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Transport and diffusion of overdamped Brownian particles in random potentials
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We present a numerical study of the anomalies in transport and diffusion of overdamped Brownian particles in
totally disordered potential landscapes in one and in two dimensions. We characterize and analyze the effects of
three different disordered potentials. The anomalous regimes are characterized by the time exponents that exhibit
the statistical moments of the ensemble of particle trajectories. The anomaly in the transport is always of the
subtransport type, but diffusion presents a greater variety of anomalies: Both subdiffusion and superdiffusion are
possible. In two dimensions we present a mixed anomaly: subdiffusion in the direction perpendicular to the force
and superdiffusion in the parallel direction.
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I. INTRODUCTION

Brownian particles moving in a potential landscape and
perhaps also driven by an external force have been a subject of
study for many decades. The label Brownian indicates particles
that, in addition to a variety of possible potential landscapes
and driving forces, are subject to thermal random forces and the
concomitant friction embodied in the fluctuation-dissipation
relation.

The interest in Brownian motion in random potentials goes
back a few decades. The main focus at that time was on the
effects of such potentials on diffusion [1–3] and, more recently,
on the mobility [4] or on both [5]. All of these studies assumed
normal behavior of both quantities. A recent upsurge of interest
in these systems has come about because of the observation of
a variety of qualitative anomalies such as nondiffusive regimes
[6] and other “abnormal” behaviors (see references in Ref. [7]).

In this anomalous scenario, either in the absence [8] or, more
recently, in the presence of an external force [7,9], numerical
[7–13] and experimental [14,15] works have focused on the
effects of a random contribution to the potential on Brownian
motion. Indeed, the anomalies in both transport and diffusion
caused by even a small amount of disorder can be very
pronounced [12].

Many realistic physical systems are well described by
Brownian motion in disordered media. Examples include
DNA dynamics [1,16] and propagation of macromolecules and
organelles in the cytoplasm of a cell. Such disordered systems
are often described as crowded environments (dynamical
disorder) [17]. This type of disorder is beyond the scope of
this paper. Our focus in this paper is on the description of
the motion of overdamped Brownian particles in a totally
disordered static potential and subject to a constant external
force. This scenario might describe the transport of particles
in disordered solids [18–21]. By totally disordered potentials
we mean that there is no systematic part in the potential other
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than the constant force. We rely on stochastic simulations of
overdamped Brownian particles to observe and characterize
those regimes that are anomalous: subtransport, subdiffusion,
and superdiffusion.

The outline of this paper is as follows. In Sec. II we present a
number of definitions, the dynamical equations, and a detailed
characterization of disorder. In Sec. III we present numerical
simulation results for a 1D spatial landscape and characterize
the different anomalous regimes. In Sec. IV we discuss the
evolution of the particle density in the different regimes. In
Sec. V we address the problem in a 2D space. We separate the
discussion in the directions parallel and perpendicular to the
applied force and consider the anomalies appearing in each of
these directions. Finally, in Sec. VI we conclude with some
comments and conclusions.

II. DISORDERED SCENARIO

We consider the motion of overdamped independent Brow-
nian particles evolving in a potential V and subject to a constant
external force F . In one dimension the trajectory of a particle
evolves according to the Langevin equation

γ
dx

dt
= −dV (x)

dx
+ F + ξ (t), (1)

where x is the position of the particle, t is the time, γ

is the friction parameter, F is the applied external force,
V (x) is a disordered potential, and ξ (t) is the thermal noise
at temperature T , which is a Gaussian stochastic process
with zero mean and a correlation function that obeys the
fluctuation-dissipation relation 〈ξ (t)ξ (t ′)〉 = 2kBT γ δ(t − t ′).
Here kB is the Boltzmann constant and the angular brackets
denote statistical averages. The totally disordered potential
V (x) is characterized by its statistical properties, in particular
by its mean 〈V (x)〉, which we take to be zero, and its correlation
function 〈V (x)V (x ′)〉, where the angular brackets now indicate
a spatial average. We assume that this correlation function has
a characteristic length λr .

