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We investigate the stochastic motion of a Brownian particle in the harmonic potential with a time-dependent
force constant. It may describe the motion of a colloidal particle in an optical trap where the potential well is formed
by a time-dependent field. We use the path integral formalism to solve the Langevin equation and the associated
Fokker-Planck (Kramers) equation. Rigorous relations are derived to generate the probability density function
for the time-dependent nonequilibrium work production beyond the overdamped limit. We find that the work
distribution exhibits an exponential tail with a power-law prefactor, accompanied by an interesting oscillatory
feature (multiple pseudo-locking-unlocking transitions) due to the inertial effect. Some exactly solvable cases
are discussed in the overdamped limit.
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I. INTRODUCTION

Nonequilibrium (NEQ) fluctuation has been an important
issue in the field of statistical mechanics for the past two
decades since the discovery of the fluctuation theorem for
entropy production [1–3]. Fluctuation theorems (FTs) [4–11]
and the Jarzynski equality (JE) [12,13] are the central theoret-
ical relations governing NEQ fluctuation phenomena, widely
valid for many NEQ systems, deterministic or stochastic,
thermostated with heat baths. The NEQ fluctuation deals with
a large fluctuation around the average with a considerable
contribution from rare events. Such phenomena become
dominant for a system with small degrees of freedom. There
have been extensive studies of small experimental systems
such as a microscopic bead dragging in a viscous fluid
[14], a single molecule of RNA under mechanical stretch
[15,16], an oscillating bead under the translating center of the
optical trap [17], the circuit of an electric dipole in electric
potential bias [18], and an ultralight metallic wire under
torsion [19].

External bias was considered as a typical underlying
mechanism for NEQ systems such as a nanocircuit device
with potential bias [18,20], a harmonic oscillator under
constant torque applied [19,21,22], and a one-dimensional
lattice gas in contact at boundaries with different heat or
particle baths [23,24]. A nonconservative force was also
recognized as a source for the entropy production [6] such
as in a nanoheat engine in contact with multiple reservoirs for
a circulating current in high-dimensional systems [25–27].
The non-Markovian nature caused by a memory effect or
colored noise is another source for NEQ [28,29]. In these
examples, the system reaches a NEQ steady state (NESS) after
a transient period, where a persistent nonzero current, directed
or circulated, generates the incessant work production. The
probability distribution function (PDF) of the work production
exhibits an exponential decay with a power-law prefactor in the
rare-event region [27], along with interesting unusual features
such as an initial condition dependence of the large deviation
function [30–33] and multiple dynamic transitions in reaching
the NESS [27,34].

In contrast, a time-dependent perturbation on external
parameters such as the electric field, magnetic field, volume,
and force constant generates a genuine time-dependent NEQ
state where the system never maintains the NESS. It is worth
mentioning that there was an earlier work by Bochkov and
Kuzovlev [35] in which the Hamiltonian dynamics with a
perturbation linearly coupled to the time-dependent external
force was studied and an equality similar to the JE was
obtained. Its quantum mechanical version was also studied
extensively [36–38]. The classical mechanical studies have
concentrated on specific models. For example, the stochastic
motion of a Brownian particle was studied in the harmonic
potential moving with a constant velocity (the sliding parabola
potential) [39–45] and also in the harmonic potential with
a time-dependent force constant (the breathing parabola
potential) [46–49]. In these cases, the work PDF also shows an
exponential decay with a power-law prefactor in the rare-event
region, along with a time-dependent characteristic value for
the work production determining the exponential decay shape.
Most of previous studies have considered the overdamped
limit, partly because the experimental situation for a colloidal
particle in a harmonic trap can be well approximated in
the overdamped limit and also partly because the analytical
treatment is much simpler [39–44,46–49].

In this paper we generalize these results beyond the
overdamped limit (the underdamped case) for a Brownian
particle in a breathing parabola potential with the momentum
variable kept intact. We focus on the inertial effect on the
time-dependent characteristic value for the work production.
Our model may also serve as a soft-wall version of the box
expansion or compression with a single Brownian particle in-
side, in contact with a thermal reservoir [50]. The experimental
setup is also feasible: In a molecular tweezers or an optical
trap experiment, the potential well can be approximated by
the harmonic potential. The shape of the harmonic potential
characterized by the force constant is set to vary with a
time-dependent external field.

The importance of the underdamped dynamics has been
overlooked so far except for a few cases [51]. Recent studies
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have revealed crucial differences from the overdamped cases,
such as in the fluctuation property of the housekeeping
contribution to the total entropy production [52,53] and in
the presence of the anomalous entropy production [54]. The
theoretical formalism developed in this study will be useful
for further studies in this direction in future.

The stochastic motion is described by the Langevin equa-
tion and the corresponding Fokker-Planck (Kramers) equation.
We use the path integral formalism to derive rigorous relations
from which the time-dependent work PDF and its cumulants
can be easily calculated with machine accuracy. We find an
interesting oscillatory feature of the work PDF shape, solely
due to the inertial effect (absent in the overdamped limit). This
resembles multiple locking-unlocking dynamic transitions
found in the linear diffusion system [27,34], but shows smooth
crossovers rather than sharp transitions. Thus we call this
crossover as a pseudo-locking-unlocking transition. The key
ingredient of dynamics evoking this interesting transition is the
existence of the probability current under a periodic potential.
In the underdamped case, the phase-space circulating current
plays the role. Therefore, this phenomenon should be observed
in more general multidimensional dynamic motions in NEQ
systems. However, a full intuitive understanding calls for
further investigation in the future.

In Sec. II we introduce the breathing harmonic potential
function and discuss the FTs. In Sec. III we derive the equations
for the PDF and the cumulants for the work production using
the path integral formalism. Our formalism is tested for the
systems in the sudden change limit. In Sec. IV we present the
analysis for the work PDF and find the exponential tail with a
power-law prefactor. In Sec. V we study the overdamped limit
for exactly solvable cases. In Sec. VI we summarize the main
results and discuss the perspective for future work.

II. TIME-DEPENDENT HARMONIC POTENTIAL

We consider the Brownian motion of a particle in one
dimension under the breathing harmonic potential with a
time-dependent force constant k = k(t) and in contact with
a heat bath. The equations of motion are given by

ẋ = p/m,
(1)

ṗ = −γp/m − kx + ξ,

where γ is the damping coefficient and ξ is the white
noise with zero mean satisfying 〈ξ (t)ξ (t ′)〉 = 2dδ(t − t ′). The
diffusion coefficient d is chosen to satisfy the Einstein relation
d = β−1γ , which guarantees the equilibrium (EQ) Boltzmann
distribution at inverse temperature β in the steady state, if k is
constant in time.

