that must be
used to determine the real exclusion region. The dashed lines
are their nonphysical continuations.

This nonanalyticity of the excluded area is the origin of
the observed singularity in both the jammed state [4] and the
maximum packing state [5] of the superdisks at p = 0.5.
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FIG. 3. The area (size) of the exclusion regions is marked by the
solid line.

To investigate the kinetics of RSA deposition of superdisks,
we performed 100 MC runs for each value of 0 � p � 1 with
each run typically of several 109 steps, until the jamming limit
was reached. We plausibly expect [12,27] that the approach of
the coverage density to its value at the jammed state is of the
exponential form

ρ(t,p) = ρJ (p) − Q(p)e−tσ (p), (2)

where Q and σ are parameters to be determined and their
(possible) p dependence is explicitly indicated. The normal-
ized jamming limit shows nonanalytic behavior at p = 0.5
as explained above [4]. The plot of the normalized jamming
limit faithfully reproduces the result previously obtained by
Gromenko and Privman illustrated in Fig. 3 of Ref. [4].

This can also be seen on the plot of the coverage density,
shown below in Fig. 4.

Turning to the time dependence, we plot ln[ρJ − ρ(t)] vs
time for several values of parameter p as shown in Fig. 5.

Inspection of this graph shows: (i) that the parameter σ from
Eq. (2) has no dependence on p, and we get σ = 3.5 × 10−3,
and (ii) that Q(p), the prefactor in front of the exponential
approach in Eq. (2), depends on the deformation parameter p

in a nontrivial way.
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FIG. 4. Coverage density as a function of deformation parameter p.
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FIG. 5. (Color online) Approach to the jamming density with
time for several values of the deformation parameter p. The linear
part can be approximated by the line of the form −σ t + ln[Q(p)].

This is not entirely unexpected as is known [27] that with
the RSA deposition of line segments on the substrate, the
corresponding prefactor is inversely proportional to the length
of the segment. In this simple situation, the exclusion area is
simply the length of the segment. In our case, the connection
is more complicated. The plot of Q(p) vs p is shown in Fig. 6.

This term is clearly nonanalytic at p = 0.5 (square object).
We believe that this reflects nonanalyticity of the exclusion
area for this value of p, which is, itself, a consequence of the
change in convexity of the deposited objects.

In conclusion, we have studied the time dependence of
the deposition of oriented superdisks of various shapes on
homogeneous substrates. Our results indicate that, in addition
to maximum packing density and jamming density, the leading
term in late-stage deposition also shows nonanalytic behavior
when depositing objects change their shapes from convex to
concave. Intuitively, one would expect that the convexity of the
depositing object would become more important in late-stage
deposition kinetics as they pack closer and closer, and the
details of their shapes and the size of the exclusion area begin
to play more prominent roles. The study of this effect for
nonoriented superdisks is currently under way.
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FIG. 6. Plot of the prefactor of the exponential approach to the
jamming limit Eq. (2) shows nontrivial dependence on p and a
singularity at p = 0.5.
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