To minimize the number of independent parameters, we
introduce a length scale λ0, an energy scale V0, and a time
scale t0 related to the first two as t0 = γ λ2

0/V0. That leaves

062105-11539-3755/2013/88(6)/062105(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.062105


SIMON, SANCHO, AND LINDENBERG PHYSICAL REVIEW E 88, 062105 (2013)

us with just three parameters λ0, V0, and γ in addition
to the temperature. We furthermore introduce dimensionless
variables z and τ ,

z = x

λ0
, τ = t

t0
, (2)

and scaled dimensionless quantities

V̂ (x) = V (x)

V0
, F = λ0

V0
F, T = kBT

V0
(3)

to write the equation of motion in dimensionless form

dz

dτ
= −dV̂ (z/λ)

dz
+ F + ξ̂ (τ ), (4)

where the fluctuation-dissipation relation now reads
〈ξ̂ (τ )ξ̂ (τ ′)〉 = 2T δ(τ − τ ′).

The totally disordered potential V̂ (z/λ) has a dimensionless
length scale λ = λr/λ0, where λr is its characteristic length
introduced earlier. The potential is characterized by the
parameter λ and by the statistical properties. We will assume
that V̂ is a Gaussian variable, with zero mean and correlation
function g(|z|/λ),

〈V̂ (z/λ) V̂ (z′/λ)〉 = g(|z − z′|/λ). (5)

It has recently been established [12] that the parameters
λ, F , and T influence the transport and diffusion anomalies
in various pronounced ways. Our first goal in this work is to
explore whether the functional form of the correlation function
g(|z|/λ) also affects transport and diffusion phenomena. To
explore this point we consider three very different types of
disordered potentials: (i) the well known normal or Gaussian
form

g(|z − z′|) = 1
2e−[(z−z′)2/2λ2], (6)

which is used here as the reference scenario because it has a
well defined characteristic short spatial length scale λ and
no singularity in the entire domain; (ii) the double-sided
exponential correlation

g(|z − z′|) = 1
2e−[|z−z′ |/λ], (7)

whose underlying force −dV̂r/dz exhibits a singularity at
the origin in the form of a delta correlation δ(z − z′), much
like spatial white noise; and (iii) a correlation function with a
power-law tail

g(|z − z′|) = 1

2

(
1 + (z − z′)2

λ2

)−ε/2

. (8)

The decay of the tail is determined by the exponent ε and by a
short spatial length scale λ.

From these correlations, the statistical properties of the
corresponding random forces Fr can be obtained

〈Fr (z)Fr (z′)〉 = −∂2g(|z − z′|)
∂z2

= 1

λ2
h(|z − z′|), (9)

where h(|z|) is the force correlation function [22]. It is worth
noting that, when applying (9) to the former potentials (6)–(8),
the underlying forces exhibit negative spatial correlations [22],
as well as a positive part.

The forces used in the Langevin equation at the lattice
points of one potential are obtained by simple centered discrete
derivatives. The random force at intermediate locations is
evaluated by standard linear interpolation of the forces at the
lattice points. Explicit details are given in Ref. [22].

Transport and diffusion anomalies are explored through
statistical averages, specifically through first moments and
second cumulants of the trajectories z(τ ). In particular,
transport is analyzed through the first moment

〈z(τ )〉 ∝ τα. (10)

When α = 1 there is normal transport and the mean velocity
〈v〉 = 〈z(τ )〉/τ is constant. In contrast, α �= 1 leads to anoma-
lous transport, either subtransport α < 1 or supertransport
α > 1.

The time dependence of the variance or second cumulant is
usually written as

〈
z2(τ )〉 ∝ τβ. (11)

Three different regimes are also possible here: subdiffusive
(β < 1), superdiffusive (β > 1), and diffusive (β = 1). In this
last regime we recover the familiar form 〈
z2(τ )〉 = 2Dτ ,
where D is the diffusion coefficient. The exponents α and β

can be obtained by fitting a power-law function of time to
the statistical moments 〈z(τ )〉 and 〈
z2(τ )〉; β can be also
evaluated from the expression

β = log10

[

z2(10τ )


z2(τ )

]
, (12)

which gives a series of β values that might converge to a limit.

