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Analytical calculation of four-point correlations for a simple
model of cages involving numerous particles
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Dynamics of a one-dimensional system of Brownian particles with short-range repulsive interaction (diameter
σ ) is studied with a liquid-theoretical approach. The mean square displacement, the two-particle displacement
correlation, and the overlap-density-based generalized susceptibility are calculated analytically by way of the
Lagrangian correlation of the interparticulate space, instead of the Eulerian correlation of density that is commonly
used in the standard mode-coupling theory. In regard to the mean square displacement, the linear analysis
reproduces the established result on the asymptotic subdiffusive behavior of the system. A finite-time correction
is given by incorporating the effect of entropic nonlinearity with a Lagrangian version of mode-coupling theory.
The notorious difficulty in derivation of the mode-coupling theory concerning violation of the fluctuation-
dissipation theorem is found to disappear by virtue of the Lagrangian description. The Lagrangian description also
facilitates analytical calculation of four-point correlations in the space-time, such as the two-particle displacement
correlation. The two-particle displacement correlation, which is asymptotically self-similar in the space-time,
illustrates how the cage effect confines each particle within a short radius on one hand and creates collective
motion of numerous particles on the other hand. As the time elapses, the correlation length grows unlimitedly,
and the generalized susceptibility based on the overlap density converges to a finite value which is an increasing
function of the density. The distribution function behind these dynamical four-point correlations and its extension
to three-dimensional cases, respecting the tensorial character of the two-particle displacement correlation, are
also discussed.
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I. INTRODUCTION

Confined dynamics of Brownian particles has been studied
for many reasons, such as its relevance to microfluidic
devices [1,2], molecular biology [3,4], and energetics of
micromachines [5,6]. Most notably, the problems are intrigu-
ing because the confinement makes even the simplest cases
nontrivial, not to speak of more challenging cases in which
the particle-particle interaction comes into play. The simplest
and apparently easier cases are exemplified by diffusion
of noninteracting Brownian particles in a cylindrical pore
with a varying cross section [7]. The diffusive dynamics is
then described by a spatially one-dimensional Fokker-Planck
equation for particles in a rugged free-energy landscape [8].
Due to the entropic nature of this free-energy landscape, the
diffusion under an external driving force exhibits a peculiar
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temperature dependence [9]; it is also sensitive to the particle
size, which can be applied to a design of a device for sorting
particles [10].

Interaction among the particles makes the problem of con-
fined dynamics a real challenge. It means that the confinement
is caused by the particles themselves and the motion is thus
slowed down, as if each particle is constrained in a cage that
consists of its neighbors. This kind of mutual hindrance of
motion, which has been studied in connection with the glass
transition [11] and now in a broader context [12], is known by
the name of the cage effect.

To see how the slowdown of the dynamics due to the cage
effect is studied quantitatively, let us consider a dense colloidal
suspension modeled as a system of interacting Brownian
particles, denoting the position vector of the j -th particle
with rj (t). The slow dynamics is studied by defining the
(particle-scale) density field as

ρ(r,t) =
∑

j

δ(r − rj (t)) = ρ0 +
∑

k

ρ̂(k,t)e−ik·r
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and focusing on its correlations, such as the intermediate
scattering function (the dynamical structure factor), F (k,t) ∝
〈ρ̂(k,t)ρ̂(−k,0)〉, with ρ̂ denoting the Fourier component of
the density field. As the mean density ρ0 increases or the
temperature T decreases, the cages have a stronger effect,
which results in extremely slow relaxation of F (k,t). This
behavior of F (k,t) has been reproduced theoretically, at least
to some extent, by the mode-coupling theory (MCT) [13–15],
which consists in the derivation of an equation for F (k,t) in
the form of an integrodifferential equation,

(∂t + Dck
2)F (k,t) = −

∫ t

0
dt ′M(k,t − t ′)∂t ′F (k,t ′), (1.1)

with Dc denoting the collective diffusion constant; the cage
effect is incorporated via the memory kernel M which
is a quadratic functional of F . In spite of this success,
however, MCT suffers from several difficulties and has its
own limitations [11,15]. Since theoretical understanding of
glassy dynamics still remains far from being resolved, a
methodological insight into kinetic approaches to glassy
systems, which will permit an improvement over the existing
theories such as MCT, is highly desired.

It is one aspect of the cage effect that each particle is
confined within a short radius, while it has another aspect
that concerns long length scales. The slowdown of the
glassy dynamics is now regarded as attributable to dynam-
ical heterogeneity [16,17], which refers to the presence of
collective motion with some lifetime and correlation length.
Unfortunately, kinetic-theoretical treatment of this collective
motion is formidably difficult, as its correct description
requires a four-point space-time correlation, such as χ4 that
will be explained later [see Eq. (5.8) in Sec. V]. As far as
we know, analytical calculation of four-point correlations has
been infeasible except for some special cases such as linear
elastic bodies and kinetically constrained models on a lattice
[18]. In regard to MCT, we must emphasize here that MCT
targets on the dynamical structure factor F (k,t) and not on
four-point correlations. As long as the standard variables such
as ρ̂(k,t) are used, a four-point correlation function implies
a four-body correlation. Since MCT is a closure theory in
which quadruple (four-body) correlations are approximated by
products of F , it is unlikely to describe four-point correlations
accurately. Although a calculation of three-point correlation
within the MCT approximation was recently reported [19],
still χ4 remains insurmountable.

A breakthrough may be found, through a profound study
of a simpler system, by developing a method that can describe
the two aspects of the cage effect simultaneously, namely
the short-ranged particle interaction and the long-ranged
dynamical correlation. To make progress in this direction, here
we develop a nonlinear theory for a one-dimensional system
of interacting Brownian particles:

mẌi = −μẊi − ∂

∂Xi

∑
j<k

V (Xk − Xj ) + μfi(t), (1.2)

whose behavior is known by the name of single-file diffusion
(SFD) [20–31] and which has been studied also as a model
of glassy dynamics with ideal cages [32–34]. In the Langevin
equation (1.2), Xi represents the position of the i-th particle,

and the meaning of the other symbols should be self-evident.
Without the interaction (V = 0), the statistically averaged or
coarse-grained density field would be governed by the simple
diffusion equation, with the diffusion constant D = kBT /μ.
Here we adopt for V a short-ranged repulsive potential, such
as Eq. (A1) in Appendix A, so the system exhibits a liquidlike
structure factor [35]. The statistics of the random forcing,
μfi(t), are given by Eq. (A2).

As will be clarified below, we propose to contribute
two things to the theory of SFD. First, we establish a
framework for systematic treatment of the nonlinear effect
of density fluctuations in the form of an MCT-like equation,
which gives a correction to the asymptotic theory. In other
words, we demonstrate how to take into account the free-
energy landscape of the system beyond the linear (harmonic)
approximation [36]. Second, we calculated some four-point
space-time correlations in SFD, hoping that they will be
useful as tools to quantify collective dynamics. These two
concepts, namely MCT and four-point space-time correlations,
are imported from the theory of glassy liquids, but in the
original context of three-dimensional systems it has been
difficult to combine them. In a simpler problem of SFD, we
can demonstrate how they should be combined, so the result
will be exported back to the theory of glassy liquids in the near
future.

Before clarifying the key idea for these tasks, we need
to notice that the four-point correlation indicates collective
motion associated with the slowness of SFD. By “slow” we
mean that SFD is subdiffusive [23–26]: In regard to long-time
behavior of the mean square displacement (MSD), denoted by
〈R2

j 〉 with

Rj = Rj (t) = Xj (t) − Xj (0), (1.3)

it is known exactly that 〈R2
j 〉 for SFD behaves like

√
t

[see Eq. (1.4) shown later], which is slower than 〈R2
j 〉 ∝ t

expected for the normal diffusion. The subscript in 〈R2
j 〉 can be

omitted as we assume that the system is statistically uniform.
The subdiffusive law, 〈R2〉 ∝ √

t , is readily confirmed by
simulation of a system with N particles in a periodic box of the
size L. In the calculations shown in Fig. 1, the mean density,
ρ0 = N/L, equals 0.25 σ−1, and the system is statistically
steady. For computational details, see Appendix A. The finite-
size effect is eliminated by taking sufficiently large L and
interpreting the word “long-time” as ρ−2

0 � Dt � L2 → ∞.
For the long-time regime in this sense, the asymptotic MSD is
given by

〈R2〉 = 2S

ρ0

√
Dct

π
∝ t1/2, (1.4)

where S = S(0) denotes the long wave limiting value of the
static structure factor S(k). For particles with a well-defined
diameter σ , an equation equivalent to Eq. (1.4) was derived by
Hahn and Kärger [25]. Later, Kollmann [26] demonstrated that
Eq. (1.4) holds for systems with arbitrary interaction potential,
as long as the range of the interaction is finite. We note
that Kollmann also needed to calculate a kind of four-point
correlation (κ (2) in his notation) in derivation of Eq. (1.4).

The slowness of SFD is ultimately due to the presence
of the repulsive potential term in Eq. (1.2). Then there is
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FIG. 1. The mean square displacement 〈R2〉 in SFD, plotted as a
function of t . The dotted line indicates the slope for t1/2. The system
size is specified as N = 215 = 32768 and ρ0 = N/L = 0.25 σ−1. In
the inset, the same 〈R2〉 is plotted against

√
t for 0 <

√
Dt < 10 σ .

a question: Does a straightforward application of MCT to
Eq. (1.2) reproduce the subdiffusive law (1.4)? Unfortunately,
the answer is negative. The MCT equation for the tagged
particle, in any spatial dimension, reads as

(∂t + Dk2)FS(k,t) = −
∫ t

0
dt ′MS(k,t − t ′)∂t ′FS(k,t ′), (1.5)

where

FS(k,t) = 〈ρ̂j (k,t)ρ̂j (−k,0)〉 = 〈e−ik·Rj 〉,
with Rj = rj (t) − rj (0), is the self part of the intermediate
scattering function F , and MS is the memory kernel which
is a bilinear functional of F and FS . The MSD is given by
expanding FS in power series of k, as FS = 1 − 1

2k2〈R2〉 +
· · · . The asymptotic behavior of MCT equations (1.1) and (1.5)
with standard memory kernels, in any spatial dimension, is
mostly the same as the schematic MCT equation, whose
asymptotic solutions are either arrested or subject to an
exponential decay [14]. This implies that the dynamical
constraint by the long-lived cages in SFD is not described
accurately enough by the standard MCT. Essentially the same
difficulty occurs in MCT for rod polymers [37], as it predicts
that the self-diffusion coefficient becomes isotropic for large
aspect ratios and therefore fails to describe the entanglement
effects. However, in this particular case [37], an alternative
version of MCT-like kinetic theory can be developed. Using
SFD as an illustrative example, Miyazaki [38,39] suggested
that a scheme for improved treatment of four-point correlation
should be sought for.

The key idea of the present study for improved treatment of
slow dynamics is adoption of the label variable [30]. This is
essentially an application of the Lagrangian description in fluid
mechanics [40,41], as opposed to the Eulerian, to the Langevin
equation for the density field. The label-variable method allows
us, on one hand, to calculate four-point correlations explicitly.
On the other hand, we demonstrate that an MCT-like nonlinear
theory for the fluctuation of 1/ρ can be developed in a field-
theoretical style, without violating the fluctuation-dissipation
theorem (FDT). This is possible because the problem of the

multiplicative noise is naturally resolved by virtue of the label
variable. Using this version of MCT, we find the contribution
of the memory term to give a finite-time correction to the
asymptotic Hahn-Kärger-Kollmann law (1.4), visible as a finite
intercept of the asymprotic straight line on the

√
t axis in the

inset in Fig. 1.
We obtain four-point correlations by generalizing the

calculation of MSD [30] to the two-particle displacement
correlation (2pDC),

〈RiRj 〉 = 〈[Xi(t) − Xi(0)][Xj (t) − Xj (0)]〉. (1.6)

Quantities analogous to 2pDC have been studied by a
number of researchers with numerical data from molecular
dynamics of glassy liquids [42–45] and with linear theories
of generalized elastic model for systems such as fluctuating
membranes [46,47]. Majumdar and Barma [48] calculated
2pDC for SFD on a lattice, and 2pDC is also the main
ingredient of the theory of χ4 for elastic waves by Toninelli
et al. [18]. Nevertheless, analytical calculations of 2pDC for
“bondless” particle systems have never been reported. Here
we calculate 2pDC analytically in terms of generalizable and
liquid-oriented concepts, so the theory could be extended
to truly bondless systems in the near future. At first, we
calculate 2pDC as a function of the elapsed time t and some
properly defined label distance which coincides with |i − j |
in the one-dimensional cases; and subsequently, we show it
to be re-expressible as a function of t and the initial distance
d̃ = Xj (0) − Xi(0), which we denote with XR(d̃,t). For i = j ,
Eq. (1.6) reduces to MSD. The two-particle correlation, 〈RiRj 〉
with i 
= j , provides an intuitive form of four-point correlation
in comparison to χ4; the 2pDC with i 
= j vanishes for free
Brownian particles and, for SFD, evidences the cluster size
that behaves like ρ0

√
Dct , accounting for the slow diffusion.

