
PHYSICAL REVIEW E 88, 062111 (2013)

Persistence of Brownian motion in a shear flow
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The persistence of a Brownian particle in a shear flow is investigated. The persistence probability P (t), which
is the probability that the particle does not return to its initial position up to time t , is known to obey a power law
P (t) ∝ t−θ . Since the displacement of a particle along the flow direction due to convection is much larger than
that due to Brownian motion, we define an alternative displacement in which the convection effect is removed.
We derive theoretically the two-time correlation function and the persistence exponent θ of this displacement.
The exponent has different values at short and long times. The theoretical results are compared with experiment
and a good agreement is found.
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I. INTRODUCTION

Persistence probability P (t) has attracted much attention
over the past decade because it plays an important role as a
dynamic probe in many stochastic processes, indicating how
long the system retains a memory of its initial configuration.
This probability is defined as the probability that the stochastic
variable x(t) does not return to the origin up to time t . In
many cases, it decays according to a power law P (t) ∼ t−θ ,
thus defining the nontrivial persistence exponent θ . This
exponent has been studied experimentally and theoretically
for fluctuating interfaces [1–3], critical dynamics [4], granular
media [5,6], disordered environments [7–9], and polymer
dynamics [10].

In recent years, theoretical studies focusing on Brownian
particles in composite media [9], a time-dependent poten-
tial [11], and a shear flow [12] have been undertaken by
Chakraborty et al. because the Brownian motion of a particle
is the simplest stochastic process. In the case of free Brownian
motion, the exact value of the persistence exponent was
found to be θ = 1/2 [13]. Chakraborty showed by theoretical
calculation and simulation that the persistence probability for
a Brownian particle subject to a shear flow decays in the flow
direction as a power law and exhibits two distinct regimes of
decay [12]. For short times, θ = 1/2, which is the same as the
case of free Brownian motion, while for long times, θ = 1/4
as a result of the shear flow effect. These are exact results, but
for most cases it is difficult to obtain an exact value for the
exponent.

For the calculation of persistence exponents, some approx-
imation methods have been developed [14,15]. In general, the
processes under consideration are nonstationary ones, which
can be mapped to Gaussian stationary processes. For example,
in the case of a free Brownian particle, the displacement of
the particle x(t) is not a stationary variable. Therefore, the
two-time correlation function 〈x(t1)x(t2)〉 is not a function of
the difference of two times t2 − t1, but, by defining a different
variable X(t) ≡ x(t)/

√
〈x2(t)〉 and a different time variable

T = ln t , the two-time correlation function 〈X(T1)X(T2)〉 is a
function of |T2 − T1|, that is, the stochastic process X(T ) is
stationary. It is known that the persistence probability for a
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Gaussian stationary process usually decays as ∼ exp(−θT )
for large T = |T2 − T1|, and methods have been devised
to calculate the persistence exponent θ from the two-time
correlation function.

As far as the authors know, the persistence exponents for
the sheared Brownian particle and the free one still need to
be found experimentally. Recently, to obtain the mean-square
displacement (MSD) of a particle in a simple shear flow,
we have performed an experiment using confocal scanning
laser microscopy. In a simple shear flow, the displacement
of a particle in the flow direction includes convection, which
makes a much larger contribution to MSD than the Brownian
motion. Here, we consider a particle in a simple shear flow
along the x axis with the velocity gradient in the z direction.
The x coordinate of the particle at time t can be described
as x(t) = x(0) + z(0)γ̇ t + xB(t), where x(0) and z(0) are the
initial coordinates, γ̇ is the shear rate, and xB(t) indicates
the contribution from the Brownian motion, the MSD of
which is given by 〈xB(t)2〉 = 2Dt[1 + (γ̇ t)2/3] with diffusion
constant D. Note that xB(0) = 0, independent of the initial
coordinates x(0) and z(0). In experiments, we can obtain
〈[x(t) − x(0)]2〉 = [z(0)γ̇ ]2t2 + 〈xB(t)2〉, which includes a
large t2 term, but it is quite difficult to measure z(0) with
sufficient accuracy to calculate 〈[x(t) − x(0) − z(0)γ̇ t]2〉 =
〈xB (t)2〉. In order to overcome this difficulty, we introduced a
variable [16],

x̃(t) ≡ {[x(2t) − x(t)] − [x(t) − x(0)]}/
√

2. (1)

As [x(2t) − x(t)] and [x(t) − x(0)] include equal displace-
ments due to convection during an interval of length t , the
effects of convection are canceled out. It can also be shown
that 〈x̃(t)2〉 = 〈xB(t)2〉.