III. SIMULATION RESULTS AND ANOMALOUS
EXPONENTS IN ONE DIMENSION

The Langevin equations are numerically integrated follow-
ing a second-order Heun algorithm for ordinary stochastic dif-
ferential equations [23] and the random potential is generated
following the explicit procedures described in Ref. [22]. One
hundred particles are used in each realization of 100 disordered
potentials, so the statistical averages are over 10 000 particles.
We expect this to be sufficient to get reliable information
about the transport and diffusion properties of the system.
Particles are initially distributed uniformly along a large region
of the potential landscape of size 20 000λ. Therefore, each
particle of the 100 in a given potential is likely to experience
a different and independent portion of the potential. The
potential landscape covers N = 223 lattice points with periodic
boundary conditions and a lattice constant 
 = 0.1. Other
parameter values are T = 0.1 and disorder correlation length
λ = 1. To explore the different anomalous regimes we have
used the force F as a control parameter.

The time integration step 
τ should be chosen so that
in each integration step particles do not move over a distance
greater than that associated with the roughness of the potential.
That is, 
τ � λrgh/F , where λrgh is the length scale of the
roughness of the disorder. We also require the asymptotic
mean velocity for particles under large external forces to obey
the relation 〈v〉 ∝ F . Using these conditions, we have settled
on the value 
τ = 0.1 for the Gaussian and the power-law
correlated potentials. On the other hand, 
τ = 0.01 is required
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FIG. 1. (Color online) Temporal evolutions of the velocity (top)
and diffusion (bottom). Simulation of the Langevin equation were
performed for 100 particles and 100 realizations of the potential with
Gaussian correlation.

for the potential with a double-sided exponential correlation
because of the smaller roughness length scale associated with
the singularity exhibited by its first derivative at the origin.

In addition to this set of reference parameters, we have also
explored other values: T = 0.05, 
 = 0.05 (with N = 224),
and 
τ = 0.005 and 0.001. No qualitative changes have been
noted in the outcome, yet remarkable quantitative differences
emerge, especially when changing 
 and 
τ for the double-
sided exponential correlation. We discuss this further in detail
below.

Different time evolutions of the mean velocity and diffusion
coefficient for the case of Gaussian disorder are shown in
a log-log plot in Fig. 1 for different values of the external
force. Time-independent lines, that is, normal behavior, are
hardly observed in these figures. Furthermore, in some
domains of the force, straight lines are clearly seen, which
is convincing evidence of the existence of exponents different
from those of normal transport and diffusion. Specifically, it
can be gathered that weak forces induce subtransport, while
normal behavior is recovered for stronger ones. Moreover,
intermediate anomalous regimes are also seen for diffusion:
subdiffusion for weak forces, superdiffusion for intermediate
forces, and normal diffusion for very strong forces. We note
the occurrence of a fourth special regime before the recovery
of diffusion following superdiffusion. In this regime, diffusion
cannot be specified from the numerical results, but transport is

TABLE I. Exponents α (bottom left) and β (upper right) of the
first moment (10) and the variance (11) of the trajectories given
by the simulation of Eq. (4). Different disorder types are Gaussian
correlated (6) (Gaussian), double-sided exponential correlated (7)
(Exponential), and power-law correlated (8) with ε = 1/3 (Pl 1/3)
and ε = 2/3 (Pl 2/3). A minus sign means that there is no transport.
A plus sign labels those cases in which the variance trajectories have
uncertain time behavior. An n means that simulations have been
avoided since it is quite clear that the normal regime is expected.