The equations of motion can be rewritten as

q̇ = −F · q + ζ , (2)

where q ≡ (x,p)T and ζ ≡ (0,ξ )T . Here the superscript T

denotes the transpose of a vector or a matrix. The force matrix
F is given by

F =
(

0 −1/m

k γ/m

)
. (3)

The energy of a particle is given by E(q; k) = p2

2m
+ kx2

2 , which
is written as E = 1

2 qT · H · q with a Hamiltonian matrix

H =
(

k 0

0 1/m

)
. (4)

Let P (q,t) be the probability density function for finding a
particle at state q and time t . Then it satisfies the Fokker-Planck
equation

∂P (q,t)

∂t
= ∇ · (F · q + D · ∇) P (q,t), (5)

where ∇ = (∂x,∂p)T and the diffusion matrix is given by

D =
(

ε 0

0 d

)
, (6)

where a small positive parameter ε is introduced to make
it possible to invert the diffusion matrix D during a formal
manipulation in the path integral formulation. In the end, we
take the ε → 0 limit to recover the δ-function constraint δ(ẋ −
p/m) for position and momentum; then the resultant equation
becomes the Kramers equation.

With ε, position and momentum can be treated on the same
footing, which gives us the formal advantage over the usual
path integral with the δ-function constraint. This approach
works well. For instance, one can reproduce the expected
results for the EQ PDF when k is a time-independent constant
[55]. In this case, the EQ Boltzmann distribution

Peq(q; k) = 1

Z(k)
e−βE(q;k) (7)

becomes the stationary solution of the Kramers equation in
the limit ε → 0. The partition function is given by Z(k) =∫

dqe−βE(q;k) = (4π2m/β2k)1/2, so the free energy is given
by F(k) = − 1

2β
ln(4π2m/β2k).

When the force constant k varies in time, the system is
driven into a NEQ state. It belongs to the Jarzynski criterion
for NEQ, where the rate of the work production is given by
Ẇ = k̇(∂E/∂k). Then the NEQ work W done on the particle
moving along a path q(τ ) for 0 < τ < t is given by

βW[q] = β

∫ t

0
dτ k̇

∂E(q(τ ); k(τ ))
∂k

= β

2

∫ t

0
dτ k̇x2. (8)

In the case of the sliding harmonic potential, the energy is
given by E = p2

2m
+ k

2 (x − y)2, where y = vt with the sliding
velocity v. So the work production rate Ẇ = ẏ∂E/∂y is equal
to −kv(x − vt), which is linear in x. This linearity allows the
exact calculation of the work PDF, which is simply Gaussian
[39–45]. In contrast, the work production rate in our study,
Ẇ = 1

2 k̇x2, is quadratic in x, which leads to a non-Gaussian
work PDF. The closed-form expression for the work PDF is not
available in this case, but we will show in the next section that
it can be expressed formally via a kernel matrix satisfying an
ordinary matrix differential equation. Furthermore, its solution
can be obtained numerically with machine accuracy, which
provides very accurate information on the tail part of the work
PDF.
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The work production is rewritten in a matrix form as

βW[q] = 1

2

∫ t

0
dτqT · 
 · q, (9)

where


 = βḢ =
(

βk̇ 0

0 0

)
. (10)

The system is assumed to be initially in EQ at β with k(0) = ki

and will reach a final state with k(t) = kf , which is certainly
far from EQ. In this situation, the JE states

〈e−βW[q]〉 = e−β�F , (11)

where 〈· · · 〉 denotes the average over all possible paths q(τ )
and �F is the free energy difference F(kf ) − F(ki) at β. The
JE can be trivially derived from the Crooks relation [5]

PF (W ) = eβ(W−�F)PR(−W ), (12)

where PF (W ) = 〈δ(W − W[q])〉F is the PDF for the work
production W during the forward process with the change
from ki to kf and vice versa PR(W ) for the reverse process.
The JE and the Crooks relation can be proved for a general
form of energy and external perturbation for the Langevin
dynamics if the system is initially in EQ at β [11]. However,
the explicit expression for P (W ) is not generally known. There
are not many stochastic models that can be solved analytically
for the PDF of fluctuating quantities. The breathing harmonic
potential with a time-dependent force constant not only is
analytically tractable, but can also serve as an appropriate
model for the potential well in an optical tweezers or trap.

III. PATH INTEGRAL FORMALISM WITH
TIME-DEPENDENT FORCE

The Fokker-Planck equation for a multivariate system with
a linear drift force, known as the high-dimensional Ornstein-
Uhlenbeck process, is solvable, i.e., the time-dependent PDF
P (q,t) can be obtained analytically [56,57]. Nonequilibrium
properties for this process were investigated in the context
of the circulating NESS current [25] and the violation of the
fluctuation-dissipation relation [58]. Recently we revisited this
system in the context of the fluctuation theorems [27], when the
(nonconservative) drift force does not vary in time. The path
integral formalism developed in that study can be extended to
the present problem with a time-dependent drift represented by
the time-dependent force matrix F(t) in Eq. (3) with k = k(t).

To describe the NEQ fluctuations, it is convenient to
introduce a path integral during time period t as

I (q1,λ; l(τ )) =
∫

dq0Peq(q0; k(0))

×
∫

D[q] exp

(
−

∫ t

0
dτL(q,q̇) − λβW[q]

+
∫ t

0
dτ lT · q

)
. (13)

The initial PDF for q0 is chosen to obey the EQ Boltzmann
distribution Peq(q0; k(0)) as in Eq. (7) and

∫
D[q](· · · ) denotes

the integration over all possible paths connecting q(0) = q0

and q(t) = q1 for 0 < τ < t . The Lagrangian L is given as

L(q,q̇; F) = 1
4 (q̇ + F · q)T · D−1 · (q̇ + F · q). (14)

The source term
∫

dτ lT · q is introduced for later use.
Note that the exponent of the integrand is at most quadratic
in q. Hence the path integration can be computed exactly by
Gaussian integration.