In the next section, we calculate the two-time correlation
function and persistence exponent of x̃(t), which will be shown
to be different from that of xB(t). The theoretical results are
compared with the experimental ones, which are obtained
without and with a shear flow, in Sec. III. The last section
is devoted to conclusions.

II. CALCULATION OF THE TWO-TIME CORRELATION
FUNCTION AND PERSISTENCE EXPONENT

For the Brownian motion of a particle subjected to a
steady shear flow with shear rate γ̇ , where the flow velocity
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FIG. 1. (Color online) Three-dimensional (3D) plots of theoretically obtained two-time correlation functions of x̃(t) for (a) γ̇ = 0 and
(b) γ̇ = 2 s−1.

and vorticity are in the x and z directions, respectively, the
Langevin equation may be given by

ζ [ẋ(t) − γ̇ (t)z(t)] = Rx(t), (2a)

ζz(t) = Rz(t), (2b)

where ζ = 6πηa, with a being the particle radius and η the
shear viscosity. The random forces Rα(t) satisfy 〈Rα(t)〉 = 0
and 〈Rα(t)Rβ(t ′)〉 = 2ζkBT δαβδ(t − t ′), where kB and T are
the Boltzmann constant and temperature, respectively. The
inertia term has been dropped, as it is negligible for our
experimental conditions. If we define zB(t) = z(t) − z(0),
xB(t) and zB(t) satisfy Eq. (2) with initial conditions of
xB(0) = zB(0) = 0. The two-time correlation function of xB (t)
under such conditions was obtained by Chakraborty [12]:

〈xB(t1)xB(t2)〉 = 2Dt2 + γ̇ 2D

(
t1t

2
2 − t3

2

3

)
for t1 � t2,

(3)

where D = kBT /ζ is the diffusion constant. The two-time
correlation function of x̃(t) defined by Eq. (1) can be calculated
from Eq. (3) as follows. From Eq. (1), we have

〈x̃(t1)x̃(t2)〉 = 1

2
[〈xB(2t1)xB(2t2)〉 − 2〈xB (2t1)xB(t2)〉

− 2〈xB (t1)xB(2t2)〉 + 4〈xB (t1)xB(t2)〉]. (4)

It should be stressed that the two-time correlation function
of x̃(t) consists of that of xB(t), and is independent of the initial
position. Substitution of Eq. (3) into Eq. (4) yields

〈x̃(t1)x̃(t2)〉
= D

{
4t2 + 1

2
γ̇ 2

(
8t1t

2
2 − 10

3
t3
2

)

− 2

[
t1 + 1

2
γ̇ 2

(
2t2

1 t2 − 1

3
t3
1

)]}
(0 � t2 � t1 � 2t2),

(5a)

〈x̃(t1)x̃(t2)〉 = Dγ̇ 2t3
2 (0 < 2t2 < t1). (5b)

The correlation function for t1 < t2 is easily obtained using
symmetry 〈x̃(t1)x̃(t2)〉 = 〈x̃(t2)x̃(t1)〉. From Eqs. (3) and (5)
it can be seen that 〈x̃(t1)x̃(t2)〉 is not identical to 〈x(t1)x(t2)〉
except for t1 = t2, even without any shear flow. These facts
indicate that stochastic properties, such as the persistence
probability, should be different. The region t2 � t1 is divided
into two parts, t1 � 2t2 and 2t2 < t1, in which the two-time
correlations are given by Eqs. (5a) and (5b), respectively.
The first derivatives of the two-time correlation function with
respect to t1 and t2 at the boundary are discontinuous. When
2t2 < t1, the two-time correlation function is zero without a
shear flow, while in the presence of a shear flow it is finite.
In order to visualize these features, the two-time correlation
function for γ̇ = 0 and 2 s−1 is shown as a function of t1
and t2 in Figs. 1(a) and 1(b), respectively, where we use
the diffusion constant D = 0.94 μm2 s−1 calculated from the
Einstein-Stokes relation for the 0.5 μm particle used in our
experiment. For γ̇ = 0 the boundaries (2t2 = t1 and t2 = 2t1)
and the flat regions (2t2 < t1 and t2 > 2t1) are clearly seen
[Fig. 1(a)]. For a finite shear rate [Fig. 1(b)], the flat regions
change to curved surfaces as given by Eq. (5b), and the
maximum value of the two-time correlation function at t2 = t1
increases substantially for large t1 due to the cubic terms in
Eq. (5a).