α
β

Gaussian Exponential Pl  1/3 Pl  2/3

F =0.0
0.20 0.24 0.33 0.33

0.2 0.29
0.36

0.27
0.36

0.47
0.88

0.36
0.60

0.4 0.28
0.48

0.34
0.53

0.64
1.29

0.42
0.84

0.6 0.32
0.58

0.34
0.63

0.89
1.56

0.54
1.11

0.8 0.33
0.67

0.32
0.74

1.00
1.45

0.64
1.32

1.0 0.40
0.84

0.46
0.84

1.00
+

0.91
1.54

1.2 0.41
0.96

0.53
0.93

1.00
+

1.00
1.51

1.4 0.58
1.07

0.46
1.03

1.00
0.94

1.00
1.72

1.6 0.64
1.23

0.54
1.12

1.00
0.98

1.00
+

1.8 0.90
1.51

0.66
1.21

1.00
0.99

1.00
+

2.0 0.99
1.60

0.72
1.31

1.00
0.99

1.00
+

2.5 1.00
+

0.84
1.40 n 1.00

0.99

3.0 1.00
+

0.96
1.58 n 1.00

1.00

3.5 1.00
0.98

0.99
1.44 n n

4.0 1.00
0.99

1.01
+ n n

4.5 n 1.00
+ n n

5.0 n 1.00
+ n n

5.5 n 1.00
+ n n

6.0 n 1.00
1.00 n n

normal and thus it might be referred to as an uncertain regime.
We will continue this discussion later on.

The effects of the different disorder correlations on the
transport and diffusion regimes as functions of the external
force are checked via the resulting α and β exponents, both
displayed in Table I and depicted in Fig. 2. In the figure
we can see that the same transport and diffusion regimes
are reached despite the differences in the random potential
correlations, that is, roughly speaking, subtransport (α < 1)
and subdiffusion (β < 1) at weak forces and normal behavior
at high forces (α = 1, β = 1). Meanwhile, for intermediate
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FIG. 2. (Color online) Transport (top) and diffusion (bottom)
exponents for different distributions of disorder. The parameters are
the same as in Fig. 1, with ε = 1/3 and 2/3 for the power-law case.
Wide horizontal colored bars (shown from bottom to top are Exp,
Ga, Pl 1/3, and Pl 2/3 disorder) indicate each dynamical regime (as
described in the text).

forces, diffusion exhibits two different regimes: superdiffusion
(β > 1) and uncertain diffusion. Figure 2 also shows the force
interval associated with every dynamical regime (transport
in the upper graphic, diffusion in the lower) for each of
the four types of potential correlations (color coded bars).
Indeed, subtransport (weakly colored filled bar) and normal
transport (empty bar) appear on the plots of the α values for
all the potentials (top). Subdiffusion (weakly colored filled
bar), superdiffusion (colored filled bar), uncertain diffusion
(patterned bar), and diffusion (empty bar) are evident in the
β values for all the potentials (bottom). This figure allows
us to conclude that the length of each dynamical regime is
controlled by the correlation of the disorder. In particular, using
an effective correlation length λeff defined as g(λeff/λ) = 0.25
(Fig. 3) allows us to conclude that a larger λeff leads to an
earlier (in terms of force) recovery of the normal transport and
diffusion regimes.

Figure 3 (bottom) displays the landscapes of the potentials
with the same realization of random numbers, from which it
can be noted that larger λeff are linked with landscapes with
shallower wells. It follows that the smoother a potential is, the
weaker the forces that are needed to achieve normal transport
and diffusion for Brownian motion in these potentials. This
inference is in agreement with the interpretation of anomalous
Brownian motion as a consequence of the interplay of locked
and running states [12]. Roughly speaking, in a smoother
potential tilted by a force, thermal fluctuations are more likely
to help the particles overcome its barriers and thus normal
behavior is recovered more easily.

Power-law correlated potentials are characterized not only
by the length scale but also by the tail exponent ε and thus they
require a separate discussion. From Fig. 3 it can be seen that,
roughly speaking, λeff is inversely proportional to ε. Therefore
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FIG. 3. (Color online) The top shows correlation functions g(|z|)
for the Gaussian (Ga), double-sided exponential with discretization

 = 0.1 (Exp), and power law with ε = 1/3 (Pl 1/3) and ε = 2/3
(Pl 2/3). Colored circles at g(|z|) = 0.25 provide a measure of the
effective correlation lengths. The bottom shows potential landscapes
for each case; λ = 1 for all cases. A vertical shift is implemented for
better visualization (2, 1, and −2 potential units for Pl 2/3, Pl 1/3,
and Exp, respectively).