In addition, from the knowledge of 〈RiRj 〉, we can perform a
fully analytical calculation for the self part of χ4, denoted with
χS

4 . Reflecting the eternity of the one-dimensional cages, the
long-time limiting value, χS

4 (+∞), is finite, as will be shown
in Eq. (5.17).

The paper is organized as follows: After summarizing
in Sec. II the idea of the continuous label-variable method
and some of its results, we apply it to the calculation of
the two-particle displacement correlation in Sec. III. Strictly
speaking, what we present in Sec. III is not 〈RiRj 〉 itself
but its continuum equivalent, calculated theoretically for the
long-time regime. Subsequently, in Sec. IV we demonstrate
a systematic and FDT-preserving derivation of an MCT-like
equation in the Lagrangian description. The “Lagrangian”
MCT equation provides us with the finite-time correction to
MSD and the two-particle displacement correlation. With this
finite-time correction taken into account, two different forms
of four-point correlation functions are calculated in Sec. V:
One is XR(d̃,t) and the other is χS

4 (t). We will discuss in
Sec. VI how the collective dynamics is represented by χS

4 (t),
what is the relation between the theories of SFD in the past
and the present one, and whither the method of the Lagrangian
MCT may guide us in the future. Section VII is allotted for
concluding remarks.
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II. CONTINUUM THEORY OF SINGLE-FILE DIFFUSION

Let us begin with summarizing our previous results on MSD
for SFD [30]. By “continuum theory” we mean that the theory
is formulated in terms of some hydrodynamic quantity such as
the density ρ, rather than direct treatment of the particles. Our
idea consists in adoption of the continuous label variable ξ ,
which we take instead of the position x as the independent
variable, and we also change the dependent variable from
the density ρ(x,t) to the fluctuation of the particle interval,
denoting it with ψ(ξ,t). On the basis of the correlation
of ψ calculated for the long-time regime, we can rederive
Eq. (1.4).

Since our label-variable method is intended as a reformu-
lation of MCT, we start from essentially the same Langevin
equation as in the field-theoretical formulation of MCT for
dense colloidal suspension [49]. The Langevin equation,
derived from Eq. (1.2) for the density ρ(x,t) =∑j ρj with
ρj = δ(x − Xj (t)) and its flux Q =∑j ρj Ẋj , is given as
follows:

∂tρ + ∂xQ = 0, (2.1a)

Q = −D

(
∂xρ + ρ

kBT
∂xU

)
+
∑

j

ρj (x,t)fj (t), (2.1b)

U = U [ρ](x) =
∫

dx ′ V (x − x ′)ρ(x ′). (2.1c)

By eliminating Q and introducing

fρ(x,t) = −∂x

∑
j

ρj (x,t)fj (t),

we write down the equation for ρ(x,t) as

∂tρ(x,t) = D∂x

(
∂xρ + ρ

kBT
∂xU

)
+ fρ(x,t) (2.2)

with ∂xU = ∂xU [ρ](x) and

〈fρ(x,t)fρ(x ′,t ′)〉 = 2D∂x∂x ′ρ(x,t)δ(x − x ′)δ(t − t ′). (2.3)

Note the presence of ρ(x,t) on the right-hand side of Eq. (2.3):
The noise is multiplicative [49–53]. A linear version of
Eq. (2.2) is sometimes referred to as the diffusion-noise
equation [54], which was used to describe collective dynamics
of a single-file system [55,56].

As the particles have the excluded volume effect and
therefore cannot overlap, the barrier expressed by V must
be infinitely high. In the one-dimensional system, this barrier
acts as a topological constraint, or the “no overtaking” rule
in plain words, which keeps the order of the particles. In
MCT formulated for coarse-grained ρ, however, V must
be replaced with a finite effective potential, in a manner
analogous to the dynamical density-functional theory [57,58].
As a result, MCT fails to incorporate the “no overtaking”
effect of V properly. An asymptotic analysis of MCT for
the long-time limit shows that a certain mathematical feature
of the MCT memory kernel (the presence or the absence of
the zero-frequency singularity in Laplace transform of MS)
determines the asymptotic behavior of 〈R2〉. The memory
kernels, M and MS , ultimately decay exponentially on the
liquid side of the theory, though anomalous diffusion may
occur transiently near the MCT transition point [59,60]. As a

corollary, the one-dimensional version of Eq. (1.5) gives the
normal diffusion, contradicting Eq. (1.4) and suggesting that
the mathematical feature of the MCT kernel is not compatible
with the “no overtaking” rule [38,39].

Thus the difficulty is located in the memory kernel MS in
Eq. (1.5). Consequently, for an MCT-based nonlinear theory
of SFD, there is a choice between two strategies. The first
one consists in amending the memory kernel MS , so it has a
proper singularity; this is the strategy developed by Fedders
[22] and Abel et al. [34]. Alternatively, one may totally
dispense with MS , using only the collective MCT equation
corresponding to Eq. (1.1), and replacing the tagged-particle
MCT equation (1.5) by something that gives 〈R2〉 without
time integral. Here we choose this alternative, which becomes
possible by importing the concept of Lagrangian correlation
from the theory of fluid turbulence [61–63]. The idea consists
in adoption of the continuous label variable, which we denote
with ξ .

Though it is popular in continuum mechanics to take the
initial position of each material element to label it, here we
define ξ in a different way, avoiding tracing the whole history
of the system back to the initial configuration. We construct the
label function ξ = ξ (x,t) so as to satisfy the following three
requirements:

(1) The label should satisfy the convective equation

(ρ∂t + Q∂x)ξ (x,t) = 0. (2.4)

(2) The label should be related to the snapshot of ρ and Q

in such a way that the continuity equation (2.1a) is satisfied.
(3) The function needs to be invertible, in the sense that a

mapping from (ξ,t) to x = x(ξ,t) should exist.
To satisfy the second requirement, we utilize the fact

that Poincaré’s lemma [64] is applicable to the continuity
equation (2.1a), which guarantees the existence of ξ such that

∂xξ (x,t) = ρ, ∂t ξ (x,t) = −Q; (2.5)

in fact, a solution to Eq. (2.5) is explicitly given by

ξ = ξ (x,t) =
∫ x

X0(t)
ρ(x ′,t)dx ′ + const. (2.6)

Then it is straightforward to verify that all the three require-
ments are satisfied. To be precise, since ρ consists of a sum of δ

functions, the integral in Eq. (2.6) gives a multiple step function
(see Fig. 2), which needs to be slightly smoothed to justify
the single-valuedness and the invertibility. Although this
smoothing could be interpreted physically as a consequence
of coarse-graining, here we refrain from involving ourselves
with such a delicate matter and regard the smoothing simply as
a mathematical regularization. We define �j = ξ (Xj (t),t) for
j ∈ Z, taking it for granted that the particles are numbered
consecutively; then, with the smoothing and the integral
constant tuned appropriately, we have �j = j .

Using the label variable ξ as the spatial coordinate, now
we rewrite the Langevin equation (2.1). The chain rule for the
differential operators gives

∂x = ∂ξ

∂x
∂ξ = ρ∂ξ , (∂t ·)x = (∂t ·)ξ − Q∂ξ .
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FIG. 2. (Color online) A schematic view of the mapping from ξ

to x, given by inverting the function ξ = ξ (x,t) in Eq. (2.6), with
t fixed arbitrarily. The label and the position of the j -th particle is
denoted by �j and Xj , respectively.

As a kinematic relation that replaces Eq. (2.1a), from the
identity ∂t∂ξx = ∂ξ ∂tx we find

∂t

[
1

ρ(ξ,t)

]
= ∂ξ

(
Q

ρ

)
. (2.7)

Then, rewriting Eq. (2.1b) with ∂ξ and substituting it into
Eq. (2.7), we obtain

∂t

[
1

ρ(ξ,t)

]
= −D∂ξ

(
∂ξρ + ρ

kBT
∂ξU

)

+ ∂ξ

∑
j

δ(ξ − �j )fj (t)

= −D∂ξ [∂ξρ + 2 sinh(ρσ∂ξ )ρ] + fL(ξ,t),

(2.8)

where V is replaced with the effective potential as before, and
fL satisfies

〈fL(ξ,t)fL(ξ ′,t ′)〉=2D∂ξ∂ξ ′
∑

i

δ(ξ − �i)δ(ξ − ξ ′)δ(t − t ′).

(2.9)

Having changed the independent variables from (x,t) to
(ξ,t), we change the dependent variable as well. The time-
derivative term in Eq. (2.8) suggests introducing

ψ = ψ(ξ,t) = ρ0

ρ(ξ,t)
− 1, (2.10)

so the left-hand side of Eq. (2.8) is re-expressed as
ρ−1

0 ∂tψ(ξ,t). The field ψ may be interpreted as representing
the fluctuation of the particle interval (nondimensionalized
with ρ0), because Eq. (2.10), in combination with our definition
of the label variable, implies ∂x/∂ξ = 1/ρ = (1 + ψ)/ρ0,
which gives the distance �x between two particles (labeled
by ξ and ξ + �ξ ) as

�x = x(ξ + �ξ,t) − x(ξ,t) � ∂x

∂ξ
�ξ = (1 + ψ)

�ξ

ρ0
.

Then, defining the Fourier modes of ψ as

ψ̌(k,t) = 1

N

∫
dξ eikξψ(ξ,t)

(
k

2π/N
∈ Z

)
, (2.11)

we rewrite Eq. (2.8) in the form

∂t ψ̌(k,t) = −D∗k2

(
1 + 2 sin ρ0σk

k

)
ψ̌(k,t)

+
∑

p+q+k=0

Vpq

k ψ̌(−p,t)ψ̌(−q,t) + O(ψ̌3)

+ ρ0f̌L(k,t) (2.12)

with D∗ = ρ2
0D and

Vpq

k = D∗k2

(
1 + k

pq
sin ρ0σk + p

kq
sin ρ0σp

+ q

kp
sin ρ0σq

)
. (2.13)

The summation is taken over all (p,q) satisfying the triad
condition p + q + k = 0 for given k [65]. As for the statistics
of the random force term, Eq. (2.9) is re-expressed as

ρ2
0〈f̌L(k,t)f̌L(−k′,t ′)〉 = 2D∗

N
k2δkk′δ(t − t ′); (2.14)

see [66]. We also note that the linearization of Eq. (2.12),
corresponding to harmonization of the effective interaction
between the particles [18,36,45,67], coincides with the one-
dimensional version of Edwards-Wilkinson equation [33,68]
and also with the Rouse model [69].

To calculate MSD without employing MS , we developed a
formula for it in terms of the correlation 〈ψ(ξ,t)ψ(ξ ′,0)〉, or
its Fourier transform 〈ψ̌(k,t)ψ̌(−k′,0)〉. In Fourier represen-
tation, the formula reads as follows:

〈R2〉 = L4

πN2

∫ ∞

−∞

Č(k,0) − Č(k,t)

k2
dk, (2.15)

where [70]

Č(k,t) = N

L2
〈ψ̌(k,t)ψ̌(−k,0)〉. (2.16)

In Sec. III, this formula will be rederived as a special case of
Eq. (3.2).

Once the formula (2.15) is derived, all depends on the
knowledge of Č. In particular, the long-time behavior of MSD
is found by the linear analysis of Eq. (2.12). From the linearized
equation, the correlation Č is calculated as

Č(k,t) = S

L2
e−(D∗/S)k2t , S = S(k) � S(0) (2.17)

with the aid of Eq. (2.14). On the other hand, linear analysis im-
plies that the difference between the Eulerian and Lagrangian
descriptions vanishes up to a trivial rescaling of the variables.
Thus the linearized version of Eq. (2.15) corresponds to the
approximate formula by Alexander and Pincus [23],

〈R2〉 � const ×
∫ ∞

−∞

F (q,0) − F (q,t)

q2
dq, (2.18)

which evidently reproduces the subdiffusion law in Eq. (1.4).
For the special case of pointlike particles (σ = 0), S in
Eq. (2.17) is replaced with unity; more generally, the linear
formulation is also readily applicable to systems with arbitrary
interaction potential and, in this sense, turns out to be
equivalent to the theory of Kollmann [26]. A refined treatment,
including the effect of the nonlinear term on Č, requires
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Eq. (2.15) instead of Eq. (2.18). We refer to Eq. (2.15) as
the modified Alexander-Pincus formula: The modification
consists of the adoption of the Lagrangian description.

In the linear (Edwards-Wilkinson) case, a nd -dimensional
version of Eq. (2.18) has appeared in the literature [18,71,72];
we will discuss it later in Sec. VI, calling attention to some
delicate points about the extension to the nd -dimensional liquid
dynamics.