In order to calculate the persistence exponent, we define
a normalized variable X̃(t) = x̃(t)/

√
〈x̃2(t)〉. The two-time

correlation function of X̃(t),

〈X̃(t1)X̃(t2)〉 = 〈x̃(t1)x̃(t2)〉√
〈x̃(t1)2〉

√
〈x̃(t2)2〉

, (6)

can be calculated from Eq. (5). In the short-time regime (t 	
γ̇ −1), the t3 terms are negligible in Eq. (5), and, therefore, we
get

〈X̃(t1)X̃(t2)〉 = 2

(
t2

t1

)1/2

−
(

t1

t2

)1/2

(0 � t2 � t1 � 2t2),

(7a)

〈X̃(t1)X̃(t2)〉 = 0 (0 < 2t2 < t1). (7b)
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FIG. 2. (Color online) (a) Schematic illustration of our system combining a rheometer and CSLM. (b) Details of the sample space. The
observed region is a thin layer between z = z1 (5 μm) and z = z2 (15 μm).

On the other hand, the long-time behavior (t 
 γ̇ −1) is given
by neglecting the terms linear in t in Eq. (5):

〈X̃(t1)X̃(t2)〉 = 6

(
t2

t1

)1/2

− 5

2

(
t2

t1

)3/2

− 3

(
t1

t2

)1/2

+ 1

2

(
t1

t2

)3/2

(0 � t2 � t1 � 2t2), (8a)

〈X̃(t1)X̃(t2)〉 = 3

2

(
t2

t1

)3/2

(0 < 2t2 < t1). (8b)

Introducing a different time variable T = ln t , the stochastic
process X̃(T ) becomes a Gaussian stationary process. The
correlation function C(T ) = 〈X̃(T )X̃(0)〉 for t 	 γ̇ −1 is

C(T ) = 2e−T/2 − eT/2 (0 � T � log 2), (9a)

C(T ) = 0 (T > log 2), (9b)

and for t 
 γ̇ −1 it is

C(T ) = 6e−T/2 + 5e−3T/2/2 − 3eT/2

+ e3T/2/2 (0 � T � log 2), (10a)

C(T ) = 3e−3T/2/2 (T > log 2). (10b)

From the correlation function C(T ), we will calculate per-
sistence exponents by employing two approximation methods.
In one method [14], the “independent interval approximation”
(IIA) is used. That is, the intervals between successive zeros
of X̃(T ) are assumed to be statistically independent. We
first define A(T ) = 2/π sin−1[C(T )], which is equal to the
correlation function of sgn[X̃(T )] for a Gaussian process.
Then, we introduce the following function in terms of the
Laplace transform of A(T ), Ã(s):

F (s) = 1 + (〈T 〉/2)s[1 − sÃ(s)], (11)

where 〈T 〉 is the mean interval between successive zeros of
X̃(T ), which equals −2/A′(0). F (s) can be shown to have
a simple zero at s = −θ under the IIA. For t 
 γ̇ −1, the
numerically obtained zero of F (s) gives θ = 0.67, while for

t 	 γ̇ −1, we cannot apply this method because 〈T 〉 = 0,
which is readily confirmed from Eq. (9) and the definition
of 〈T 〉.

When 〈T 〉 = 0, we can use another approximation method
based on a variational expression for the persistence exponent
[15]:

∫ +∞

0

C(τ )/C(0) − exp(−θτ )

[1 − exp(−2θτ )]3/2
dτ = 0. (12)

The solution of this equation gives the persistence exponent
θ . This equation contains only the correlation function C(T ).
By numerical calculations we get the two exponents θ = 2.41
(t 	 γ̇ −1) and θ = 0.80 (t 
 γ̇ −1). For t 
 γ̇ −1, this value
is a little bit larger than the value of 0.67 obtained using the
IIA. Comparing these exponents for x̃(t) with that for x(t),
1/2 (t 	 γ̇ −1) and 1/4 (t 
 γ̇ −1), we notice that the two
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FIG. 3. Log-log plot of the persistence probability P (t) of x(t)
for particles with a diameter of 0.5 μm in distilled water at 25 ◦C.
The solid line is a plot of t−1/2.
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FIG. 4. (Color online) 3D plots of experimentally obtained two-time correlation functions of x̃(t) for particles with a diameter of 0.5 μm
in distilled water at 25 ◦C for (a) γ̇ = 0 and (b) γ̇ = 2 s−1.

stochastic processes are different. There may be no simple
relation between the persistence exponents for x̃(t) and x(t),
but the stochastic nature of x̃(t) depends on that of x(t) so that
the persistence exponent for x̃(t) does reflect the stochastic
nature of x(t), as is seen in the shear rate dependence of the
persistence exponent.