the arguments involving ε might be expected to be opposite
to those invoked for λeff . However, the λeff argument fails
to explain the outcomes of the simulations for double-sided
exponentially correlated disorder, which might be expected to
be closer to those of the Gaussian disorder since they have
similar values of λeff . The reason is that the exponentially
correlated potential exhibits a second much finer structure
of tiny wells due to the shorter spatial scale related to the
discretization length 
. This secondary structure is hardly
affected by the action of the external force because of the
large characteristic slope of the potential. Indeed, once the
primary structure has almost been counterbalanced byF , these
secondary tiny wells associated with the 
 length scale still
remain. That is the reason why both the superdiffusive and
the uncertain diffusive regimes for these disorders prevail up
to higher forces compared to the Gaussian disorder. We may
thus assert that for the double-sided exponentially correlated
potential, the λeff length scale controls the subdiffusive regime,
whereas superdiffusion and uncertain diffusion are controlled
by the 
 length scale.
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Transport regimes associated with the Gaussian and double-
sided exponential correlated disorders show the same trend
up to a certain force, after which the trends diverge and the
normal transport recovery is delayed for the exponential case.
The force at which the two behaviors begin to diverge turns
out to be precisely the force at which both systems become
superdiffusive and thus the former argumentation is reinforced.
As to the transport behavior, the secondary scale 
 leads to a
decrease of the velocity of the particles because of the presence
of small obstacles and thus subtransport prevails longer.

These results lead us to further consider the case of double-
sided exponentially correlated disorder, now with a smaller
discretization parameter than considered above, namely, 
 =
0.05. Compared to the case with 
 = 0.1, the smaller
discretization parameter is associated with a higher degree
of roughness in the secondary scale. Our earlier arguments
then lead us to conclude that the time step 
τ = 0.01 might
not be sufficiently small to accurately capture the behavior
of the system. We pick the smaller time step 
τ = 0.001.
While the behavior of transport and diffusion are essentially
the same as in the case of the exponential correlation with

 = 0.1, the superdiffusive and uncertain diffusive regimes
are extended in the case of 
 = 0.05. This reinforces the idea
that the secondary roughness associated with the 
 length
scale regulates the persistence of superdiffusion and uncertain
diffusion.

We note a qualitative similarity between behaviors observed
here and in the case of underdamped Brownian particles in a
periodic potential [24]. In both cases there is a regime of forces
where some particles are in a running state of essentially
deterministic velocity v ∼ F while others are in a locked
or trapped state of zero velocity. In our random potentials
there is thus a large variation of the particle distribution and
of the motion of the particles for different realizations of
the potentials, leading to anomalous dispersion, and thus to
the uncertain diffusive regime, much as is observed in the
underdamped problem.

Finally, the asymptotic temporal behavior of transport and
diffusion deserves a separate comment. The time variable τ can
be compared to a characteristic time of the system to provide
a sense of the temporal extent of our simulations. One can
define the deterministic time τ0 that it takes to cover a distance
λ under the action of a force F ,

τ0 = λ

F , (13)

which in our systems lies in the domain τ0 ∈ (0.33,2.0). Our
simulations run as far as five decades of this characteristic
time. Several anomalies are observed over this full interval
while others are shorter, with a duration two or three decades
of this time. Recently this problem was addressed in Ref. [13],
with similar qualitative results: the presence of a subdiffusive
regime. However, we cannot assert that even with longer
simulation times normal transport and diffusion will be
achieved. While it is commonly accepted that at asymptotic
times all behaviors will be normal and diffusive, from the
experimental point of view time is finite and it would be
helpful to know if important anomalies appear in realistic
observation time intervals. These interpretations of our results
are appropriate provided the total simulation time is large

enough without running into finite-system-size effects. The
total length of our system is ≈8.39 × 105, but the system is
periodic, so we should avoid covering more than half of this
distance, ≈4.2 × 105. For a force of F = 3.5 and a maximum
time of τ = 105, particles travel as far ≈3.34 × 105, that is, at
most of the same order as half the length. For times much larger
than this one can expect finite-size effects and, accordingly,
normal behavior.

IV. EVOLUTION OF PARTICLE DENSITY

We next explore the behavior of the particle density
representative of the various combinations of behaviors dis-
cussed above. In Fig. 4 we present the histogram of the
relative displacements z(τ ) − 〈z(τ )〉 of all the particles for
various values of the external force and under a Gaussian
disordered potential, where the angular brackets indicate an
average over all the particles. From top to bottom, F = 0.6,
1.8, 2.6, and 4.0. These cases are chosen as representative
of the variety of anomalies: subtransport and subdiffusion
[Fig. 4(a)], subtransport and superdiffusion [Fig. 4(b)], the
uncertain diffusive regime [Fig. 4(c)], and the case of both
normal transport and diffusion [Fig. 4(d)].