III. FOUR-POINT CORRELATION

A. Cooperative motion in SFD

The slow dynamics in SFD is associated with collective
motion of the particles. This collective motion, obtained by
numerical integration of Eq. (1.2), is depicted in Fig. 3. In
the numerical calculations (see Appendix A for details), after
the system has reached the thermal equilibrium, we choose
some instant as t = 0 and record the “initial” position of
each particle, say, Xi(0). To produce Fig. 3(a), at t = 2n ×
10 σ 2/D (with n = 1,2, . . .) we measured the displacement
Ri(t) = Xi(t) − Xi(0) for each i. If Ri(t) > 5σ , we mark the
position of the particle with a circle (©); if Ri(t) < −5σ , we
mark it with a cross (×). As the time difference t increases,
a string of the same kind of symbol is formed, expressing
a cluster of particles in cooperative motion. While Fig. 3(a)
presents a close-up for a relatively limited time span, a long
shot up to t = 106σ 2/D is shown as Fig. 3(b). Formation of
large clusters in cooperative motion is visible. By the time
difference t = 106σ 2/D, a typical cluster reaches the size of
several hundred particles, occupying a length on the order of
103σ (as each particle is assigned a space of 1/ρ0 = 4σ ).

Quantitative description of this collective motion requires
some four-point correlation functions, such as those used for
the analysis of dynamical heterogeneity in glassy systems.
In regard to SFD, it seems especially natural to consider the
four-point correlation to deal with the topological constraint of
the “no passing” rule, as the requirement that two world lines
should not intersect involves four points in the space-time,
namely Xi(0), Xj (0), Xi(t), and Xj (t). This is why Miyazaki
and Yethiraj [37] needed to calculate a four-point correlation
[G(1,2; 3,4) in their notation] to study the entanglements of
rod polymers within the framework of liquid state theory
and why Abel et al. [34], to improve on the conventional
MCT, which fails in reproducing the subdiffusive law for SFD,
had to examine the irreducible four-point propagator (denoted
with χ irr).

Here we demonstrate that the label-variable method is also
capable of calculating a kind of four-point correlation, in
the form of two-particle displacement correlation. Though
it was originally presented as 〈RiRj 〉 in Eq. (1.6), there is
no trouble in replacing the particle numbering with the label
variable. Then our task is derivation of a formula to calculate
〈R(ξ,t)R(ξ ′,t)〉 with R(ξ,t) = x(ξ,t) − x(ξ,0), which will be
shown in the next subsection.

B. Two-particle displacement correlation

Aiming for an analytical expression for 〈R(ξ,t)R(ξ ′,t)〉
in SFD, let us extend Eq. (2.15) so we can calculate
〈R(ξ,t)R(ξ ′,t)〉 from the correlation Č defined by Eq. (2.16).

We start with noticing that Q/ρ stands for the velocity, whose
integral in regard to t gives the displacement of the particle
labeled with ξ ,

R(ξ,t) =
∫ t

0
dt ′

Q(ξ,t ′)
ρ(ξ,t ′)

.

Into this equation we substitute Q/ρ = ∂−1
ξ ∂t (1/ρ), obtained

from Eq. (2.7) upon integration over ξ , to find

R(ξ,t) = ∂−1
ξ

(
1 + ψ

ρ0

)∣∣∣∣
t

0

= 1

ρ0

∑
k

e−ikξ

−ik
[ψ̌(k,t) − ψ̌(k,0)]. (3.1)

Subsequently, we multiply Eq. (3.1) by its duplicate with
(ξ,k) changed to (ξ ′, − k′) and take the statistical average. The
double summation on the right-hand side reduces to the single
one if we assume that the contribution from the terms with
k 
= k′ vanishes. This is true in the linear case and also seems
to be justifiable for nonlinear cases within the framework of
the direct-interaction approximation (explained later). Thus we
obtain a formula allowing us to calculate 2pDC from 〈ψψ〉 as
follows:

〈R(ξ,t)R(ξ ′,t)〉 = L4

πN2

∫ ∞

−∞
dk e−ik(ξ−ξ ′) Č(k,0) − Č(k,t)

k2
,

(3.2)

with Č(k,t) defined by Eq. (2.16). Note that Eq. (3.2) includes
the modified Alexander-Pincus formula (2.15) as a special case
with ξ = ξ ′, as it ought to be. In this sense, the formula (3.2)
could be referred to as the extended Alexander-Pincus formula.
We emphasize that Eq. (3.2) does not rely on smallness of
deformation, nor it requires such kind of approximation at all,
as long as the Lagrangian description is strictly followed.

C. Calculation of 2pDC: Linear approximation

For Č in Eq. (2.17) calculated from the linear approximation
of Eq. (2.12), the extended Alexander-Pincus formula (3.2)
gives

〈R(ξ,t)R(ξ ′,t)〉 = 2S

ρ0

√
Dct

π
exp

[
− (ξ − ξ ′)2

4ρ2
0Dct

]

− S

ρ2
0

|ξ − ξ ′| erfc
|ξ − ξ ′|

2ρ0
√

Dct
, (3.3)

reproducing Eq. (B3) in Ref. [30]; the same result was reported
in regard to SFD on a lattice [48] and the generalized elastic
model [47]. This is expressible in terms of a similarity variable

θ = ξ − ξ ′

2ρ0
√

Dct
(3.4)

as

〈R(ξ,t)R(ξ ′,t)〉
σ
√

Dct
= 2S

ρ0σ

(
e−θ2

√
π

− |θ | erfc |θ |
)

= ϕ(θ ).

(3.3′)
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FIG. 3. (Color online) Clusters in cooperative motion visualized in space-time diagrams of particles in SFD, calculated for ρ0 = N/L =
0.25 σ−1. (a) Worldlines of particles in the (x,t) plane. The symbols © and × mark particles displaced (by more than 5σ ) rightward and
leftward, respectively. The unmoving particles are indicated with small triangles. Each cluster in cooperative motion, involving five particles
at least, is highlighted in a box. (b) The displacement R depicted in gray scale (blue-to-red scale online) as a function of ξ and t . Unmoving
particles are shown in white.
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FIG. 4. (Color online) Comparison of Eq. (3.3) with the computed
2pDC in the same system as in Fig. 1 (N = 215 = 32768, ρ0 =
N/L = 0.25 σ−1). The solid (red) line shows the self-similar solution
in Eq. (3.3′), while the simulation data are plotted with symbols: solid
triangles (�) for t = 100 σ 2/D, open circles (©) for t = 200 σ 2/D,
crosses (×) for t = 400 σ 2/D, open squares (�) for t = 800 σ 2/D,
and solid squares (�) for t = 1600 σ 2/D.

From this similarity solution we can read the dynamical
correlation length

λ = λ(t) = 2
√

Dct, (3.5)

indicating the size λ of a cluster in a cooperative motion. We
have already seen such clusters in Fig. 3, though care should
be taken in regard to the difference that Eq. (3.5) is a statistical
law while Figs. 3(a) and 3(b) present a single run, and only
a small portion of it is shown in Fig. 3(a). The dynamical
correlation length λ in Eq. (3.5) is the diffusive one (with the
exponent 1/2), which may occur also in different contexts,
such as roughening of growing surfaces [73] and kinetically
constrained models of defect-mediated glassy dynamics [18].

Equation (3.3) is compared with statistical results of particle
simulations in Fig. 4. Except for the transient behavior slightly
visible for t = 100 σ 2/D, all of the simulation results are
consistent with Eq. (3.3). The transient behavior can be studied
by taking the nonlinear terms in Eq. (2.12) into account, which
will be discussed in the next section.

The variable for the horizontal axis of Fig. 4 requires
some consideration. As a quantity corresponding to ξ − ξ ′,
here we have taken the distance in the label numbering, say,
|i − j | between the i-th and j -th particles. Though adequate
in the present case, this is not convenient for extensions to
multidimensional cases [44,45], because the result may depend
on the way of numbering. A reasonable alternative in the par-
ticle simulation is the initial distance such as Xi(0) − Xj (0),
which can be compared with the theoretical prediction by
assuming that (ξ − ξ ′)/ρ0 corresponds to Xi(0) − Xj (0) after
statistical averaging. Numerical calculations show that this is
indeed valid as far as the long-time behavior is concerned,
but transiently there are additional modifications due to triple
correlations such as 〈ψ̌(−p,0)ψ̌(−q,0)ψ̌(−k,t)〉. Before dis-
cussing these modifications, let us develop a nonlinear closure

theory for Č, which introduces the entropic nonlinearity into
the theory of SFD, making the triple correlation available as a
by-product.

IV. NONLINEAR THEORY FOR FINITE-TIME EFFECTS

A. Inclusion of nonlinearity: DIA for SFD

The expression for 2pDC in Eq. (3.3) is based on the linear
approximation to Eq. (2.12), which is only asymptotically valid
for sufficiently long time. For finite values of t , there should
be a correction to Eq. (3.3) describing the transient behaviors
of 2pDC and MSD; to find this correction, now we develop a
nonlinear closure theory for the correlation Č.

In short, what we present here and in the next subsection
is a systematic derivation of MCT equation for Č. Except
for some minor (but important) differences, this is analogous
to the attempt of a number of authors [50,74,75] who tried
to rederive the MCT equation with the Martin-Siggia-Rose
(MSR) formalism [76]. They were obstructed by the problem
of inconsistency with the FDT: This difficulty is inevitable
for dense colloidal suspensions or supercooled liquids, as
long as one uses the standard MSR formalism with the plain
ρ̂(k,t) as the field variable [51–53,77]. Only some special
classes of Langevin equations are free from this difficulty.
Two such classes are known: one is the class of models whose
nonlinearity comes from the gradient of the thermodynamic
potential (entropy) alone, such as the p-spin model, referred
to as “Class I” by Miyazaki and Reichman [50], and the other
one (called “Class II”) is exemplified by liquid models with
Gaussian approximation to the entropy [50,75]. Fortunately,
our equation for ψ̌ belongs to Class I and therefore consistency
with the FDT is expected.

Let us return to the nonlinear Langevin equation (2.12)
governing ψ̌ , with the random force statistics in Eq. (2.14).
The correlation Č is then subject to an equation containing
triple correlations,(

∂t + D∗
S

k2

)
Č(k,t)

= N

L2

∑
p+q+k=0

Vpq

k 〈ψ̌(−p,t)ψ̌(−q,t)ψ̌(−k,0)〉,

with the O(ψ̌3) term in Eq. (2.12) discarded, and with∑
p+q+k=0 denoting the same summation over (p,q) as in

Eq. (2.12). Note the absence of 〈f̌Lψ̌〉 on the right-hand
side; this term vanishes because fL is not multiplicative,
which means that 〈f̌L(k,t)f̌L(−k′,t ′)〉 is independent of the
ψ̌’s according to Eq. (2.14). To provide a closure to this
equation, we apply the formalism of the direct-interaction
approximation (DIA) [61–63,78,79]. The procedure of the
calculation is essentially the same as that in Ref. [80] and
is explained briefly in Appendix B. As a result, we obtain a set
of equations as follows:(

∂t + D∗
S

k2

)
Č(k,t) =

∫ t

t0

dt ′MG(k,t − t ′)Č(k,|t ′|)

+
∫ 0

t0

dt ′MC(k,t − t ′)Ḡ(−k,−t ′),

(4.1)
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(
∂t + D∗

S
k2

)
Ḡ(k,t) =

∫ t

0
dt ′MG(k,t − t ′)Ḡ(k,t ′), (4.2)

for the correlation Č and

Ḡ(k,t − t ′) = 〈G(k,t ; k,t ′)〉 =
〈

δψ̌(k,t)

δψ̌(k,t ′)

〉
,

with t0 (< 0) denoting the time at which the “direct interac-
tions” are switched off, and MG and MC are memory kernels
given by

MG(k,s) = 4L2

N

∑
p+q+k=0

Vpq

k Vpk
q Č(p,s)Ḡ(−q,s), (4.3)

MC(k,s) = 2L2

N

∑
p+q+k=0

(
Vpq

k

)2
Č(p,s)Č(q,s). (4.4)

Note that, in the present case, the propagator (Kraichnan’s
response function) Ḡ is essentially equivalent to the response
function to an externally applied probe force, because the
random forcing term ρ0f̌L in Eq. (2.12) is not multiplicative
but additive.

In regard to the choice of t0, we consider two possibilities.
Choosing t0 → −0 would admit a solution of the form Č(t) =

Ḡ(t)Č(0), which corresponds to the “Class II” approximation;
we do not take this choice, as this would require the Langevin
equation to belong to classes I and II simultaneously, leading
to a result that is either trivial or inconsistent with the
FDT. Instead, we take t0 → −∞, so Eqs. (4.1) and (4.2)
become identical to the standard one-loop result of the MSR
formalism [76].