The quantity I is useful in calculating physical quantities
of interest. For example, the PDF P (q,t) is given by [59]

P (q,t) = I (q,λ = 0; l(τ ) = 0). (15)

The PDF for the NEQ work production can be also
calculated from I . First, we define a dimensionless quantity
for the work as w = βW for simplicity and introduce its
generating function

G(λ) ≡ 〈e−λβW〉 =
∫

dwe−λwP (w), (16)

which can be calculated as

G(λ) =
∫

dqI (q,λ; l(τ ) = 0). (17)

Note that the JE G(1) = exp[−β�F] can be proven explicitly
in this path integral formalism as well as the generalized
Crooks relation as GF (λ)/GR(1 − λ) = exp[−β�F], where
F (R) denotes the forward (reverse) process. The PDF for the
dimensionless work w is then obtained by the inverse Fourier
transformation as

P (w) =
∫

dλ

2π
eiλwG(iλ). (18)

For an arbitrary functional A[q(τ )], one can also calculate
its ensemble-average value from I . Defining the cumulant
generating function as

Z[l(τ )] =
∫

dqI (q,λ = 0; l(τ )), (19)

one finds that

〈A[q]〉 = A
[

δ

δl(τ )

]
Z[l(τ )]

∣∣∣∣
l→0

. (20)

We will use this relation to calculate the cumulants of the work.
The path integral (13) can be evaluated by using the methods

developed in our recent study [27]. Here we will present the
results without showing detailed steps of the calculation.

A. Probability distribution function

The PDF P (q,t) is given by

P (q,t) = | det[2πA−1(t)]|−1/2e−qT ·A(t)·q/2, (21)

where the kernel A(t) is a symmetric matrix, satisfying the
differential equation as

dA−1

dt
= 2D − [F(t)A−1 + A−1FT (t)]. (22)

The formal solution is given by

A−1(t) = 2
∫ t

0
dτU(t ; t − τ )DUT (t ; t − τ )

+ U(t ; 0)A−1(0)UT (t ; 0), (23)
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with the initial condition A(0) = βH(0). Here the evolution
operator U is given by

U(t ; t ′) =
[

exp

(
−

∫ t

t ′
dτF(τ )

)]
T O

, (24)

where the subscript denotes the time-ordered product, and
satisfies the differential equation

∂

∂t
U(t ; t ′) = −F(t)U(t ; t ′), (25)

with U(t ′; t ′) = I (the identity matrix).
In the absence of noises (D = 0), U(t ; t ′) describes the

deterministic evolution by q(t) = U(t ; t ′)q(t ′). When the force
matrix is constant in time so that U(t,t ′) = e−(t−t ′)F, one can
do the integral in Eq. (23) and find the explicit solution for A(t)
[see Eq. [21] in [27]]. For a general time-dependent F(t), it is
difficult to treat U analytically. However, Eqs. (23) and (25)
can be solved precisely by numerical integrations.

B. Work distribution function

The generating function for the work distribution in Eq. (17)
involves the integration of the quantity I with nonzero λ. The
work W[q] coupled to λ is also quadratic in q [see Eq. (9)],
hence the integration can be performed in the same way as was
done for the PDF. After some algebra, one can derive

lnG(λ) = −λ

2

∫ t

0
dτ Tr[Ã−1(τ ; λ)
(τ )], (26)

where 
 = βḢ in Eq. (10) and Ã(τ ; λ) is the modified kernel
due to −λβW in Eq. (13). It is found to satisfy the nonlinear
differential equation

dÃ−1

dτ
= 2D − (FÃ−1 + Ã−1FT ) − λÃ−1
Ã−1, (27)

where the initial condition is given by Ã(0; λ) = βH(0).
This nonlinear differential equation can be solved easily

for λ = 0 and 1. The solution is Ã(τ ; 0) = A(τ ) in Eq. (23),
while Ã(τ ; 1) = βH(τ ). Interestingly, Ã(τ ; 1) corresponds to
the kernel for P (q,τ ) in the quasistatic process. Inserting this
into Eq. (26), we find

lnG(1) = −1

2

∫ t

0
dτ

(
k̇

k

)
= −1

2
ln

[
k(t)

k(0)

]
= −β�F , (28)

which verifies the JE.
It is more convenient to rewrite Eq. (27) in terms of Ã(τ ; λ)

as

dÃ
dτ

= λ
 + (ÃF + FT Ã) − 2ÃDÃ, (29)

along with an equivalent and more effective expression for the
generating function replacing Eq. (26) as

lnG(λ) =
∫ t

0
dτ Tr[F(τ ) − Ã(τ ; λ)D] − 1

2
ln

det Ã(t ; λ)

det Ã(0; λ)
.

(30)

A similar result has been found in the time-independent case
[27]. Equations (29) and (30) are ingredients for a numerical
study of the work production distribution P (w), which cannot

be expressed analytically in a closed form. Nonetheless,
these two equations can be solved numerically with machine
accuracy, which provides very precise information on the
tail behavior of P (w) associated with rare events. It would
be very difficult to get this information by usual numerical
simulations of the Langevin equation due to huge sampling
errors. In particular, the exponentially decaying tail of P (w)
is manifested by the divergence of G(λ), which turns out to be
fully captured by the singularity in the logarithmic boundary
term in Eq. (30). Thus we will focus on the behavior of
det Ã(t ; λ) in the next section.

One can observe that Eq. (29) becomes independent of β

if Ã is scaled by β. This proves that G(λ) as well as P (w) is
independent of β. Therefore, P (W ) is simply equal to βP (w)
with w = βW . In the weak-noise (large-β) limit [46,47], the
tail behavior of P (w) for large |w| determines exactly and
fully the work distribution P (W ), except for a narrow central
region |W | < β−1. We will return to this issue later.