A system with weak forces (F = 0.6) presents subtrans-
port and subdiffusion [see Fig. 4(a)], with an asymmetric

(a)

(b)

(c)

(d)

FIG. 4. (Color online) Displacement distribution of the particles
P (
z) for different combinations of displacements and diffusions.
F = 0.6 (a), 1.8 (b), 2.6 (c), and 4.0 (d) at τ = 20 000. It is important
to pay attention to the horizontal scale in each plot. Plot (d) includes
the representation of a Gaussian function of zero mean (μ = 0) and
variance σ 2 = 2Dτ (D = T = 0.1, τ = 20 000).
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displacement distribution with a long forward exponential
tail and as a consequence with its maximum shifted towards
negative displacements. A few particles pull ahead, but most
are stuck. This behavior is enhanced as time proceeds.

When the force increases up to F = 1.8, there is sub-
transport as well, but with superdiffusion. In this case, the
displacement distribution [Fig. 4(b)] is also asymmetric, but
now with a backward larger tail and the maximum shifted to
the right. Many particles are still stuck, but a larger number of
them now pull ahead. Note that the dispersion is much larger
than in the previous case.

For a stronger force F = 2.6, the transport is normal 〈v〉 ∼
F , but our simulation data are not sufficient to obtain a reliable
result to characterize the diffusion. The distribution in Fig. 4(c)
also lacks symmetry. It shows a very narrow maximum, which
is the signature of the running state of most of the particles,
even while there may still be a few particles in the locked state
〈v〉 ∼ 0, which may become trapped in the few realizations of
the potential that present the deepest wells. (Figure 9 in the
following section is helpful for a better understanding.)

The figure with the highest force F = 4.0 [Fig. 4(d)]
illustrates normal behavior, i.e., normal transport and normal
diffusion, with a Gaussian-like distribution, as confirmed by
the solid Gaussian curve (μ = 0, σ 2 = 2Dτ , D = T = 0.1,
τ = 20 000). Essentially perfect Gaussian behavior is expected
for very large forces.

V. TRANSPORT AND DIFFUSION OF PARTICLES
ON SURFACES

The 2D overdamped Langevin equation is a straightforward
generalization of Eq. (4) for the x and y coordinates of the
particle. Transport and diffusion in two dimensions exhibit
different phenomena because one can study the orthogonal
direction with respect to the force. In Cartesian coordinates
the force is written as

�F = F û‖ = F(cos θ�i + sin θ �j ), (14)

which defines the parallel unit vector û‖. The perpendic-
ular unit vector is û⊥ = − sin θ�i + cos θ �j . The simulated
trajectories yield the Cartesian components of the average
velocity 〈�v〉 = (〈vi〉,〈vj 〉) and the Cartesian diffusion tensor
D = {Dij }. With this information, transport and diffusion in
any direction û can be computed

〈vu〉 = 〈�v〉 · û, Du = û · D · û. (15)

TABLE II. Transport α‖ and diffusion β‖ and β⊥ exponents
obtained by a power-law regression of the curves in Fig. 5 and the
application of Eq. (12) to Fig. 6. The plus sign denotes a case where
the diffusion coefficient cannot be extracted from the simulation data.

F α‖ β‖ β⊥

0.6 0.11 0.43 0.20
1.0 0.18 0.59 0.38
1.2 0.32 1.00 0.42
1.3 0.57 1.36 0.47
1.5 0.80 2.01 0.82
2.0 1.00 + 0.99
3.0 1.00 1.01 1.02

FIG. 5. (Color online) Parallel (top) and perpendicular (bottom)
mean velocities of 400 particles, averaged over 20 realizations of the
random potential surface, with θ = arctan(100/N
).