B. Label-based MCT equation for SFD

In principle, Eqs. (4.1) and (4.2) with the initial conditions

Č(k,0) = S(k)

L2
, Ḡ(k,0) = 1

should suffice for determination of Č and Ḡ. However, as
soon as we start to calculate them in this straightforward way,
we are confronted with difficulties. Since we have t0 → −∞,
the equations are acausal. Besides, the memory terms seem
to suffer ultraviolet divergence. To elude these difficulties, we
demonstrate that one of the two equations can be replaced with
a simpler relation between Č and Ḡ, later shown as Eq. (4.7).
We start with differentiating Eq. (4.1) in regard to t and adding
it to Eq. (4.2) multiplied by α0k

2 with some constant α0, to
write an equation for ∂t Č + α0k

2G,

(
∂t + D∗

S
k2

)
[∂t Č(k,t) + α0k

2G(k,t)] =
∫ t

0
dt ′MG(k,t − t ′)[∂t Č(k,t ′) + α0k

2G(k,t ′)]

+
∫ 0

t0

dt ′{MG(k,t − t ′)∂t ′Č(k, − t ′) − [∂t ′MC(k,t − t ′)]Ḡ(−k, − t ′)}, (4.5)

with t0 → −∞ taken into account. The second term on the right-hand side includes V’s through the memory kernels, which we
rewrite by substituting Eqs. (4.3) and (4.4). Subsequently, introducing W by Vpq

k = D∗k2Wkpq and making use of the symmetry
of W [see Eq. (2.13)], after some algebraic manipulation, we find

[the integrand in the second term on right-hand side of Eq. (4.5)]

= 4L2

N
D2

∗k
2
∑

p+q+k=0

W 2
kpq[q2Ḡ(−q,t − t ′)∂t ′Č(k, − t ′) − k2Ḡ(k, − t ′)∂t ′Č(q,t − t ′)]

= 4L2

N
D2

∗k
2
∑

p+q+k=0

W 2
kpq{q2Ḡ(−q,t − t ′)[∂t ′Č(k, − t ′) − α0k

2Ḡ(k, − t ′)]

− k2Ḡ(k, − t ′)[∂t ′Č(−q,t − t ′) − α0k
2Ḡ(−q,t − t ′)]}. (4.6)

Then Eq. (4.5) can be replaced with a simpler relation,

∂t Č(k,t) + α0k
2Ḡ(k,t) = 0 (for ∀k), (4.7)

in the sense that both sides of Eq. (4.5) vanishes if Eq. (4.7)
holds, with Eq. (4.6) taken into account, of course. The
constant α0 is determined to be α0 = D∗/L2 by the initial
condition.

Taking notice of the property of Eq. (2.12) that the
propagator Ḡ is equivalent to the response to the probe
force, we note that Eq. (4.7) states the FDT, which can be
derived directly from the Langevin equation (2.12) through
the distribution function [54,81,82]. In other words, the FDT

is already included in Eqs. (4.1) and (4.2). This inclusion is a
remarkable feature of Eq. (2.12), or Eq. (2.8), if we compare
it with an analogous calculation starting from the Fourier
representation of the “Eulerian” equation (2.2), as opposed
to the “Lagrangian” equation (2.8). In the “Eulerian” case, the
step corresponding to the rearrangement of Eq. (4.5) turns out
to be inconsistent with the FDT [80]. This inconsistency is
due to the hidden dependence of fρ(x,t) on ρ in its statistics
in Eq. (2.3), known as the multiplicative noise [50], which
makes the “Eulerian” equation intractable with a DIA-like
expansion. Contrastively, the statistics of fL on the right-hand
side of the “Lagrangian” equation (2.8) is given by Eq. (2.9),
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which is independent of ψ . This is why the DIA equations (4.1)
and (4.2) successfully reproduce the FDT.

Equation (4.7) allows us to eliminate Ḡ from Eq. (4.1) and
thereby elude the difficulties mentioned at the beginning of
this subsection, as it implies

Ḡ(k,t) = − 1

α0k2
∂t Č(k,t), (4.7′)

from which we can show

MG(k,s) = − 1

α0k2
∂sMC(k,s).

Then we substitute it into Eq. (4.1), and the result reads(
∂t + D∗

S
k2

)
Č

= 1

α0k2

[
MC(k,0)Č −

∫ t

0
dt ′MC(k,t − t ′)∂t ′Č(k,t ′)

]
.

The source of the ultraviolet divergence is now isolated
in MC(k,0), which we should discard, as this term seems
to have originated from an inappropriate treatment of the
self-interaction in DIA [83]. Thus we arrive at the following
MCT equation:(

∂t + D∗
S

k2

)
Č(k,t) = −

∫ t

0
dt ′M(k,t − t ′)∂t ′Č(k,t ′), (4.8)

where

M(k,s) = MC(k,s)

α0k2

= 2L4

N
D∗k2

∑
p+q+k=0

W 2
pqkČ(p,s)Č(q,s) (4.9)

with the summation taken over (p,q) satisfying the triad
condition p + q + k = 0.

C. Solution to MCT equation

Now the finite-time correction to Eq. (3.3) for 2pDC is
within our reach: All we need to do is to solve Eq. (4.8) and
substitute the solution Č into the extended Alexander-Pincus
formula (3.2). Although one may switch to numerical remedy,
here we prefer to stick to the fully analytical calculation,
which is possible by assuming the dilute limit (ρ0σ → +0;
S = 1, Dc = D). This does not trivialize the problem, because
nonlinearity still exists due to

1

1 + ψ
= 1 − ψ + ψ2 − · · · (4.10)

and therefore the right-hand side of the MCT equation (4.8)
does not vanish. Let us evaluate it using the linear solution
in Eq. (2.17) as the zeroth approximation valid for t → +∞,
which now reads

Č(k,t) � 1

L2
e−D∗k2t (4.11)

as S = 1.
To start with, we calculate M(k,s) by substituting the ap-

proximate solution into Eq. (4.9). Parametrizing the variables

in the summation as (p,q) = (−k/2 + m, − k/2 − m) and
denoting the wave number interval with �m = 2π/N , we find

M(k,s) = D∗k2

π

∑
m

exp

[
−D∗

(
1

2
k2 + 2m2

)
s

]
�m.

The summation is then replaced with an integral, which readily
yields

M(k,s) = D∗k2

√
2πD∗s

e− 1
2 D∗k2s . (4.12)

At this point, the nonlinear integrodifferential equation,
consisting of Eqs. (4.8) and (4.9), is approximated with a
linear integrodifferential equation that can be obtained by
substituting Eq. (4.12) into Eq (4.8). The equation is then
formally solved in terms of Laplace transform, but its inversion
is difficult to perform analytically. Thus we need a further
approximation: using both Eq. (4.11) and Eq. (4.12), we have

[right-hand side of Eq. (4.8)]

= D2
∗k

4

L2
e−D∗k2t

∫ t

0

dt ′√
2πD∗(t − t ′)

e+ 1
2 D∗k2(t−t ′), (4.13)

so Eq. (4.8) is now approximated by a linear inhomogeneous
differential equation.

Though the integral in Eq. (4.13) can be evaluated rig-
orously in terms of the error function with an imaginary
argument, it is more convenient to evaluate it by expanding
the integrand in powers of t ′ − t , as the main contribution to
the integral comes from the vicinity of t ′ = t . Thus we find

[right-hand side of Eq. (4.8)]

= D∗k4

L2
e−D∗k2t

[√
2

π
D∗t + k2

3

√
(D∗t)3

2π
+ · · ·

]
,

which allows us to integrate Eq. (4.8) as

Č = 1

L2
e−D∗k2t

×
[

1 + 2

3

√
2

π
k4(D∗t)3/2 + 2

15
√

2π
k6(D∗t)5/2 + · · ·

]
.

(4.14)

It should be possible, at least in principle, to substitute
Eq. (4.14) into Eq. (4.9) and the right-hand side of Eq. (4.8)
for the second approximation, but for the present let us content
ourselves with this first approximation and go ahead.

However, some remarks on the properties of Wkpq with
finite ρ0σ may be in order here. At first glance,

Wkpq = 1 + k

pq
sin ρ0σk + p

kq
sin ρ0σp + q

kp
sin ρ0σq

might be reminiscent of the MCT vertex for fluids in disordered
porous media [59,84] and give an impression that it exhibits
some singularity for k → 0, but in actuality it does not. Under
the condition that k + p + q = 0, we have

Wkpq � 1 + ρ0σ
k3 + p3 + q3

kpq
= 1 + 3ρ0σ,

which is evidently finite; the full treatment of the trigonometric
functions in Wkpq does not change the result. This behavior is

062108-10



ANALYTICAL CALCULATION OF FOUR-POINT . . . PHYSICAL REVIEW E 88, 062108 (2013)

parallel to that of the vertex for the corresponding Eulerian
MCT. The one-dimensional Eulerian MCT for rigid particles
with diameter σ is given by Eq. (1.1) and

M(k,s) ∝ Dk2
∑(

sin σp + sin σq

k

)2

F (p,s)F (q,s);

using p + q + k = 0, we have (sin σp + sin σq)/k � −σ for
the long-wave behavior of the vertex, which exhibits no
singularity. Thus it is found that both the Lagrangian MCT
vertex for Č and the Eulerian MCT vertex for F are regular
for long waves. The long-wave singularity responsible to the
anomalous diffusion resides not in the memory kernel but in
the modified Alexander-Pincus formula (2.15).

One may also wonder whether the Lagrangian MCT
equation (4.8) exhibits an MCT transition and, if it occurs,
what would be its consequence. A full study of the possible
MCT transition, which means emergence of a nontrivial fixed
point in the MCT dynamics, requires numerical evaluation of
the wave-number integral in Eq. (4.9) and therefore out of
the scope of the present study. However, we may conjecture
that the MCT transition would not affect the results of the
present analysis seriously. Since the MSD given by the
modified Alexander-Pincus formula (2.15) is dominated by
the long-wave components of Č, which is supposed to evolve
very slowly, the behavior of 〈R2〉 may remain essentially
unchanged, at least within some limited time scale, even if
an MCT transition occurs and Č(k,t) is destined to have some
nonzero value for t → +∞. Numerical studies of Eq. (4.8)
may clarify the validity range of this conjecture and will be
reported elsewhere.

D. Effects of the nonlinear term on transient
behaviors of MSD and 2pDC

Since Č is now available in Eq. (4.14) as a result of nonlinear
closure theory, we can evaluate 〈R(ξ,t)R(ξ ′,t)〉 using the
formula (3.2). The procedure is analogous to that for the
derivation of Eq. (3.3) from the linear solution in Eq. (2.17).

If we take into account the term of order (D∗t)3/2 and ignore
that of order (D∗t)5/2 in Eq. (4.14), by substituting Eq. (4.14)
into the formula (3.2) we obtain

〈R(ξ,t)R(ξ ′,t)〉 = 2

ρ0

√
Dt

π
exp

[
− (ξ − ξ ′)2

4ρ2
0Dt

]

− |ξ − ξ ′|
ρ2

0

erfc
|ξ − ξ ′|
2ρ0

√
Dt

−
√

2

3π
ρ−2

0

×
[

1 − (ξ − ξ ′)2

2ρ2
0Dt

]
exp

[
− (ξ − ξ ′)2

4ρ2
0Dt

]

= σ
√

Dt ϕ(θ ) −
√

2

3π
ρ−2

0 (1 − 2θ2)e−θ2
,

(4.15)

where θ = (ξ − ξ ′)/(2ρ0

√
Dt) and the function ϕ is defined in

Eq. (3.3′) with S = 1. As a special case for ξ = ξ ′, Eq. (4.15)
gives correction to 〈R2〉 ∝ √

t ,

〈R2〉 = 2

ρ0

√
Dt

π
−

√
2

3π
ρ−2

0 . (4.16)
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FIG. 5. (Color online) Comparison of Eq. (4.16) with numerical
data, by means of rescaled plotting of MSD versus time for three
different values of the density: ρ0 = N/L = (1/4)σ−1, (1/8)σ−1, and
(1/16)σ−1. The number of the particles is fixed at N = 215 = 32768.
The solid (red) line represents the prediction of the nonlinear theory
in Eq. (4.16), which is compared with the Hahn-Kärger-Kollmann
law (1.4) in the dotted line. See the text for the reason why S(0) is
included in the rescaling. The inset shows the same data (ρ0σ = 1/4,
1/8, and 1/16, from bottom to top) without rescaling, using the simple
nondimensionalization with σ 2 and σ 2/D.

The first term reproduces Eq. (1.4) with S = 1, while the
second term gives a correction to it. The contribution from
the higher-order terms in Eq. (4.14) slightly enlarges the
coefficient of the correction term, but the form of Eq. (4.16)
itself is not affected. It is interesting to note that Eq. (4.16), if
combined with the relation [24,85]

d2〈R2〉
dt2

= 2〈u(t)u(0)〉 (4.17)

with u = dR/dt , gives the same expression as the asymptotic
one without the correction term.