C. Cumulants of work production

The cumulant generating function in Eq. (19) is found as

Z[l] = exp

(
1

2

∫
dτ

∫
dτ ′lT (τ ) · (τ,τ ′) · l(τ ′)

)
. (31)

This form is expected because the Lagrangian is quadratic in
q and the source field l(τ ) is linearly coupled to q. The kernel
(τ,τ ′) is given as

(τ,τ ′) =
{

U(τ,τ ′)A−1(τ ′), τ � τ ′

A−1(τ )UT (τ ′,τ ), τ < τ ′ (32)

and (τ,τ ′) = T (τ ′,τ ).
Using Eqs. (20) and (31), one can express the average of

any functional of path q(τ ) in terms of (τ,τ ′). For example,
the first and the second cumulant of the work are given by

〈W〉 = 1

2

∫ t

0
dτ Tr[Ḣ(τ )(τ,τ )],

〈W2〉c = 1

2

∫ t

0
dτ

∫ t

0
dτ ′Tr[(τ,τ ′)Ḣ(τ ′)T (τ,τ ′)Ḣ(τ )],

where 〈W2〉c = 〈W2〉 − 〈W〉2. Note that Ḣ11 = k̇ and Ḣab =
0 otherwise. Then the expressions become simpler:

〈W〉 = 1

2

∫ t

0
dτ k̇A−1

11 (τ ), (33)

〈W2〉c = 1

2

∫ t

0
dτ

∫ t

0
dτ ′k̇(τ )k̇(τ ′)[11(τ,τ ′)]2. (34)

One can also find higher-order cumulants in terms of
(τ,τ ′), which are nonzero in all orders. This implies that
the PDF P (w) should have a non-Gaussian form. The PDF
shape will be discussed further in the next session.

D. Sudden change limit

A sudden change is a rare case in which one can calculate
the work PDF exactly, even in the underdamped case. Suppose
that the particle is in EQ under the harmonic potential with the
force constant ki and the force constant is changed abruptly to
kf at time t = 0 [46,47]. If the particle is in a state q = (x,p)T
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just before the change (t = 0−), its state still remains the same
right after the change (t = 0+) as well as the PDF P (q,t). The
only change occurs in the potential energy, which results in
the energy change �E = E(q,kf ) − E(q,ki) = 1

2 (kf − ki)x2

for state q. Then the work production W(q) = �E.
As the initial distribution is given by the EQ

Boltzmann distribution, the PDF P (x) = ∫
dpPeq (q; ki) =√

βki/2πe−βkix
2/2. Then the PDF P (w) of the dimensionless

work w = βW can be easily derived using P (w)dw =
2P (x)|dx|, which yields that

P (w) =
⎧⎨
⎩

θ (w)
√

a
π
w−1/2e−aw, a > 0

θ (−w)
√

|a|
π

|w|−1/2e|a|w, a < 0
(35)

where a = ki/(kf − ki) and θ (w) is the Heaviside step
function.

The generating function G can be easily calculated, using
Eq. (16), as

G(λ) =
(

λkf + (1 − λ)ki

ki

)−1/2

, (36)

which diverges at λ = ki/(ki − kf ) = −a as expected. The JE
is also seen from G(1) = (kf /ki)−1/2.

Our analytic formalism in the preceding sections can also
reproduce G(λ). The sudden change in the potential function
can be studied by considering

k(τ ) = kiθ (−τ ) + kf θ (τ ), k̇(τ ) = (kf − ki)δ(τ ). (37)

Integrating Eq. (29) from τ = 0− to τ = 0+, one gets

Ã(0+; λ) = Ã(0−; λ) + λβ(kf − ki)

(
1 0

0 0

)

= β

(
(1 − λ)ki + λkf 0

0 1/m

)
, (38)

where Ã(0−; λ) = βH (0−) is used. Then, from Eq. (30), one
can easily reproduce the result in Eq. (36). The cumulants of
the work can be also easily calculated as

〈w〉 = kf − ki

2ki

, 〈w2〉c = (kf − ki)2

2k2
i

. (39)

IV. ANALYSIS OF WORK DISTRIBUTION

The analytic formalism developed in this paper is useful
in investigating the work distribution P (w) numerically, in
particular, its tail behavior, in contrast to direct numerical
integration of the equations of motion where we always face
a statistics problem, becoming serious in rare-event regions.
In this section we first present numerical data from the latter
method to check fluctuation relations and get some insights
into the nature of the work production distribution. Then the
tail behavior of P (w) is carefully examined by the former
method.

We set m = γ = β = 1 without loss of generality by the
simple rescaling of t , x, and p. Then the only relevant
parameter is the force constant k. We will consider a special
case of k(t) = ki(1 + αt) for convenience, where k̇ is a
time-independent constant.

First, we check the JE and the Crooks relation from the
direct numerical integration of the time-discretized equations
of motion. We adopt the notation Xn = X(t = tn) for a time-
dependent quantity X(t), where tn = n�t (n = 0,1,2, . . .) are
discretized times in units of �t . Then the equations of motion
are solved from the difference equations

xn+1 = xn + (�t)pn,

pn+1 = pn − (�t)(pn + knxn) +
√

2(�t)ηn,

where ηn are independent Gaussian-distributed random vari-
ables with zero mean and unit variance. An initial configuration
q0 = (x0,p0) is drawn from the EQ distribution of Eq. (7). The
dimensionless NEQ work production wn = βWn up to time tn
is evaluated from the recursion relation

wn+1 = wn + kiα

4

(
x2

n+1 + x2
n

)
�t, (40)

with w0 = 0. Repeating the simulations NS times, one can
measure the PDF P (w) and the generating function G(λ)
numerically. Note that the work production w is always
positive for α > 0 and negative for α < 0, independent of
noise realizations.

In simulations, we take �t = 10−3 and NS = 107. The
force constant k(t) is taken to vary linearly from ki = 1 to
kf = 4 and from ki = 4 to kf = 1, which will be referred to as
the forward and the reverse process, respectively. Figure 1(a)
shows PF (w) for the forward process until t = 3 with α =
1 and PR(w) for the reverse process with α = −1/4. We
compare PF (w) and ew−β�FPR(−w) with β�F = 1

2 ln kf

ki
=

ln 2. They seem to overlap each other well [except for the
region with very small P (w)], which supports the validity of
the Crooks relation in Eq. (12).

In order to examine the PDF in detail, we compute
the generating function G(λ) = 〈e−λw〉. These are plotted
in Fig. 1(b). The JE states that G(λ = 1) = e−β�F , where
β�F = ln 2 for the forward process and − ln 2 for the reverse
process. Indeed, the numerical curves pass through the JE

-4 -2 0 2 4 6
w

0

0.5

1

1.5

2

P(
w)

F
R

-2 -1 0 1 2 3
λ

-2

0

2

4

6

ln
G

(λ
)

F
R

(a) (b)

FIG. 1. (Color online) (a) Work distribution PF (w) for the
forward (F) process (thin line) and PR(w) for the reverse (R)
process (thick line). Open symbols represent ew−ln 2PR(−w).
(b) Generating function GF (λ) for the forward process and GR(λ)
for the reverse process. Closed symbols represent the JE points
and open symbols represent e− ln 2GR(1 − λ). Also shown (dashed
lines) are the generating functions obtained from the analytic formula
in Eq. (30).
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FIG. 2. Time evolution of det Ã(t ; λ) for the case with k(t) =
ki(1 + αt), where ki = 1 and α = 1, at various values of λ.

points. We also compare GF (λ) and e−β�FGR(1 − λ) to check
the generalized Crooks relation. For moderate values of λ,
both data align along a single curve. However, there is
a slight discrepancy for large |λ| where rare fluctuations
with large values of |w| are important. This reflects a
statistical uncertainty due to limited samplings. Even with
NS = 107 samples, the statistics are poor for those rare
fluctuations.