III. EXPERIMENTAL RESULTS AND DISCUSSION

For observations of particles under a shear flow, we used
a system combining a cone-plate rheometer and a confocal
scanning laser microscope (CSLM), as shown in Fig. 2.
Observations of fluorescent beads dispersed in distilled water
were made through the bottom glass plate of the rheometer
with the CSLM [Fig. 2(a)]. The observations were taken 4 mm
inward from the edge of the rotating plate, where the gap
was 170 μm. The focal plane of the CSLM was fixed at
10 μm above the glass surface and two-dimensional images
(400 μm × 400 μm) were captured with a frame rate of 60 fps
for about 2 min. We used a low numerical aperture (NA) object
lens (20 × with NA = 0.50) so that we could observe particles
in a layer with a thickness of about 10 μm between z1 = 5 μm
and z2 = 15 μm [Fig. 2(b)] by adjusting the value used for
image thresholding. Under our experimental conditions, the
diffusion length along the z axis is smaller than z1 so that
boundary effects can be neglected. All the particles in this
layer were tracked and the time dependences of the x and y

coordinates were obtained. In the measurements, fluorescent
polystyrene spheres with a diameter of 0.5 μm (FluoSpheres,
Invitrogen) were used, dispersed dilutely in distilled water
so that interparticle interaction was negligible. Measurements
were made at shear rates of 0, 1, 2, and 4 s−1 at 25 ◦C.

Let us first examine the persistence probability P (t) of
x(t) for free Brownian motion at γ̇ = 0, the exponent of
which is expected to be 1/2. We used about 700 traces
of different particles with durations greater than 2.5 s for
one run to calculate the persistence probability. These were
then averaged over four runs to reduce statistical errors. The
double logarithmic plot of the persistence probability is shown
in Fig. 3, in which the solid line indicates a slope of − 1/2. It

can be seen that the persistence probability decays as a power
law with the theoretically expected exponent.

Three-dimensional plots of the two-time correlation func-
tion of x̃(t) for γ̇ = 0 and 2 s−1 are shown in Figs. 4(a) and
4(b), respectively. For γ̇ = 0, the values in the regions t1 > 2t2
and t2 > 2t1 are almost zero, and the MSD (t = t1 = t2) is
proportional to t . These features agree with the theoretical
results [Fig. 1(a)]. On the other hand, upon application of
a shear flow [Fig. 4(b)], long correlation appears in the
regions t1 > 2t2 and t2 > 2t1, and the contribution from the
t3 term appears in the MSD (t = t1 = t2). These results are
quantitatively in good agreement with the theoretical ones
[Fig. 1(b)].

Finally, we show the persistence probabilities of x̃(t) for
γ̇ = 0, 1, 2, and 4 s−1 in Fig. 5, in which the theoretically
obtained slopes (exponents) are also depicted. Without a shear
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FIG. 5. (Color online) Log-log plot of the persistence probability
P (t) of x̃(t) for particles with a diameter of 0.5 μm in distilled water
at 25 ◦C for γ̇ = 0, 1, 2, and 4 s−1.
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flow at γ̇ = 0, the persistence exponent is very close to the
theoretical value, 2.41. Note that this value is totally different
from the value of 1/2 for x(t). In the presence of a shear
flow, on the other hand, the long-time behavior changes. For
γ̇ = 1 s−1, the slope gradually increases with time, but it seems
that the slope does not reach a constant value. It is difficult in
our experiment to obtain the persistence probability at longer
times. For γ̇ = 2 s−1, however, we can see a constant slope
at long times. This slope is close to the theoretical results
of − 0.67 (IIA) or − 0.8 (variational method). However, it
is difficult to judge from our experiments which is the better
approximation. For γ̇ = 4 s−1, the slope is almost the same as
that for γ̇ = 2 s−1.