While the first term in Eq. (4.16) is a mere reconfirmation
of the classical result, the second term is something nontrivial
which should be verified numerically. Without the second
term in Eq. (4.16), plotting 〈R2〉 against

√
t would yield

a graph of a straight line passing through the origin. In
actuality, the second term in Eq. (4.16) shifts the asymptotic
straight line, making a positive intercept on the

√
t axis and

a negative intercept on the 〈R2〉 axis. These intercepts are
already visible in the inset of Fig. 1 and also in Fig. 5
(a plot analogous to Fig. 1 but with the axes rescaled, as
we explain below). The presence of the correction itself
is probably not surprising, because the short-time diffusion
should behave as 〈R2〉 ∝ Dt before the collisions begin to
take effect; it is more noteworthy that, since this single-
particle behavior plays the role of the “mode-coupling” in the
Fourier representation, the description of the transient behavior
requires a nonlinear theory such as MCT. Viewed in the light
of the thermodynamic potential, the nonlinearity in Eq. (4.10)
originates from that of the configurational entropy. This non-
linearity is captured by adopting ψ(ξ,t) as the field variable,
which could be interpreted as a kind of kinetic free-volume
theory.
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The prediction of the nonlinear theory in Eq. (4.16),
including its dependence on the density ρ0, is compared
with the computed MSD in Fig. 5. Having noticed that the
quantitative comparison requires us to take into account the
effects of the finite density, we revived S = S(0) in the first
term of Eq. (4.16) and plotted ρ2

0 〈R2〉 against Sρ0
√

Dct .
The MSD computed for three different values of density
(ρ0σ = 1/4, 1/8, and 1/16; see the inset) seem to collapse
into a single curve whose asymptote is the straight line given
by Eq. (4.16). Improvement of Eq. (4.16) accounting for the
small deviation from the straight line, as well as justification
for the revival of S in Eq. (4.16), will be performable with a
careful numerical calculation of the MCT equation, which will
be reported elsewhere.

V. OTHER FORMS OF FOUR-POINT CORRELATION
DERIVED FROM 2pDC

A. Behavior of 2pDC as a function of the initial distance

As we have already shown in Fig. 4, the theoretical
prediction for 〈R(ξ,t)R(ξ ′,t)〉 is almost perfectly consistent
with numerical calculation. However, taking the label distance
ξ − ξ ′ or θ = (ξ − ξ ′)/[ρ0λ(t)] for the horizontal axis of
the graph is sometimes inconvenient, for example, when we
try to compare the result with two-dimensional or three-
dimensional numerical calculations. For this purpose, it may
be more convenient to re-express the result as a function of
the initial distance, Xj (0) − Xi(0), and plot the two-particle
displacement correlation against [Xj (0) − Xi(0)]/λ(t). Such a
graph is shown in Fig. 6. The analytic curve in Fig. 6 is drawn
by simply equating [Xj (0) − Xi(0)]/λ(t) with θ in Eq. (3.3′).
This seems to be valid for t → +∞, but a considerable
discrepancy is seen for shorter times.

-2 -1 0 1 2

0

1

2

3

Xj(0) − Xi(0) λ(t)

R
(X

i,
t)

R
(X

j
,t

)
(σ
√

D
c
t)

FIG. 6. (Color online) Equation (3.3) compared with simulation
data (with the same N and ρ0 as in Figs. 1 and 4), on the basis of
the initial distance Xj (0) − Xi(0) instead of the particle numbering.
The solid (red) line shows the theoretical prediction for t → +∞ by
Eq. (3.3), while the simulation data are plotted with the same symbols
as in Fig. 4.

Although Xj (0) − Xi(0) and (�j − �i)/ρ0 are equal on
average, generally they differ, as is evident from the relation

Xj (0) − Xi(0) =
∫ �j

�i

1 + ψ(ξ,0)

ρ0
dξ. (5.1)

This difference is responsible for the discrepancy in Fig. 6
for finite t . Taking this difference into account, we can
evaluate 2pDC theoretically as a function of the initial distance.
Although its complete evaluation is out of the scope of the
present paper, as it seems to involve wave-number integrals
that are difficult to perform analytically, we can outline the
procedure of the calculation at least.

With the value of the initial distance denoted with d̃ , the
function that gives 2pDC, which we denote with XR(d̃,t), is
formally written as

XR(d̃,t) =
〈

1

L

∫∫
δ(x1 − x2 − d̃ )R(ξ1,t)R(ξ2,t)dx1dx2

〉
,

(5.2)

where

x1 = x1(ξ1) = x(ξ1,0), x2 = x2(ξ2) = x(ξ2,0),

and therefore

x2 − x1 = 1

ρ0

[
ξ2 − ξ1 +

∫ ξ2

ξ1

ψ(ξ,0)dξ

]
.

Changing the variables of the integral in Eq. (5.2) from (x1,x2)
to (ξ1,ξ2) with

dx1 = 1 + ψ(ξ1,0)

ρ0
dξ1, dx2 = 1 + ψ(ξ2,0)

ρ0
dξ2,

and introducing the Fourier representation of the δ function,

δ(x̃) = 1

L

∑
q

e−iqx̃

(
q

2π/L
∈ Z

)
,

we rewrite Eq. (5.2) as

XR(d̃,t) =
∑

k

eikρ0d̃〈R̃(k,t)R̃(−k,t)〉, (5.3)

where k = q/ρ0 and

R̃(k,t) = 1

L

∫ L

0
eiqxR(ξ (x,0),t)dx

= 1

N

∫ N

0
exp

(
ik

[
ξ +

∫
0
ψ dξ

])
R(ξ,t) (1 + ψ)dξ,

(5.4)

with

ψ = ψ(ξ,0),
∫

0
ψ dξ =

∫ ξ

0
ψ(ξ̃ ,0)dξ̃ .
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Then we express ψ in Eq. (5.4) with ψ̌ in Eq. (2.11) and also
substitute Eq. (3.1). After some rearrangement, we obtain

R̃(k,t) = L

N
× ψ̌(k,t) − ψ̌(k,0)

−ik

+ L

N

∑
p+p′=k

ψ̌(p,0)[ψ̌(p′,t) − ψ̌(p′,0)]

ip
+ O(ψ̌3).

(5.5)

Substituting Eq. (5.5) into Eq. (5.3) yields an expression
of XR(d̃,t) that consists of two parts: The first part sim-
ply reproduces Eq. (3.2) with ξ − ξ ′ replaced with ρ0d̃,
and the second part involves triple correlations such as
〈ψ̌(−p,0)ψ̌(−q,t)ψ̌(−k,t)〉 with p + q + k = 0. These triple
correlations can be calculated with DIA, and, as a result,
we obtain a correction term whose magnitude relative to the
leading term decreases in proportion to t−1/2 for t → +∞.
Detailed results of the calculation will be reported elsewhere.

We note that the definition of XR in Eq. (5.2) is readily
generalized to three-dimensional cases, as

X(d̃,t) =
〈

1

L3

∫∫
δ3(r12 − d̃)R1 ⊗ R2 d3r1d

3r2

〉

=
〈

L3

N2

∑
i

∑
j

δ3(rij − d̃)

g2(rij )
Ri ⊗ Rj

〉
, (5.6)

where rij = rj − ri , Ri = R(ξ i ,t) = ri(t) − ri(0), and

g2(r) = L3

N2

∑
i ′

∑
j ′

δ3(rj ′ − ri ′ − r).

This X is similar to the quantity calculated by Donati et al. [44]
(gu in their notation), except for two main differences: In their
gu, the two-body density g2 is absent in the denominator, and
a product of scalar displacements, |Ri | |Rj |, is used instead
of the tensor product Ri ⊗ Rj . The presence or absence of g2

is not essential, though it indeed makes it difficult to define
X for small values of the initial distance, |d̃| < σ , in which
we are not interested. The other difference is crucial: The
absolute value signs obstruct analytical evaluation of gu even
in the one-dimensional cases. Besides, the tensorial character
of X can provide useful information on the geometry of the
collective motion in the three-dimensional glassy systems. We
will return to this point in Sec. VI, but before that, let us relate
the one-dimensional 2pDC to χ4.

B. Calculation of χ4 from 2pDC

With the knowledge of the displacement correlation
〈R(ξ,t)R(ξ ′,t)〉 in Eq. (4.15), we can also calculate a one-
dimensional version of a quantity which is commonly referred
to as χ4(t). To be precise, we consider the Q-based χ4 [86,87],
as opposed to other variants of χ4 such as the F -based χ4

[18,88] defined through the fluctuation of the intermediate
scattering function F or its self part. If we consult Glotzer et al.
[86] and adapt their equations (4) and (5) for one-dimensional
cases, we have

Q =
∑

i

∑
j

δ̄a(Xj (t) − Xi(0)), (5.7)

χ4(t) = L

kBT

〈Q2〉 − 〈Q〉2

N2
, (5.8)

with some radius a as a criterion of overlapping; δ̄a denotes the
overlapping function, which has a finite value around r = 0
and vanishes for r � a.

This type of four-point correlation function has been
studied by many authors [86,87,89–92] as an indicator of
cooperative motion in glassy systems. To our knowledge, most
of these studies are based on direct numerical simulations of
particle systems and there are also experiments grounded on
observation of particles, but analytical calculations are quite
rare. What makes it difficult to calculate χ4 analytically is that,
in the usual formulation, the four-point correlation implies
a four-body correlation. More concretely, as Q in Eq. (5.7)
already contains double summation, calculation of χ4 requires
dealing with quadruple summation whose summand involves
four particles simultaneously; this would be a hopeless task.

To facilitate calculation of four-point correlation, here we
introduce two modifications to Eqs. (5.7) and (5.8). First, we
target the “self part” (i = j ) of Q and its contribution to χ4,
denoting them as [93]

QS =
∑

i

δ̄a(Ri(t)), χS
4 (t) = L

kBT

〈
Q2

S

〉− 〈QS〉2

N2
. (5.9)

Since Glotzer et al. [86] reported that the contribution of the
self part (i = j ) is dominant over that of the distinct part (i 
=
j ) in the three-dimensional case, it is justifiable to calculate
χS

4 instead of χ4. Second, as the overlap function δ̄a , we adopt
a Gaussian function

δ̄a(r) = e−r2/a2
(5.10)

instead of the step function used by Glotzer et al. [86]. We
note that, although there exists a variant of χ4 from whose
definition the probe length can be totally expelled [72], the
probe length a is indispensable to QS.

From Eq. (4.15) we already know the covariance 〈RiRj 〉
for all (i,j ) and for arbitrary t (within a certain limitation,
of course). The problem is how to evaluate 〈QS〉 and 〈Q2

S〉
in Eq. (5.9) using this information. This is possible, if we
assume that (R1,R2, . . . ,RN ) is subject to a joint (multivariate)
Gaussian distribution, which is determined uniquely as the
covariance is given and the mean is known to vanish. For
the purpose of calculating 〈Q2

S〉, it suffices to determine the
two-body distribution function for (Ri,Rj ), which we denote
with

P (Ri,Rj )

= 1

2π
√

�ij

exp

[
−〈R2〉(R2

i + R2
j

)− 2〈RiRj 〉RiRj

2�ij

]
,

where

�ij = 〈R2〉2 − 〈RiRj 〉2, 〈R2〉 = 〈R2
i

〉 = 〈R2
j

〉
.
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Using this joint distribution function P (Ri,Rj ) and adopting
Eq. (5.10) for the overlapping function, we obtain

〈δ̄a(Ri)〉 =
∫

δ̄a(Ri)P (Ri,Rj )dRidRj = 1√
1 + 2〈R2〉

a2

(5.11)

and

〈δ̄a(Ri)δ̄a(Rj )〉 =
∫

δ̄a(Ri)δ̄a(Rj )P (Ri,Rj )dRidRj

= 1√(
1 + 2〈R2〉

a2

)2 − 4〈RiRj 〉2

a4

; (5.12)

note that Eq. (5.12) is confirmed separately for i 
= j and
i = j . With Eq. (5.11) and (5.12), now we can evaluate χS

4 in
Eq. (5.9), taking the uniformity of the system into account. As
a result, we obtain

χS
4 = L

N2kBT

{∑
i

∑
j

〈δ̄a(Ri)δ̄a(Rj )〉 −
[∑

i

〈δ̄a(Ri)〉
]2}

= L

NkBT

∑
l

⎡
⎣ 1√(

1 + 2〈R2〉
a2

)2 − 4〈RiRi+l〉2

a4

− 1

1 + 2〈R2〉
a2

⎤
⎦ .

(5.13)

Note that the double summation
∑

i

∑
j 〈δ̄a(Ri)δ̄a(Rj )〉 in

Eq. (5.13) is a result of the simplification by the replacement of
χ4 with χS

4 (retaining only the self part): If this simplification
were not introduced, we would have to struggle with a
quadruple summation such as

∑
i

∑
j

∑
k

∑
l

〈δ̄a(Xj (t) − Xi(0))δ̄a(Xl(t) − Xk(0))〉,

whose evaluation would be much less workable than
〈δ̄a(Ri)δ̄a(Rj )〉.