The choices of the angles at which to perform the simu-
lations can be made so as to provide the maximum amount
of information, as follows. If θ = 0, we would see that the
cloud of particles might reach the system size quite fast
without exploring the whole landscape. Periodic boundary

FIG. 6. (Color online) Parallel (top) and perpendicular (bottom)
diffusion coefficients. The parameters are the same as in Fig. 5.
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conditions are not helpful in this case. This is clearly not
a particularly informative choice. In contrast, a finite θ along
with periodic boundary conditions produces a spiraling motion
along a torus. Therefore, helpful choices of θ are the ones that
prevent intersection (or statistical correlation) between particle
trajectories that coil the torus after each turn while allocating
the maximum number of loops. We have made such choices.

We have studied overdamped Brownian particles moving
in 2D Gaussian correlated disorder

g(|�r − �r ′|) = 1
2e−[(�r−�r ′)·(�r−�r ′)/2λ2]. (16)

This correlation is isotropic and does not introduce a bias in any
direction. The simulations were run on a lattice of N2 = 40962

sites with 
x = 
y = 0.5. The other simulation parameters
were 
τ = 0.1 and T = 0.03. The temperature is much lower

FIG. 7. (Color online) The top shows particle positions with
respect to initial conditions at different times for F = 0.6 and, from
bottom to top, τ = 250,1000,4000,16 000. The bottom shows the
particle displacement distribution at τ = 1000 along the parallel (top)
and perpendicular (bottom) directions relative to the force.

than in the 1D simulations because particles might avoid the
highest potential barriers by changing their direction.

As in the one-dimensional problem, we compute the
first moment and the second cumulant on the ensemble of
trajectories, now separately for the directions parallel and
perpendicular to �F . This allows the fitting of the transport
(α‖,α⊥) and diffusion (β‖,β⊥) exponents. These results are
included in Table II. The corresponding time dependence of
the velocity (〈v〉‖,〈v〉⊥) and the diffusion coefficients (D‖,D‖)
are shown in Figs. 5 and 6, respectively.

Along the orthogonal direction (Fig. 5, bottom) we find
no transport (〈v⊥〉 ≈ 0), yet there is subdiffusive dispersion
(Fig. 6, bottom), as should be expected since no force is
present [8]. The phenomenology in the parallel direction is the
same as in the 1D case. Now we have a different interesting
situation: For intermediate forces the dispersion displays
parallel superdiffusion with perpendicular subdiffusion.

We also plot the cloud of particle positions at different times
for some representative behaviors along the direction parallel
to the external force: subdiffusion with subtransport (F = 0.6)
in Fig. 7, superdiffusion and subtransport (F = 1.5) in Fig. 8,
no well defined diffusion in Fig. 9 (F = 2.0), and both normal
diffusion and transport (F = 3.0) in Fig. 10. The differences
in the horizontal scales of the four figures should be noted. The
clouds are plotted on the same scales for the x and y directions
to highlight the respective asymmetries.

For small forces, the majority of the particles are expected
to be trapped most of the time. A few of them might undergo
short random displacements with a bias toward the direction
of the force. That is seen in Fig. 7 (top) for F = 0.6, in which
the cloud spreads in the parallel direction showing some kind

FIG. 8. (Color online) The top shows particle positions relative to
the initial condition at different times for F = 1.5 and, from bottom
to top, τ = 250,1000,2000,4000. The bottom shows the particle
displacement distribution at τ = 1000 along the parallel (top) and
perpendicular (bottom) directions relative to the direction of the force.
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FIG. 9. (Color online) The top shows particle positions relative to
the initial conditions at different times for F = 2.0 and, from bottom
to top, τ = 250,1000,2000,4000. The bottom shows the particle
displacement distribution at τ = 1000 along the parallel (top) and
perpendicular (bottom) directions relative to the direction of the force.

of a forward comet tail. Besides, particles in this tail are more
likely to spread along the perpendicular direction as well since
they are the ones that have avoided the deepest wells along
their trajectories. This information is complemented by the
histograms of the particle positions in both directions (Fig. 7,
bottom) where the asymmetry in the parallel direction contrasts
with the symmetry in the perpendicular one.