Now we utilize the analytic results in Eqs. (29) and (30),
which are free from statistical errors, in order to determine
the tail part of P (w) precisely. In discretized times in the
unit of �t = 10−3, the nonlinear differential equation (29) for
Ã(τ ; λ) is solved with the initial condition Ã(0; λ) = βH(0)
and the integration in Eq. (30) is performed numerically.
We present the numerical results for the forward and reverse
processes (dashed lines) in Fig. 1(b). As expected, the previous
simulation results deviate significantly from our improved
numerical results in rare-event regions. We checked that the
relation GF (λ) = e−β�FGR(1 − λ) is satisfied perfectly well
with our numerical results at all values of λ.

In fact, our numerical data in Fig. 1(b) show that
G(λ) is divergent at thresholds λ0 (forward) and 1 − λ0

(reverse) with λ0 � −0.84713 < 0. The divergence occurs
when det Ã(t ; λ) = 0, as seen in Eq. (30). Figure 2 shows
the time evolution of det Ã(t ; λ) at several values of λ in
the case with ki = 1 and α = 1. To a given value of t ,
det Ã becomes smaller as λ decreases and vanishes at a
threshold λ0. One can solve the equation det Ã(t ; λ) = 0
numerically to obtain the t-dependent threshold λ0. Figure 3
shows the numerical results for the system with ki = 1 and
α = 0.5,1, and 2. The threshold depends on ki and α and in-
creases monotonically and converges to a finite limiting value
λ∞

0 � −1.391 62, − 0.813 11, and −0.481 10 in the t → ∞
limit.

The singular behavior of G(λ) reveals the asymptotic
behavior of the tail shape of P (w) for large |w|. Due to the
generalized Crooks relation, it suffices to consider the forward
process with positive α (compression). Figure 2 suggests
that det Ã(t ; λ) is regular near λ = λ0(t), so one can write
det Ã � c(λ − λ0(t)) with a positive constant c. Then, from
Eq. (30), G(λ) diverges as

G(λ) ∼ [λ − λ0(t)]−1/2. (41)

0 2 4 6 8
t

-6

-4

-2

0

λ 0

α = 2.0
α = 1.0
α = 0.5

2 3 4 5
t

-0.9

-0.8

λ 0

5 6 7 8
t

-0.812

-0.818

λ 0

FIG. 3. The t dependence of the threshold λ0 for the forward
process with ki = 1 and α = 0.5,1,2. Multiple stepwise increases are
observed in the insets showing the magnification of the curve with
α = 1.

The divergence at λ = λ0 indicates that the work PDF has an
exponential tail P (w) ∼ e−|λ0|w in the large-w region. This
implies that the characteristic work cost for compressing a
harmonic particle is given by w0 = 1/|λ0|. Furthermore, the
inverse square-root singularity yields a power-law correction
as [27]

P (w) ∼ w−1/2e−|λ0(t)|w. (42)

Note that the abrupt change of k (sudden change limit) also
yields the same tail, as was shown in the preceding section.

We test the tail shape by direct numerical integration of the
equations of motion using ki = 1, kf = 4, and various α =
1,2,4,8. For each case, the threshold λ0 is obtained by solving
the equation det Ã(t ; λ0) = 0 with fixed t = (kf − ki)/kiα. In
Fig. 4 the PDF P (w) multiplied by e|λ0|w follows a power-
law scaling for large w, which confirms the tail shape. Huge
fluctuations for large w are due to statistical errors in sampling
rare events.

The tail shape of P (w) in Eq. (42) is consistent with
previous findings in the overdamped limit [46–49]. It is also not
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FIG. 4. (Color online) Rescaled PDF for the forward process with
ki = 1, kf = 4, and α = 1,2,4,8 (from top to bottom). The dashed
line has a slope of −1/2.
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surprising to find that |λ0(t)| decreases with t because one can
easily expect that the work PDF should be more distributed
(flatter) as t increases. However, the monotonic behavior of
|λ0(t)| is not trivially smooth, but has an interesting repeating
structure in our underdamped case.

In Fig. 3 we observe a stepwise change of |λ0(t)| in
time, composed of a rather fast linear change followed by
quite slow plateau-type change, which repeats itself but
with decreasing size in both magnitude and time period
and finally converges to the limiting value of |λ∞

0 |. This
implies that the exponential tail of P (w) relaxes into the
limiting distribution via multiple (possibly infinitely many)
fast-slow-type relaxation dynamics. These repeated fast-slow-
type dynamics resemble multiple locking-unlocking dynamic
transitions found in two-dimensional linear diffusion systems
in the overdamped limit [34]. However, our case shows
rather smooth crossovers between fast and slow dynamics,
in contrast to sharp transitions with completely flat plateaus in
|λ0(t)|, reported in [34]. We call the stepwise changes in our
case pseudo-locking-unlocking transitions. In mathematical
language, we cannot find any det Ã(t ; λ) curve tangential to
the t axis (det Ã = 0) in Fig. 2, which prohibits a completely
flat plateau, so no sharp transition is realized.

It is easy to recognize that the oscillatory feature of
det Ã in Fig. 2 evokes the stepwise change of |λ0(t)|. First,
note that all det Ã curves show oscillatory wiggles almost
simultaneously in time and the oscillation frequency grows
as t increases. So we can define a set of characteristic times
(t±1 ,t±2 , . . .) where all curves show a local minimum (+) or
maximum (−) simultaneously, at least, approximately. The
oscillatory behavior is related to the increasing frequency of
the harmonic oscillator caused by the increasing force constant
k(t) = ki(1 + αt).