Before applying Eq. (5.13) to SFD, we can test it with free
Brownian particles. From the Langevin equation obtained by
setting V = 0 in Eq. (1.2), we have

〈RiRj 〉 =
{

〈R2〉 = 2D[t − τB(1 − e−t/τB )] (i = j )

0 (i 
= j ),

(5.14)

where τB = m/μ. This is substituted into Eq. (5.13), which
yields

χS
4 = 1

ρ0kBT

(
1√

1 + 4〈R2〉/a2
− 1

1 + 2〈R2〉/a2

)

= (
χS

4

)
solo (5.15)

for free Brownian particles; note that all the contribution comes
from the term with l = 0 in Eq. (5.13), which we refer to as
the “solo” part. Taking notice of the t dependence of 〈R2〉 in
Eq. (5.15) and making some calculation, we find (χS

4 )solo to
have a peak at the instant when 〈R2〉 = 2.6 a2 approximately;
see the short-time side of Fig. 7(a). Obviously, this short-
time peak is irrelevant to particle interaction. After this peak,
(χS

4 )solo decreases monotonically toward zero, in proportion to
t−1/2 for t → +∞.

Now let us calculate χS
4 for SFD, combining Eq. (5.13) with

the result for 〈RR〉 in Eq. (4.15). We evaluate χS
4 in Eq. (5.13)

as a sum of the “solo” part (l = 0) and the collective part
(contribution from the terms with l 
= 0). The solo part is given
by Eq. (5.15) and depends on 〈R2〉 alone, for which we use
Eq. (4.16) that was obtained by setting ξ = ξ ′ in Eq. (4.15). As
a matter of course, we must exclude cases of very short time,
for which Eq. (4.16) predicts 〈R2〉 to be negative; this is out of
the validity range of Eq. (4.16). Subsequently, to evaluate the
contribution from the terms with l 
= 0, we use the asymptotic
form of Eq. (4.15) for t → +∞, expressed as a self-similar
solution in Eq. (3.3′),

〈RiRi+l〉 � 2
√

Dt

ρ0
ϕ(θl), θl = l

ρ0λ(t)
= l�θ.

The collective part is thereby written as

(
χS

4

)
coll �

1

ρ0kBT
× 1

1 + 2〈R2〉
a2

∑
l 
=0

⎧⎨
⎩ 1√

1 − [ ϕ(θl )
ϕ(0)

]2 − 1

⎫⎬
⎭ .

The number of particles contributing to the sum is estimated
to be Ncoll ∼ 1/�θ = ρ0λ(t), which yields, approximately,

(
χS

4

)
coll ∼ 1

ρ0kBT
× ρ0λ(t)

1 + 2〈R2〉/a2
(5.16a)

∼ a2

kBT
× λ(t)

〈R2〉 ∼ a2ρ0

kBT
(5.16b)

for t → +∞. More precisely, the sum can be evaluated by
rewriting it as

∑
l 
=0

(· · · ) = 2ρ0λ(t)
∞∑
l=1

⎧⎨
⎩ 1√

1 − [ ϕ(θl )
ϕ(0)

]2 − 1

⎫⎬
⎭�θ

→ 2ρ0λ(t)
∫ ∞

0

{
1√

1 − π [ϕ(θ )]2
− 1

}
dθ
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FIG. 7. (Color online) Short-time and long-time behavior of χS
4 for SFD, compared with the analytical prediction given by the sum of

(χS
4 )solo in Eq. (5.15) and (χS

4 )coll in Eq. (5.17), with the effect of S 
= 1 and Dc/D 
= 1 taken into account. The probe length (radius of the
overlapping function) was chosen as a = 0.5 σ . The time is nondimensionalized with σ 2/D. (a) Short-time behavior for the case with N = 256
and ρ0 = N/L = (1/4) σ−1. The computed data are plotted with circles and the analytical prediction is shown with a solid (red) line. (b)
Long-time behavior for ρ0 = (1/4)σ−1 (plotted with circles) and for ρ0 = (1/16)σ−1 (plotted with crosses). The solid lines show analytical
prediction for the two cases. Note the agreement between the computed results and the theoretical curves except for the transient discrepancy,
as well as the asymptotic behavior of the curves that takes the form of a straight line in the graph, exhibiting the decay of (χS

4 )solo in proportion
to t−1/4 and the finite value of (χS

4 )coll that remains for t → +∞.

and using the numerical value of the integral∫ ∞

0

{
1√

1 − π [ϕ(θ )]2
− 1

}
dθ = 0.364124;

thus we obtain(
χS

4

)
coll = 1

ρ0kBT
× ρ0λ(t)

〈R2〉/a2
× 0.364124

= 1

ρ0kBT
× √

πρ2
0a

2 × 0.364124

= 0.6454 × ρ0a
2

kBT
(5.17)

and χS
4 = (χS

4 )solo + (χS
4 )coll, with (χS

4 )solo given by substi-
tuting Eq. (4.16) into Eq. (5.15). If we take S into account
according to Eq. (3.3′), with the reservation that both Eq. (3.3′)
and Eq. (5.17) are valid only asymptotically, the right-hand
side of Eq. (5.17) is multiplied by S−1.

The analytically calculated χS
4 and its numerical values

are compared in Fig. 7. The effect of finite ρ0 that makes
S and Dc/D differ from unity is taken into account (see
Table I and Appendix A). The peak in the short-time regime
has nothing to do with the slow dynamics, as it appears even
for free Brownian particles. After this peak, (χS

4 )solo decreases
slowly, asymptotically in proportion to t−1/4, while, reflecting

TABLE I. Numerical values of S(0) and Dc/D computed for three
different values of the density.

ρ0 (1/4)σ−1 (1/8)σ−1 (1/16)σ−1

1 − 2ρ0σ 0.500 0.750 0.875
S(0) 0.624 0.787 0.888
Dc/D 1.59 1.27 1.12
S(0)

√
Dc/D 0.79 0.89 0.94

the endless growth of the cluster size, (χS
4 )coll remains finite for

t → +∞. The behavior of the numerical solution is consistent
with this analytical prediction.

The limiting value of χS
4 for t → +∞, given by (χS

4 )coll

in Eq. (5.17), is an increasing function of the density ρ0. This
conclusion remains unchanged also if the effect of S 
= 1 is
included, because 1/S is also an increasing function of ρ0.
In conformity with the theoretical prediction, Fig. 7(b) shows
that the value of χS

4 is greater for ρ0 = (1/4)σ−1 (circles) than
for ρ0 = (1/16)σ−1 (crosses) if t is sufficiently long.

VI. DISCUSSION

A. Quantification of collective dynamics

We have studied a one-dimensional system of Brownian
particles with repulsive interaction, regarding it as a simplified
model of the cage effect. On one hand, the cage confines
every particle in a narrow space. On the other hand, since
the particles are mutually caged and therefore forbidden to
move uncooperatively, they must either wait still or move
together. Thus the cage effect involves correlated motion of
numerous particles, which is visualized as dynamical clusters
in space-time diagrams (Fig. 3), with the diffusive correlation
length λ(t) = 2

√
Dct . The substance that diffuses is not the

particles but the space between them, represented by ψ in
our theory. The 2pDC is shown to be a useful indicator
of the correlated motion. Asymptotically, 2pDC becomes
self-similar: It suggests a matryoshka-like structure, such that
the small cages are confined in larger cages, which, in turn,
are caught in still larger and slower cages.

Using the analytical result for 2pDC which is valid
both transiently and asymptotically, we demonstrated how
to calculate the QS-based χ4 (denoted with χS

4 ). Despite
the endless growth of λ(t) and the absence of α relaxation,
the result in Eq. (5.17) shows that χS

4 converges to some
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constant for t → +∞. An implication of Eq. (5.17) is that χS
4 ,

and probably χ4 in general, does not give a straightforward
representation of the cluster size. Indeed, λ(t) is in the
numerator of Eq. (5.16) or (5.17), but the result is modified by
the denominator, or a prefactor 1/(1 + 2〈R2〉/a2) originating
from 〈QS〉2, which cancels the temporal growth of the cluster
size. In three-dimensional systems, a direct relation between
χS

4 and the cluster size is expected only for some limited time
scales corresponding to the plateau of the MSD.

B. Comparison with different theories of SFD

Among the problems of diffusion in confined geometries
[7], SFD has occupied a special position which has attracted
researchers from various fields of science and with a variety of
mathematical approaches. Let us review some of their works
briefly, with which, subsequently, the present theory will be
compared.

In the oldest type of theory [94], the single-file system
was modeled with an array of free Brownian particles
interchanging their labels upon collision and analyzed with
a technique that makes a full use of the one-dimensional
geometry, such as the Jepsen line [29]. In this line of argument,
Hahn and Kärger [25] showed that MSD for SFD can be
obtained from the corresponding free-particle dynamics with
the relation 〈R2〉 ∝ 〈|Rfree|〉, taking into account that the
constant of proportionality depends on the particle diameter.

Later, theories in the Fourier space emerged. The concise
theory by Alexander and Pincus [23] is of this type. Generally
speaking, if the spatiotemporal dynamics of the system is
described by a linear equation and the system is translationally
invariant, the Fourier or Fourier-Laplace approach is a quite
natural choice. Thus, starting from the “diffusion-noise”
equation, which is a linear Langevin equation for the density
ρ(x,t), Taloni and Lomholt [55] calculated MSD via the
velocity correlation in Eq. (4.17), and Lizana et al. [36]
showed that the linear dynamics is reducible to a fractional
Langevin equation. These works rely on the assumption of
linear dynamics, as is evident in the case of Lizana et al.
[36], who denominate it the harmonization technique. We
should be cautious with limitations of the harmonization,
however, especially when the interparticulate potential V (r)
has a nonanalytic point as in Eq. (A1) or in the rigid-sphere
potential, as was pointed out by Ikeda et al. [72].

The simplest description based on the linear “diffusion-
noise” equation cannot account for the finite-time correction
which should certainly exist according to our particle-based
computations. More refined linear theories may succeed in
interpolating two limiting cases of Dt � 1/ρ2

0 and Dt �
1/ρ2

0 ; let us leave them aside, however, because interpolations
are usually less informative than phenomenologies. Among
phenomenologies on transient behavior of SFD, the theory
of van Beijeren et al. [24] deserves special attention. This
theory deals with SFD on a lattice, on the basis of the
picture of migrating vacancies and making use of Eq. (4.17).
The approximation of independently diffusing vacancies leads
readily to the asymptotic law, 〈R2〉 ∝ √

t . For the cases of
finite density of vacancies, van Beijeren et al. [24] noticed
that a cluster of vacancies may be formed and thereby a
kind of memory effect may arise. Instead of developing a

systematic treatment of the memory, however, they assumed
some phenomenological rules about the dynamics of a vacancy
cluster and thereby calculated 〈R2〉 for all t . We note that the
picture of diffusing vacancies is both conceptually suggestive
and practically useful. An asymptotic theory based on the
vacancy picture can be very concise [95]. The idea of migrating
defect has been used also in problems other than SFD, such
as dielectric relaxation of supercooled isoamyl bromide [96].
In the context of glassy dynamics, this idea is incarnated in
the kinetically constrained models, which can be regarded as
a kinetic version of the free-volume theory of glasses [11,97].

A systematic treatment of the memory effect necessitates
a term with time integral. Though such a term arises in
the fractional Langevin equation [36], its physical interpre-
tation is not straightforward. Rallison [32] proposed another
phenomenological theory, whose memory integral can be
understood quite clearly. Suppose that n Brownian particles
are strongly interacting and moving together. Then it is easily
shown from the Langevin equation that the effective diffusion
coefficient for their center of mass is D/n, in the sense that

d

dt
〈R2〉 = 2D

n
.

By replacing n in the denominator with N (λ) = 1 + ρ0λ,
which is the number of particles within the dynamical
correlation length λ = λ(t), Rallison [32] obtained

〈R2〉 =
∫

0

2Ddt

N (λ)
, λ = λ(t) =

√
4πDt. (6.1)

Upon integration, Eq. (6.1) gives normal diffusion for small
t , and for large t , it gives subdiffusion with a logarithmic
correction term.

The MCT approach provides with a nonlinear theory in the
form of Eq. (1.1) for F and Eq. (1.5) for FS , in which the
memory kernels are approximated with the products of F and
FS . As was mentioned in Sec. II, the mathematical properties
of the MCT kernels are such that they decay exponentially
for the most part. This implies that SFD cannot be described
by the conventional MCT. A possible approach consists in
adopting Eq. (1.1) for F and replacing Eq. (1.5) for FS with
another equation for tracers in which the four-point correlation
is directly taken into account. The theory of Miyazaki and
Yethiraj [37] for rod polymers, as well as Kollmann’s theory
[26], belongs to this category. We note that Kollmann [26]
focused on the long-time behavior and therefore considered
only the long-wave limit of Eq. (1.1), so the nonlinear effect
is ignored except for the change from D to Dc.