IV. CONCLUSIONS

We have investigated the two-time correlation function
and persistence probability for sheared Brownian particles
by using a confocal laser microscope. Without a shear
flow (i.e., at equilibrium) it was clearly confirmed that the

persistence exponent of x(t) is 1/2, as predicted theoretically.
To analyze the data under a shear flow we used x̃(t), which
eliminates the effects of convection, instead of x(t). We
calculated the two-time correlation function and persistence
exponent of x̃(t), and obtained two time regimes with different
exponents: θ = 2.41 (IIA) for t 	 γ̇ −1 and θ = 0.67 (IIA)
or θ = 0.80 (variational method) for t 
 γ̇ −1. These two
regimes correspond to those predicted by Chakraborty [12],
though the values of persistence exponents are different.
The theoretical results were compared with experimental
observations, and good agreement was obtained both in the two
regimes.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Fluctuation & Structure”
(No. 25103006) and JSPS Fellows (Contract No. 25-2447)
from the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

[1] J. Krug, H. Kallabis, S. N. Majumdar, S. J. Cornell, A. J. Bray,
and C. Sire, Phys. Rev. E 56, 2702 (1997).

[2] Z. Toroczkai, T. J. Newman, and S. Das Sarma, Phys. Rev. E 60,
R1115 (1999).

[3] M. Constantin, C. Dasgupta, P. Punyindu Chatraphorn, S. N.
Majumdar, and S. Das Sarma, Phys. Rev. E 69, 061608 (2004).

[4] S. N. Majumdar, A. J. Bray, S. J. Cornell, and C. Sire, Phys.
Rev. Lett. 77, 3704 (1996).

[5] M. R. Swift and A. J. Bray, Phys. Rev. E 59, R4721
(1999).

[6] T. W. Burkhardt, J. Phys. A 33, L429 (2000).
[7] D. S. Fisher, P. Le Doussal, and C. Monthus, Phys. Rev. Lett.

80, 3539 (1998).

[8] P. Le Doussal, C. Monthus, and D. S. Fisher, Phys. Rev. E 59,
4795 (1999).

[9] D. Chakraborty, Eur. Phys. J. B 64, 263 (2008).
[10] S. Bhattacharya, D. Das, and S. N. Majumdar, Phys. Rev. E 75,

061122 (2007).
[11] D. Chakraborty, Phys. Rev. E 85, 051101 (2012).
[12] D. Chakraborty, Eur. Phys. J. B 85, 281 (2012).
[13] S. N. Majumdar, Curr. Sci. 77, 370 (1999).
[14] S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell, Phys.

Rev. Lett. 77, 2867 (1996).
[15] C. Sire, S. N. Majumdar, and A. Rudinger, Phys. Rev. E 61,

1258 (2000).
[16] H. Orihara and Y. Takikawa, Phys. Rev. E 84, 061120 (2011).

062111-5

http://dx.doi.org/10.1103/PhysRevE.56.2702
http://dx.doi.org/10.1103/PhysRevE.60.R1115
http://dx.doi.org/10.1103/PhysRevE.60.R1115
http://dx.doi.org/10.1103/PhysRevE.69.061608
http://dx.doi.org/10.1103/PhysRevLett.77.3704
http://dx.doi.org/10.1103/PhysRevLett.77.3704
http://dx.doi.org/10.1103/PhysRevE.59.R4721
http://dx.doi.org/10.1103/PhysRevE.59.R4721
http://dx.doi.org/10.1088/0305-4470/33/45/102
http://dx.doi.org/10.1103/PhysRevLett.80.3539
http://dx.doi.org/10.1103/PhysRevLett.80.3539
http://dx.doi.org/10.1103/PhysRevE.59.4795
http://dx.doi.org/10.1103/PhysRevE.59.4795
http://dx.doi.org/10.1140/epjb/e2008-00300-1
http://dx.doi.org/10.1103/PhysRevE.75.061122
http://dx.doi.org/10.1103/PhysRevE.75.061122
http://dx.doi.org/10.1103/PhysRevE.85.051101
http://dx.doi.org/10.1140/epjb/e2012-30480-8
http://dx.doi.org/10.1103/PhysRevLett.77.2867
http://dx.doi.org/10.1103/PhysRevLett.77.2867
http://dx.doi.org/10.1103/PhysRevE.61.1258
http://dx.doi.org/10.1103/PhysRevE.61.1258
http://dx.doi.org/10.1103/PhysRevE.84.061120