Due to this oscillatory feature of the det Ã curves, one can
easily figure out that the curves cross the t axis sparsely right
after t = t+1 until t = t−1 , densely for t−1 < t < t+2 , and so
on. Therefore, λ0 increases very fast during 0 < t < t+1 and
very slowly during t+1 < t < t−1 and this fast-slow relaxation
dynamics repeats itself with increasing frequency.

The pseudo-locking-unlocking transitions are also mani-
fested in physical observables such as the cumulants of the
work production. Figure 5 shows the first cumulant 〈w〉 and the
second cumulant 〈w2〉c with ki = α = 1. These were evaluated

0 2 4 6 8
t

0

0.5

1

1.5

〈w
〉

0 2 4 6 8
t

0

0.4

0.8

1.2

〈w
2 〉 c

(a) (b)

FIG. 5. (a) First cumulant and (b) second cumulant. Solid lines are
for the cumulants, while the dashed lines are for their time derivatives.

numerically using the expressions in Eqs. (33) and (34). The
first cumulant 〈w〉 appears to be smoothly increasing in time,
but one can observe its weak oscillatory behavior by looking
at its time derivative. The second cumulant exhibits the clear
stepwise increase. Note that the period of the steps coincides
with that in λ0 (see Fig. 3).

The underlying mechanism of these pseudo-locking-
unlocking transitions should be similar to one for the sharp
transitions found in the two-dimensional linear diffusion
systems [34]. The only differences are the nature of the
rotational current, which exists here only in the phase space
of (x,p) and the time-dependent external force, which acts in
the role of the rotational driving force as well as the (time-
dependent) anisotropic harmonic potential in the phase space.
However, we could not find a sharp dynamic transition in our
model with an arbitrary choice of parameters (ki,α). Recalling
what we learned in [34], we guess that the anisotropy may
be always small in our model, compared to the driving force
magnitude, in order to avoid a sharp transition. This nontrivial
behavior is characteristic of general multidimensional motions
(including one-dimensional underdamped case), not specific
to a certain type of protocol or potential shape. For a full
understanding, however, further investigation is necessary.

For the overdamped one-dimensional case, we cannot have
any rotational current, so the oscillatory behavior should be
completely absent, which will be confirmed rigorously in the
next section. Therefore, we conclude that the pseudo-locking-
unlocking transitions found in the underdamped case originate
from the existence of the rotational current in the phase space.

V. OVERDAMPED LIMIT

In the overdamped limit, the usual Fokker-Planck equation,
replacing the Kramers equation, reads

∂P (x,t)

∂t
= ∂

∂x

(
γ −1k(t)x + (γβ)−1 ∂

∂x

)
P (x,t). (43)

Our formalism developed in preceding sections can be applied
also by replacing D with (γβ)−1, F with γ −1k, H with k, and
Ḣ with k̇. Then the work generating function G(λ) is given by

lnG(λ) =
∫ t

0
dτ

(
k(τ )

γ
− Ã(τ ; λ)

γβ

)
− 1

2
ln

Ã(t ; λ)

Ã(0; λ)
, (44)

where the scalar quantity Ã(t ; λ) satisfies a nonlinear differen-
tial equation

dÃ(τ ; λ)

dτ
= (βk̇)λ + 2

k

γ
Ã − 2

γβ
Ã2 (45)

with the initial condition Ã(0; λ) = βk(0) = βki . We will
set γ = β = 1 without loss of generality and consider two
different choices of k(τ ).

A. k(τ ) = ki (1 + ατ )

All relevant information can be obtained from Eqs. (44)
and (45). Unfortunately, the closed-form solution for Ã(t ; λ) or
G(λ) is not available. However, the highly accurate numerical
solution is possible, which is shown in Fig. 6(a) for Ã(t ; λ) with
ki = 1 and α = 1. As in the Brownian dynamics, it becomes
zero at a t-dependent threshold λ0. The threshold is plotted
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FIG. 6. (a) Time evolution of Ã(t ; λ) in the overdamped case with
ki = 1 and α = 1 at various values of λ. (b) The t dependence of the
threshold λ0 for the processes with ki = 1 and α = 0.5,1,2.

in Fig. 6(b). From the similar analysis for Eq. (41), the PDF
P (w) can be found to have the same tail shape as in Eq. (42).
Note that the particle dynamics does not display any oscillatory
motion in the overdamped limit, hence Ã does not either, as
shown in Fig. 6(a). Thus the threshold λ0 in Fig. 6(b) varies in
time smoothly, showing no stepwise change at all.

Engel and Nickelsen studied the same harmonic potential
problem in the overdamped limit [46,47]. In their studies they
evaluated the path integral using the saddle point method in the
low-noise (large-β) limit. However, as pointed out in Sec. III,
P (w) is independent of β, so P (W ) with w = βW can be
exactly determined from the tail behavior of P (w) except for
|W | < β−1.

In order to calculate the cumulants of the work production,
we need to evaluate the PDF kernel A(t), first, using Eqs. (23)
and (24). As we do not need to deal with the time-ordered
product, we simply gets U (t,t ′) = exp[− ∫ t

t ′ dτk(τ )]. Then one
can explicitly calculate the cumulants for the work production.
Using Eqs. (23) and (32) we find

A−1(t) = 2
∫ t

0
dτ exp

(
−2

∫ t

τ

dτ ′k(τ ′)
)

+ k−1
i exp

(
−2

∫ t

0
dτk(τ )

)
(46)

and

(t,t ′) = exp

(
−

∫ t

t ′
dτk(τ )

)
A−1(t ′), (47)

where we use A−1(0) = k−1
i .