The theories of Fedders [22] and Abel et al. [34] could be
termed as a modified MCT approach, in which both Eq. (1.1)
and Eq. (1.5) are essentially retained, but MS is modified.
Fedders [22] noticed that the summation of the diagrams
must be performed with the restriction corresponding to the
“no-passing” rule. In the formulation of Abel et al. [34], this
restriction was taken into account by a kind of reweighting in
diagrammatic expansion. As a result, a wave-number integral
that appears in an expression related to MS (the scaled
irreducible memory function Girr) is changed in a delicate
way. Without the “no-passing” rule, the original integral reads

Girr(k,t) ∝
∫

[1 − cos(p − q)]FS(p,t)F (q,t) dp (6.2)
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and gives normal diffusion asymptotically. This is replaced by

Girr
modified(k,t) ∝

∫
FS(p,t)F (q,t) dp (6.3)

due to the reweighting, and it gives the correct anomalous
diffusion.

Having reviewed main existing theories on SFD, now let
us compare the present theory with them. The present theory
is a nonlinear one, consisting of the Lagrangian MCT equa-
tion (4.8) and the modified Alexander-Pincus formula (2.15).
The adoption of the Lagrangian description enabled us to re-
produce the asymptotic law for MSD and calculate a correction
to it within the liquid-theoretical framework. Some four-point
space-time correlations are also calculated analytically.

One of the main differences between Eq. (4.8) for Č and
the corresponding Eulerian MCT equation (1.1) is that the
diffusing entity in Eq. (4.8) is the “free volume” between the
particles, which is quite analogous to the diffusing vacancies
considered by van Beijeren et al. [24] and also by other authors.
While van Beijeren et al. [24] gave up a systematic treatment
of the memory effects in the vacancy dynamics, the present
theory treats it with a systematic approximation. The modified
Alexander-Pincus formula (2.15) seems to be exact in the limit
of large system size. The formula (2.15) itself is linear in regard
to Č, though there is a hidden nonlinearity in the mapping from
the label distance to the Eulerian-Euclidean distance.

The present theory gives a finite-time correction to the
long-time asymptotic result, as is shown in Eq. (4.16). The
correction slightly differs from that of the phenomenological
equation (6.1) by Rallison [32]: This is probably attributable
to the inaccuracy of λ(t) or N (λ) assumed in Eq. (6.1).
Another issue that requires further consideration is the relation
between the modified Alexander-Pincus formula (2.15) and the
modified MCT equation for FS , which should be understood
somehow in the future.

We emphasize that there are two origins of nonlinearity, and
the present MCT-based approach is capable of treating both of
them in principle. One is the nonlinearity of the configurational
entropy, from which the nonlinearity of 1/(1 + ψ) in Eq. (4.10)
originates. The other is the nonlinearity whose coefficient
involves sin ρ0σk, which can be traced back to the term
including U in Eq. (2.1b) and represents the effect of direct
contact between the particles. Though we have omitted the
analysis of the latter to limit all the results within the range of
analytical calculation, it would be straightforward to deal with
the cases in which these two nonlinearities are present, once a
numerical scheme is constructed.

C. Methodological insight into memory-correlation approaches

In our derivation of Eqs. (4.8) and (4.9) for the Lagrangian
correlation Č and the memory kernel M associated with it,
we took the Langevin equation for the density field as the
starting point and adopted a field-theoretical method akin to the
MSR formalism. While the derived equation itself has a form
parallel to the Eulerian MCT equation (1.1), the derivation
processes are quite dissimilar. In practice, Eq. (1.1) is derived
directly from the microscopic equation of motion by way of
the Mori-Zwanzig projection operator formalism [13–15,98].
This is usually considered to be more convenient than the

field-theoretical derivation, because the latter suffers from the
difficulties due to the multiplicative noise, such as violation
of the FDT. Langevin equations with multiplicative noise may
draw a general criticism for the Itô-Stratonovich dilemma [54],
though it can be avoided when the Onsager coefficient satisfies
a certain condition [50]. Besides, in regard to the treatment of
the noise correlation itself, there seems to be a subtle confusion
in the literature: Compare Eq. (14) in Ref. [49], Eq. (4) in
Ref. [51], Eq. (2) in Ref. [52], and Eq. (6) in Ref. [55]. All these
difficulties have made the Langevin equation for the density
field, such as Eq. (2.2), inconvenient as a starting point.

Interestingly, when the field ψ(ξ,t) is adopted instead
of the conventional density field, the positions of the two
methods are reversed. In contrast to the projection of the
particle motion onto ρ(r,t) =∑j δj (r − rj (t)), which can be
performed naturally, it is not evident how to project the motion
of the particles onto ψ = ρ0/ρ − 1. Direct employment of the
microscopic definition of ρ for the denominator would give rise
to delicate issues concerning the procedure of coarse-graining.
Alternatively, a one-dimensional projection-operator formal-
ism may be possible by using Xj+1 − Xj as the microscopic
definition of ψ , but this leads to another complication, because
this definition of ψ depends on the assumption about the
ordering of the particles. On the side of the field-theoretical
formalism, the difficulty of the multiplicative noise disappears
quite naturally, which has allowed us to derive the Lagrangian
MCT equation without violating the FDT.

Thus the combination of the Lagrangian vacancy field with
the field-theoretical formalism is not less advantageous than
the conventional projection operator route with the Eulerian
density field. The new route that leads to the Lagrangian MCT
deserves further exploration, especially if it may guide us
to some improved theories of three-dimensional systems in
the future. In closing the current section, let us discuss this
possibility.

D. Future directions: Possible relevance to glassy dynamics

We have implemented the Lagrangian description by
explicitly introducing the label variable ξ and thereby con-
structing a stretchable coordinate system that sticks to the
cages everywhere. Probably some aspects of glassy dynamics,
such as dynamical heterogeneity characterizable by bond
breaking [16,92,99], may require the Lagrangian description
by nature when its continuum counterpart is sought.

The Lagrangian description in higher dimensions may not
be so simple as in one-dimensional cases, but it is possible. In
three-dimensional cases, a triplet of label variables (ξ,η,ζ ) is
expected to be related with ρ and Q by equations analogous
to Eq. (2.5); see Eqs. (6.6) and (6.7) in Ref. [30]. Besides, we
could adopt some methods from three-dimensional theories of
turbulence in which Lagrangian correlations are used [61–63].
Turbulence theoreticians have even considered the Lagrangian
dynamics of a tetrad (four material points) [100], whose two-
time correlation involves eight points in the space-time.

In contrast to the “Eulerian” (standard) MCT in which
cage effects are represented by the memory kernel (not
successful in SFD), the Lagrangian theory can dispense with
the memory integral as far as the asymptotic behavior is
concerned. A pivotal role is played by the modified and
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extended Alexander-Pincus formulas in Eqs. (2.15) and (3.2).
Its linear version, namely Eq. (2.18) or its multidimensional
extension, has been used in the context of glassy dynamics
by several authors [18,33], who limited themselves to the
approximation with linear elasticity. Since the Eulerian and
the Lagrangian variables are approximately interchangeable
in the description of small elastic deformation, they did not
bother to distinguish the two descriptions. Needless to say,
this treatment fails when the system is more liquidlike. In an
attempt to introduce the α relaxation into the calculation of
χ4 based on the “elastic” theory, Toninelli et al. feared that
it would make the model inconsistent, because the underlying
lattice, needed to define the deformation field, would be totally
melted [18]. This is probably too pessimistic: the “melting”
of the lattice does not make the theory totally inconsistent but
requires a more careful distinction between the Eulerian and
the Lagrangian coordinates.

There will be another modification to the theory of Toninelli
et al. when departing from the linear elasticity and trying to
consider liquidlike behavior. Their formula corresponding to
Eq. (3.2), namely Eq. (A3) in Ref. [18], reads

〈R(d̃)R(0)〉 ∝
∫

1 − e−Dk2t

k2
e−ik·d̃dnd k (6.4)

in our notation, as they seem to have identified the Langevin
equation for the displacement field with the Edwards-
Wilkinson equation [68]. In regard to Eq. (6.4), we suspect that
the vectorial character of the displacement is not adequately
taken into account. One probably needs to decompose R into
the longitudinal and transverse components and treat them
more carefully. Unlike the two sound modes in elastic solids,
the two modes in the liquids can have quite different natures:
The liquid may resist compression strongly but the resistance
to shear may be much weaker.

In Eq. (5.6), we have proposed to define the three-
dimensional 2pDC as a tensorial quantity X. Due to the
isotropy and the reflectional symmetry of the system, X must
be a sum of the longitudinal and the transverse components as
follows:

X = X‖
d̃ ⊗ d̃

d̃2
+ X⊥

(
1 − d̃ ⊗ d̃

d̃2

)
.

It is quite likely that X‖ and X⊥ will be characterized
by different correlation lengths. Taking the two different
correlation lengths into account, we can extend the present
theory phenomenologically to the three-dimensional cases.
From the inferred distribution function for the displacements
of two particles, shown in Appendix C, we can calculate χS

4
in the same way as in Sec. V B, as

χS
4 ∼ 1

kBT
× (1 − α)2λ‖λ2

⊥(
1 + 2X0

a2

)3 , (6.5)

where λ‖ = λ‖(t) and λ⊥ = λ⊥(t) denote the two correlation
lengths, X0 = X0(t) is related to the MSD of the caged
particles, and α = α(t) stands for the relative number of the
particles that have hopped. Assuming the t dependence of

0
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Dt 2
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χ
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FIG. 8. (Color online) Behavior of χS
4 given by Eq. (6.5),

calculated through the three-dimensional two-body displacement
distribution function by phenomenologically extending the present
theory to the three-dimensional cases. The three curves correspond
to different values of τ : from left to right, τ = 103�2

0/D, 104�2
0/D,

and 105�2
0/D.

these four quantities phenomenologically as

λ‖ =
√

Dt

1 + √
t/τ

, λ⊥ = (1 +
√

t/τ )�0,

X0 = Dt

1 + Dt/�2
0

, α = tanh
t

τ
,

we can plot χS
4 against t for some different values of the time

scale τ . The curves in Fig. 8 reproduce some basic features
of the Q-based χ4 calculated by Lačević et al. [87], such as
the shape of the uphill that looks steeper near the peak in this
semilog plot.

To go beyond the linear theory, nd -dimensional versions of
the extended Alexander-Pincus formula should be developed.
We suppose that the nd -dimensional formula will contain,
instead of Č, correlations of deformation tensor. This is not so
formidable as it may appear, because many components of the
correlation tensor will turn out to vanish or to have the same
value as some other component. The formula is now under
development and will be reported elsewhere.

It is also noteworthy that, in the derivation of MCT, the
difficulty of FDT violation disappeared quite naturally due to
the Lagrangian description. As is pointed out by Miyazaki
and Reichman [50], it has been difficult to construct realistic
models which does not violate the FDT and can incorporate the
effect of structural changes embodied in S(k) at the same time.
Since the “Lagrangian MCT” is now shown to be consistent
with the FDT, study of its behavior for different S(k) may be
quite intriguing.

For possible extensions in the future, we can mention sev-
eral directions. For example, one may include weak attractive
interaction and analyze the effect of the change in S(k) on the
transient behavior of SFD. One may also study nonequilibrium
behavior by driving the particles with an external force
or changing the temperature suddenly. Another interesting
proposal is to permit overtaking as a rare event, which may play
the role of the α relaxation. We performed simulations with
some finite interaction potential, and a preliminary result [101]
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shows that normal diffusion is observed for Vmax = kBT , while
for Vmax = 5kBT the behavior is essentially that of SFD in the
time scale of the simulation. The problem is to make a theory
that can handle the crossover between the two limiting cases.
The theory allowing for rare overtaking events may bridge the
gap between the purely one-dimensional SFD and the behavior
of three-dimensional rod polymers [32,37].

We could also study double-file diffusion, which would
be analogous to two-lane models of traffic flows. If a “lane
interaction” is also introduced, the system would have also
something common with the Matsukawa-Fukuyama model of
friction formulated on a ladder lattice [102,103]. The study
of the double-file diffusion may shed light to many related
systems in which frustration is dynamically created and anni-
hilated, such as template-assisted pattern formation of colloid
particles on a substrate with parallel channels [104], frustrated
Josephson-junction arrays in a magnetic field [103,105], and—
hopefully—three-dimensional dense colloidal suspensions.

VII. CONCLUSION

We have developed a nonlinear theory of SFD with a liquid-
theoretical approach. The theory consists of the modified
Alexander-Pincus formula (2.15) and the Lagrangian MCT
equation (4.8), which gives not only the established Hahn-
Kärger-Kollmann law on the long-time asymptotic behavior
of 〈R2〉 but also a finite-time correction to it, as is shown in
Eq. (4.16). Though we have focused on the nonlinearity of
the configurational entropy, the proposed theoretical scheme
makes it possible to deal with the other nonlinear effects in
the thermodynamic potential as well, if the MCT equation is
solved numerically.