In the superdiffusive regime, along the parallel direction
(F = 1.5) we see a cometlike figure with a larger density at
its head. Thus, while no big differences in the dispersion are
seen in the perpendicular direction between F = 1.5 and 0.6,
there is a very large increase of the dispersion in the parallel
direction and, in addition, its asymmetry is in the opposite
direction, i.e., it has a backward long tail. The corresponding
histograms in Fig. 8 (bottom) corroborate the top panel.

The intermediate value of the force F = 2.0 corresponds to
the regime in which it is not possible to define an anomalous
exponent for the diffusion. The cloud evolution under this
condition (Fig. 9, top) exhibits a front of particles that travels
at a deterministic velocity of about vcloud ≈ F , while others
are trapped in a few positions towards the back that may
belong to few realizations of the disordered surface. This
picture, together with the parallel histogram in Fig. 9 (bottom),
reinforces the argumentation developed earlier for F = 2.6 in
the case of unidimensional Gaussian correlated disorder.

FIG. 10. (Color online) The top shows the particle cloud at differ-
ent times forF = 3.0 and, from bottom to top, τ = 250,400,550,700.
The bottom shows the particle displacement distribution at τ = 1000
along the parallel (top) and perpendicular (bottom) directions relative
to the direction of the force.

Finally, for a large force F = 3.0, normal transport and
diffusion in both directions are recovered. These phenomena
are featured in Fig. 10 (top), in which elliptical clouds travel
along the parallel direction with a velocity vcloud ≈ 3 ≈ F .
Although there is normal diffusion along both directions, the
elliptical shape reveals a different diffusion coefficient for each
direction. This result is clearly confirmed by the corresponding
histogram (Fig. 10, bottom), in which we observe a wider
Gaussian distribution in the direction perpendicular to the
external force. This is not unexpected since the external force
breaks the symmetry of the system, that is, it smoothes the
potential barriers along its direction.

VI. CONCLUSION

Transport and diffusion of unidimensional overdamped
Brownian particles in totally disordered potentials show
anomalous regimes whose strength and external force de-
pendence in turn depend on the temperature T and the
statistical properties of the disorder. This dependence can
be understood via the theoretical consideration of anomalous
Brownian motion already developed in Ref. [12]. In addition,
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the length scales of the roughness of the potentials have been
shown to be essential parameters in the understanding of the
effect of disorder in anomalous regimes.

The main practical difference between different kinds
of disorder can be associated with an effective correlation
length. Taking the Gaussian correlation as a reference, we
see that power-law correlations present a larger effective
length and, accordingly, shallower wells, which implies that
normal regimes appear sooner. On the other hand, double-sided
exponential correlations, despite having a similar effective
length scale, also exhibit a second much smaller length
scale associated with the space discretization length 
. This
length scale causes the appearance of a secondary structure
composed of tiny wells, yet with higher roughness (steep
landscape slopes). Its importance becomes evident when the
force is sufficiently strong to overcome the primary structure
(associated with λeff). It requires higher forces for the recovery
of normal transport since it obstructs the free displacement of
the particles even when the primary structure of obstacles
has already been overcome. Both superdiffusion and uncertain
diffusion thus continue to occur up to higher forces because
of the continued simultaneous presence of running states and
locked states, the latter now due to the small wells associated
with 
. More generally, we conclude that when disorder
exhibits two different length scales, subdiffusion is associated
with the longer one and both superdiffusion and uncertain
diffusion are associated with the shorter one.

The evolution of the particle density in Fig. 4 and 7–10
reveals other interesting characteristics of the anomalies.
Each different asymmetry of the histogram is related to
subdiffusion and superdiffusion regimes for finite forces.
The non-Gaussian-like form of these distributions is thus an
indicator that some anomaly is present.

For two dimensions, a completely different behavior of
transport and diffusion is seen between the directions per-
pendicular and parallel to the force. We especially note the
coexistence of subdiffusion and superdiffusion along different
spatial directions.

The uncertain diffusive regime is caused by the finite
number of particles and of realizations of disordered potentials.
A small number of locked particles have a great effect, leading
to uncertain behavior of the statistical moments of the position
of the particles.

Finally, concerning either 1D or 2D results, it should be
noted that transport and diffusion anomalies have not been
proved to be steady-state regimes. However, simulation data
show that anomalies span several decades of time.
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