For k(τ ) = ki(1 + ατ ) we find

A−1(t) = k−1
i e−2ki t−kiαt2

g(t) (48)

and

(t,t ′) = k−1
i e−ki (t+t ′)−kiα(t2+t ′2)/2g(t ′), (49)

where

g(t) = 1 + 2ki

∫ t

0
dτe2kiτ+kiατ 2

. (50)

The first and second cumulants are found as

〈w〉 = α

2

∫ t

0
dτe−2ki τ−kiατ 2

g(τ ), (51)

〈w2〉c = α2

2

∫ t

0
dτ

{∫ τ

0
dτ ′h(τ,τ ′)g(τ ′)2

+
∫ t

τ

dτ ′h(τ,τ ′)g(τ )2

}
, (52)

where

h(τ,τ ′) = e−2ki (τ+τ ′)−kiα(τ 2+τ ′2). (53)

There are two extreme cases: quasistatic and sudden
processes. For the quasistatic process, one can take the limits
α → 0 and t → ∞ with a finite value of αt = (kf − ki)/ki .
Changing the variable as u = kiατ/(kf − ki), one can get
the approximate result for the time integral. The important
ingredient for the integration is∫ b

a

duecu2 → 1

2c

(
ecb2

b
− eca2

a

)
,

where c = (kf − ki)2/kiα → ∞. The final results are

〈w〉 = 1

2
ln

(
kf

ki

)
+ α

8

k2
f − k2

i

kik
2
f

+ O(α2),

(54)

〈w2〉c = α

4

k2
f − k2

i

kik
2
f

+ O(α2),

which agree with the results by Speck [48]. This indicates that
the work distribution function is perfectly Gaussian centered
around w = β�F up to O(α) and the non-Gaussianity starts
to appear in O(α2) [60]. In the quasistatic limit (α → 0), the
work distribution function becomes a δ function, as expected
for the EQ processes.

For a sudden process, one can take the opposite limits α →
∞ and t → 0 with a finite value of αt = (kf − ki)/ki . Also

using the same variable u, the integrand of
∫ b

a
duecu2

can be
expanded in orders of c in the c → 0 limit. As a result, we find

〈w〉 = kf − ki

2ki

(
1 − (kf − ki)2

3kiα

)
+ O(α−2),

(55)

〈w2〉c = (kf − ki)2

2k2
i

(
1 − 2(kf − ki)

3α

)
+ O(α−2).

Note that 〈w〉 and 〈w2〉c are finite even for an instantaneous
change (α = ∞), which agrees with the sudden change limit
for the underdamped case in Eq. (39). It is different from the
case for the rigid wall moving with speed v in the v → ∞
limit, where we expect 〈w〉 → 0 [50]. The difference is due to
the distinctive situations. For the former, the collision occurs
everywhere with the harmonic potential, while for the latter
the collision occurs only at the descending wall. The similarity
lies in the nontrivial fluctuation around the average value.

B. k(τ ) = ki/(1 + ατ )

With this specific form, one can find the closed-form
solution for the work generating function G(λ). For α > 0, the
harmonic potential becomes flatter with time τ � 0 and the
work w done on the particle is always negative. In contrast,
for α < 0, the harmonic potential becomes stiffer with time τ

(0 � τ < 1/|α|) and w is always positive.
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It is convenient to change the variables as

fλ(u) ≡ (1 + ατ )Ã(τ ; λ), (56)

u ≡ 1

α
ln(1 + ατ ). (57)

The timelike variable u is monotonically increasing with τ ,
starting from 0 to ∞ for any nonzero α. From Eq. (45) one
obtains a differential equation for fλ(u):

dfλ

du
= −2[(fλ − c)2 + κ2], (58)

with κ =
√

λ̃ − c2, c = (2ki + α)/4, and λ̃ = αkiλ/2. Note
that κ may be either positive real or pure imaginary, depending
on the range of λ̃. In either case, the solution is given by

fλ(u) = ki cos(2κu) + (cki − λ̃) sin(2κu)
κ

cos(2κu) + (ki − c) sin(2κu)
κ

, (59)

with cos(ix) = cosh x and sin(ix) = i sinh x for any x.
With the solution for fλ(u) or, equivalently, for Ã(τ ; λ),

one can obtain the work generating function using Eq. (44).
It is useful to note that fλ(u) = c + 1

2
d
du

ln[cos(2κu) + (ki −
c)sin(2κu)/κ]. After straightforward algebra, we find that

G(λ) = ecut√
cos(2κut ) + cki−λ̃

ki

sin(2κut )
κ

, (60)

with ut = 1
α

ln(1 + αt).
The work PDF P (w) can be obtained by the inverse

Fourier transformation of G(λ) in Eq. (18). First, note that
the generating function has the inverse square-root singularity
at a particular value of λ = λ0(u) where the denominator in
Eq. (60) vanishes. As discussed before, this leads to

P (w) ∼ 1

|w|1/2
eλ0(u)w (61)

in the ω → −∞ limit for α > 0 (λ0 > 0) or in the ω → ∞
limit for α < 0 (λ0 < 0).

In fact, the singularity occurs when Ã(τ ; λ) = 0 or, equiv-
alently, fλ(u) = 0, which yields the relation for the singular
point as

ut = 1

2
√

λ̃0 − c2
tan−1

(
ki

√
λ̃0 − c2

λ̃0 − cki

)
, (62)

with λ̃0 = αkiλ0/2. It should be understood that tan−1(ix) =
i tanh−1(x) and that 0 � tan−1 x < π for a real x. Figure 7
shows the plots for the solution of Eq. (62), where the
divergence of ut is observed as λ̃0 approaches the limiting
value from above. Interestingly, the time dependence and
the limiting value are very different, depending on whether
c < 0 (α � −2ki), 0 � c < ki (−2ki < α � 2ki), or ki � c

(α > 2ki). In particular, the limiting value λ∞
0 = limu→∞ λ0

is given by

λ∞
0 =

⎧⎪⎪⎨
⎪⎪⎩

0 (α � −2ki)

(2ki+α)2

8kiα
(−2ki < α � 2ki)

1 (α > 2ki).

(63)

We present the plot of λ∞
0 as a function of α/ki in Fig. 8.
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FIG. 7. Curves representing the relation between ut = 1
α

ln(1 +
αt) and λ̃0 = αkiλ0/2 for (a) c < 0, (b) 0 < c < ki , and (c) ki <

c. The values of (c,ki) are taken to be (−1,1), (1/2,1), and (2,1),
respectively.

There is an interesting symmetry of λ∞
0 (−α) = 1 − λ∞

0 (α).
This comes from the Crooks relation. The reverse protocol
with respect to the forward protocol k(τ ) = ki/(1 + ατ )
should be given as kr (τ ) = k(t − τ ) = kf /(1 + αrτ ), with
αr = −αkf /ki and kf = ki/(1 + αt). If the system starts with
the EQ distribution with kr (0) = kf , all results derived here
can be applied also for the reverse process by replacing ki by kf

and α by −αkf /ki . Then Eq. (63) gives us λ∞
0,r (αr ) = λ∞

0 (−α).
The Crooks relation of Eq. (12) yields λ∞

0 = 1 − λ∞
0,r in the

large-w limit, which leads to our symmetry of λ∞
0 (−α) =

1 − λ∞
0 (α).