Using this scheme, we have demonstrated how to calculate
four-point space-time correlations, such as the 2pDC and
χS

4 . These four-point space-time correlations quantify the
collective dynamics in SFD as a simple model of ideal cages
involving numerous particles. The long-time behavior of χS

4
exhibits convergence to a finite value, given by (χS

4 )coll in
Eq. (5.17), which is an increasing function of ρ0.

The present work, in combination with the previous one
[30], is intended as several first steps toward a future theory of
three-dimensional glassy liquids, which will make it possible,
for example, to replace the semiphenomenological curves for
χS

4 in Fig. 8 with a first-principle theoretical calculation.
Although the present theory is still embryonic, it already
suggests that one of the important ingredients of the future
theory may be the displacement distribution function of two
or more particles. In the case of computational analysis, we
probably should not insist on some favorite statistical quantity
alone, nor content ourselves with the single-particle van Hove
function, but try to deduce some suitable distribution function
behind the computed statistical quantities. The present analysis
of one-dimensional cage dynamics and the concepts used for it
will provide a useful framework both for analysis of numerical
data and for new development of theory of glassy liquids.
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APPENDIX A: NUMERICAL CALCULATIONS

Here we describe how we integrated the one-dimensional
Langevin equation (1.2) and how we evaluated the statistical
quantities, including 〈R2〉, Dc, and S, from the numerical
solution. As the system contains N particles in a periodic
box of the size L, the mean density is given by ρ0 = N/L.

The potential V in Eq. (1.2) was specified as

V (r) =
{
Vmax

(
1 − |r|

σ

)2
(|r| � σ )

0 (|r| > σ ),
(A1)

with Vmax � kBT . In the present numerical calculations we
adopted the value Vmax = 50 kBT , which is high enough to
forbid the overtaking of the particles completely.

The random forcing is the zero-mean Gaussian noise whose
variance is given as

〈fi(t)fj (t ′)〉 = 2Dδij δ(t − t ′). (A2)

Computationally, the δ function in Eq. (A2) was dis-
cretized with the time interval �tf , and as the values of
(f0,f1, . . . ,fN−1) for each time interval, N Gaussian random
numbers, mutually independent, with the variance 2D/�tf
were generated with the Mersenne twister and the Box-Muller
transform.

With V and fi given as above, in nondimensionalization
of the governing equation using σ , σ 2/D, and m as the units
of length, time, and mass, there appears a nondimensional
parameter specifiable as the ratio of τB = m/μ to the time
unit σ 2/D, which we chose as 1 : 1. Then the time integration
of Eq. (1.2) was performed with a Verlet-like scheme. The
time step �t was taken equal to a hundredth of the time unit
σ 2/D, and the renewal interval of the random forcing, �tf ,
was chosen to be the same as the time step:

�t = �tf = 10−2 × σ 2

D
. (A3)

We also tested some different choices of �t and �tf , such as

(�t,�tf )

σ 2/D
= (10−3,10−3) or (10−3,10−2).

To bring the system into equilibrium, we started each
calculation at t = −Tw, introducing a sufficiently long waiting
time Tw (typically Tw = 104σ 2/D), and waited until t = 0.
Then, from the simulation data recorded for 0 � t � tmax, we
calculated a desired statistical quantity as the average for n

samples extracted from the data by a time shift (as illustrated in
Fig. 9), which is justified on account of the statistical steadiness
of the system. For example, 〈R2〉 is calculated as

〈R(t ′)2〉 = 1

nN

n−1∑
l=0

N−1∑
i=0

[Xi(tl + t ′) − Xi(tl)]
2, (A4)
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sample 0

sample 1

sample 2

sample n − 1

Tw

t = −Tw t = 0 t = tmax

· · ·

t

FIG. 9. Numerical preparation of n samples from a single run.
For equilibration, a sufficiently long waiting time Tw is used before
starting the collection of samples at t = 0. The l-th sample (l =
0,1,2, . . . ,n − 1) originates at tl so t ′ = t − tl [see Eq. (A4)], and the
sample ends at tl + t ′

max, with t ′
max not exceeding Tw .

where tl denotes the starting time of the l-th sample. Care must
be taken so the maximal value of t ′ in Eq. (A4), which equals
the span of each sample, should not exceed the waiting timeTw ;
a result for a longer span will expose the insufficiency of the
equilibration. Typically we chose n = 100 and tl = l × 4Tw/n

so tmax � 5Tw, allowing the samples to overlap.
The computation of XR(d̃,t), shown in Fig. 6, was per-

formed with discretization of Eq. (5.2) in which the δ function
was approximated by a statistical bin 0.5 σ in width. After
recording Xi(tl) for every particle, we classified every pair
(i,j ) into a statistical bin according to the “initial” distance
Xj (tl) − Xi(tl), so the κ-th bin contains the pairs for which
|Xj (tl) − Xi(tl) − d̃κ | is smaller than the half width of the
bin. Then we calculated XR(d̃κ ,t) as the average of Ri(t)Rj (t)
for the κ-th bin, where Ri(t) = Xi(tl + t) − Xi(tl). If, instead,
the sum of the absolute values of the data in each bin were
calculated, this would be analogous to the quantity studied by
Donati et al. [44].

The collective diffusion coefficient Dc is determined from
the temporal decay of the dynamical structure factor F (q,t)
[35]. We computed F (q,t) for 0 < q � ρ0 and made a linear
fit for log F (q,t) = log S(q) − Dcq

2t to obtain the values of
S(q) and Dc as the fitting parameters. After taking an average
for several small values of q, the results are summarized in
Table I. These values are used in evaluation of the theoretical
predictions, such as Eq. (3.3), and for rescaling the horizontal
axis in Fig. 5.

APPENDIX B: DIRECT-INTERACTION APPROXIMATION

The main idea of DIA [78,79] for evaluation of the triple
correlation

〈ψ̌(−p,t)ψ̌(−q,t)ψ̌(−k,0)〉 = 〈ψ̌(p,t)ψ̌(q,t)ψ̌(k,0)〉∗,
with the asterisk denoting the complex conjugate, is to utilize
the property of V = (Vβγ

α ) that, from its N3 components,
almost all are zero because the condition α + β + γ = 0 is
not satisfied. The nonzero components of V constitute what
we call triad interactions; rewriting Eq. (2.12) as

(∂t + μα)ψ̌(α,t) =
∑
β,γ

Vβγ
α ψ̌∗(β,t)ψ̌∗(γ,t) + ρ0f̌L(α,t)

(2.12′)

makes it clearer thatVβγ
α engages in connecting the “triad” that

consists of α, β, and γ . If we visualize each triad interaction
as a triangle on a graph, the property of V is such that no
triangle shares its side with other triangles. Therefore, if we
“switch off” a single triad, say, {p,q,k} (with which we mean
Vpq

k , Vqp

k , Vqk
p , Vkq

p , Vkp
q , and Vpk

q ; note the symmetry in regard
to the interchange of the superscripts, Vpq

k = Vqp

k , etc.), the
direct interactions between the three modes p,q,k are lost.

To concretize this idea, let us suppose that an artificial
forcing term

Iα = −θ (t − t0) ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2Vpq

k ψ̌∗(p,t)ψ̌∗(q,t) (α = k)

2Vqk
p ψ̌∗(q,t)ψ̌∗(k,t) (α = p)

2Vkp
q ψ̌∗(k,t)ψ̌∗(p,t) (α = q)

0 (otherwise),

designed to cancel a single triad {p,q,k}, is applied to the
system given by Eq. (2.12′). We denote the solution to this
artificial system with ψ̌0 = ψ̌0({p,q,k}; α,t). One of the two
main assumptions of DIA is that the three selected modes,
namely ψ̌0(p,t), ψ̌0(q,t), and ψ̌0(k,t) in this case, become
uncorrelated, since the forcing I cancels the direct interactions.
On the other hand, I is regarded as a small perturbation,
because it cancels only a single triad interaction and there
remain still a large number of triads connecting, say, p and q

indirectly. Therefore the difference ψ̌1 = ψ̌ − ψ̌0 is assumed
to be small, which is the second main assumption of DIA.

Due to these assumptions, the triple correlation is expanded
as

〈ψ̌(p,t)ψ̌(q,t)ψ̌(k,0)〉 = 〈ψ̌0(p,t)ψ̌0(q,t)ψ̌0(k,0)〉
+ 〈ψ̌1(p,t)ψ̌0(q,t)ψ̌0(k,0)〉
+ 〈ψ̌0(p,t)ψ̌1(q,t)ψ̌0(k,0)〉
+ 〈ψ̌0(p,t)ψ̌0(q,t)ψ̌1(k,0)〉
+O

(
ψ̌2

1

)
, (B1)

and the zero-th term, 〈ψ̌0(p,t)ψ̌0(q,t)ψ̌0(k,0)〉, vanishes.
Since I is a small perturbation and ψ1 is a response to it,
formally ψ1 can be expressed in terms of the propagator G as

ψ̌1(α,t) = −
∫ t

t0

dt ′
∑
α′

G(α,t ; α′,t ′)Iα′ (t ′) (B2)

for t > t0. We substitute Eq. (B2) into each term on the right-
hand side of Eq. (B1) to find, to our surprise, that the result is
naturally factorized due to the assumption of DIA that ψ̌0(p,t),
ψ̌0(q,t), and ψ̌0(k,t) are uncorrelated.

By applying the decomposition ψ̌ = ψ̌0 + ψ̌1 to each triple
correlation term in the equation for ∂t Č, we are led to
Eq. (4.1). Similarly, the equation for ∂t Ḡ contains 〈ψ̌0G〉,
which is evaluated with the aid of the DIA decomposition of
G, resulting in Eq. (4.2). For more details, see Refs. [79,80].

APPENDIX C: THREE-DIMENSIONAL
CALCULATION OF χ S

4

Here we outline how to calculate χS
4 by phenomenolog-

ically extending the present theory to the three-dimensional
cases. The displacement correlation tensor X is related to the
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distribution function P (d̃; Ri ,Rj ) by

X(d̃) =
∫∫

Ri ⊗ RjP (d̃; Ri ,Rj )d3Rid
3Rj ;

in what follows, the d̃ dependence of P is taken for granted and
therefore omitted. The relation can be inverted if the functional
form of P is known. In particular, if a multivariate Gaussian
distribution (which we denote with P0) is assumed, P = P0

can be factorized as

P0(Ri ,Rj ) = P‖(R‖
i ,R

‖
j )P⊥(R⊥

i ,R⊥
j ) (C1)

by splitting R into the longitudinal and transverse components
as R = R‖ + R⊥ (so R‖ ‖ d̃ and R⊥ ⊥ d̃). Then we introduce
X0 such that

X‖(d̃ = 0) = X⊥(d̃ = 0) = X0

and write the two factors explicitly as

P‖ = 1

2π
√

�‖
exp

⎡
⎣−X0

(
R

‖
i

2 + R
‖
j

2)− 2X‖(d̃)R‖
i R

‖
j

2�‖

⎤
⎦ ,

P⊥ = 1

(2π )2�⊥

× exp

[
−X0

(
R⊥

i

2 + R⊥
j

2)− 2X⊥(d̃)R⊥
i · R⊥

j

2�⊥

]
,

where �‖ = (X0)2 − X‖(d̃)2, and so on.
Then the calculation of χS

4 will be carried out in a way
analogous to the 1D cases. Subsequently, assuming that
two correlation lengths, λ‖ = λ‖(t) and λ⊥ = λ⊥(t), can be
introduced so

X‖ ∼ X0(t) �‖(d̃/λ‖(t)),

X⊥ ∼ X0(t) �⊥(d̃/λ⊥(t)),

we estimate the number of the particles contributing to the sum
as Ncoll ∼ ρ0λ‖λ2

⊥, which leads to

χS
4 ∼ 1

kBT
× λ‖λ2

⊥(
1 + 2X0

a2

)3 (C2)

as a three-dimensional counterpart of Eq. (5.16a).
Of course, Eq. (C2) needs to be modified by taking

α relaxation into account. We introduce α = α(t) to de-
note the relative number of particles that have hopped by
the time t and assume the distribution function in the
form

P (Ri ,Rj ) =
{

(1 − α)2P0 + 2α(1 − α)P1 + α2P2 (i 
= j )

(1 − α)P0 + αP2 (i = j ),

(C3)

where P0, governing the pairs of caged particles, is given by
Eq. (C1). Note that, by integrating P (Ri ,Rj ) in regard to the
second argument Rj , Eq. (C3) reduces to the van Hove function
in the form

P (R) = (1 − α)Pcage(R) + αPhop(R).

This implies that α = α(t) can be determined, in prin-
ciple, as a fitting parameter for the van Hove func-
tion. If we assume, for simplicity, that the correlation
of displacements is totally lost after the hopping, we
have

P1(Ri ,Rj ) = Phop(Ri)Pcage(Rj ) + Pcage(Ri)Phop(Rj )

2
,

P2(Ri ,Rj ) = Phop(Ri)Phop(Rj ).

Using the distribution function in Eq. (C3) supplemented
with the above expressions, we evaluate χS

4 and obtain
Eq. (6.5).
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