We add a few remarks on the interesting α dependence of
λ∞

0 .
(i) For α � 2ki , the tail shape of P (w) does not change

with α and λ∞
0 = 1. When α is large enough, the harmonic

potential flattens very fast. Then the particle dynamics starting
from the EQ distribution with ki would be rather localized
and not fully relaxed into the flattened harmonic potential. So
the fluctuation in w may be dominated by an initial transient
behavior even in the long-time limit (t → ∞), independent of
the detailed shape of k(t). The sudden change limit discussed
in Sec. III D corresponds to the α = ∞ limit with kf = 0,
where λ∞

0 = |ki/(kf − ki)| = 1 from Eq. (35) is consistent
with the result for α � 2ki . Nevertheless, it is still quite
remarkable to find λ∞

0 = 1 for large but finite α. Similar
features of the initial-distribution dominance in the large

-6 -4 -2 0 2 4 6
α / ki

-2

-1

0

1

2

3

λ 0∞

FIG. 8. Plot of λ∞
0 versus α/ki . The dashed lines are a flat straight

line of λ∞
0 = 1 starting from the α/ki = 2 point (open circle) and of

λ∞
0 = 0 starting from the α/ki = −2 point (closed circle).
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deviation function in the long-time limit have been found in
various different situations [30–33].

(ii) For |α| < 2ki , |λ∞| decreases monotonically as |α|
increases. This behavior is compatible with the common
wisdom that the fluctuation gets stronger [longer tail in P (ω)]
as the rate of the change in driving increases.

(iii) When α � −2ki (or c � 0) we obtain λ∞
0 = 0. This

implies that P (ω) has a pure power-law tail in the positive-w
region in the u → ∞ (t → 1/|α|) limit. In this case, the driving
is strong enough to generate huge power-law-type fluctuations.

The transient behavior of λ0 is also investigated in two
limits. In the short-time limit (ut → 0), P (w) is expected to
exhibit a δ-function distribution centered at w = 0. This is
confirmed by the solution of Eq. (62): λ̃0 � ki/(2ut ) or λ0 �
1/(αut ) in the ut → 0 limit. In the opposite limit (ut → ∞),
Eq. (62) yields

λ̃0 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4c2ki

ki−2c
e4cut (c < 0)

π2

16u2
t

(c = 0)

c2 + π2

4u2
t

(0 < c < ki)

c2 + π2

16u2
t

(c = ki)

ki(2c − ki) + 4ki (c−ki )2

2c−ki
e−4(c−ki )ut (c > ki).

(64)

Note that the asymptotic behavior near λ̃ = λ̃+
0 is very

different, depending on the region. In terms of λ0 and t , it is
interesting to see a nontrivial power-law relaxation for α > 2ki

(ki < c) such that λ0 � 1 + z2(1 + αt)−z with z = 1 − 2ki/α.
The generating function also produces the cumulants of the

work production by 〈wn〉c = dn lnG/d(−λ)n|λ=0. We focus
on the mean value of the work, which is given by

〈w〉 = − α

4c

[
kiut + 1

2

(
1 − ki

2c

)
(1 − e−4cut )

]
. (65)

The quasi-static process corresponds to the limiting case
where α → 0, t → ∞ with fixed αt = (ki − kf )/kf . In this
limit, we find

〈w〉 = −1

2
ln(1 + αt) = 1

2
ln

(
kf

ki

)
(66)

which agrees with Eq. (54). For a sudden process, we take the
opposite limit where α → ∞, t → 0 with the same fixed value
of αt in the above. Eq. (65) approaches 〈w〉 = (kf − ki)/2ki ,
which agrees with Eq. (55).

VI. SUMMARY

The Brownian dynamics with both position x and momen-
tum p variables has not been investigated in the context of
the work production with a time-dependent protocol. In most
literatures, the overdamped limit was taken for simplicity or
due to many experiments with the overdamped time scale.
Otherwise, the Kramers equation should be considered and
investigated for the underdamped case, which is usually a
nontrivial task.

We convert the Kramers equation into the usual Fokker-
Planck equation by relaxing the strict constraint of δ(ẋ −
p/m), where x and p can be put on the same footing

with the singular diffusion matrix introduced in Eq. (6).
Then, the standard path-integral formalism can be applied
also to the underdamped case. This approach is well-known
even at the textbook level, but there are not many examples
exploiting this method. In our study, we have shown that this
approach is very useful in finding the results analytically and
also numerically, by examining the work fluctuations of a
Brownian particle in the breathing harmonic potential beyond
the overdamped limit. It should be straightforward to apply
our formalism to a more complex time-dependent harmonic
potential such as a combination of the sliding and breathing
potentials.

In the case of the breathing harmonic potential with a
time-dependent force constant k(t), we derived the generating
function for the work production rigorously via the first-order
ordinary matrix differential equation, which can be solved
numerically with machine accuracy. As a result, we found
the exponential tail with a power-law prefactor in the PDF
P (w) and the characteristic work production 1/|λ0(t)|, which
increases with time t . Remarkably, the time-dependence of
|λ0(t)| exhibits an interesting fine structure of the infinite
but not sharply-edged staircase. By comparing the multiple
locking-unlocking transitions (sharply-edged staircase) found
in the two-dimensional linear diffusion system [34], we
call these rather smooth staircase as a manifestation of
multiple pseudo locking-unlocking transitions. These pseudo
transitions completely go away in the overdamped limit where
no rotational current exists even in the phase space. We expect
that these interesting transitions should be present in most
of multi-dimensional dynamics in NEQ systems. We also
consider some exactly solvable models in the overdamped
limit and found an interesting power-law (not exponential) tail
in P (w) for the case of rather fast compression (α � −2ki)
with the protocol k(t) = ki/(1 + αt), which implies huge NEQ
fluctuations.

The potential well in optical tweezers or an optical trap
experiment is controlled by an external field, so one can make
a continuous shape change in time by applying a time-varying
external field. Therefore, our study can serve as a theoretical
basis for such experiments, since the potential well may be
approximated to be harmonic in many cases. The perturbation
theory might be developed to investigate an anharmonic effect.
Our recent study of the multi-dimensional diffusion dynamics
for a linear drift force [27,34] in the overdamped limit can be
also realized in such experiments. It would be very interesting
to observe the (pseudo) locking-unlocking dynamic transitions
in experiments by measuring the work PDF or its cumulants.
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