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Biased and greedy random walks on two-dimensional lattices with quenched randomness:
The greedy ant within a disordered environment

T. L. Mitran,1,2,* O. Melchert,1,† and A. K. Hartmann1,‡
1Institut für Physik, Universität Oldenburg, Carl-von-Ossietzky Strasse, 26111 Oldenburg, Germany

2Faculty of Physics, University of Bucharest, 077125 Magurele-Ilfov, P. O. Box MG-11, Romania
(Received 23 August 2013; published 2 December 2013)

The main characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued
quenched disorder on the lattice edges are studied. Here the disorder allows for negative edge weights. In previous
studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality
class of the existing, static percolation transition. In the presented study, four different types of BGRWs and
an algorithm based on the ant colony optimization heuristic were considered. Regarding the BGRWs, the
precise configurations of the lattice walks constructed during the numerical simulations were influenced by two
parameters: a disorder parameter ρ that controls the amount of negative edge weights on the lattice and a bias
strength B that governs the drift of the walkers along a certain lattice direction. The random walks are “greedy”
in the sense that the local optimal choice of the walker is to preferentially traverse edges with a negative weight
(associated with a net gain of “energy” for the walker). Here, the pivotal observable is the probability that,
after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The
behavior of this observable as function of ρ for different bias strengths B is put under scrutiny. Upon tuning ρ, the
probability to find such a feasible lattice walk increases from zero to 1. This is the key feature of the percolation
transition in the NWP model. Here, we address the question how well the transition point ρc, resulting from
numerically exact and “static” simulations in terms of the NWP model, can be resolved using simple dynamic
algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
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I. INTRODUCTION

The purely stochastic motion displayed by a simple random
walk (RW) and its various extensions and modifications that,
e.g., go under the popular synonyms “the ant in a labyrinth”
[1,2] and “the biased ant in a labyrinth” [3], give rise to
intriguing effects such as (anomalous) diffusion, drift, and
trapping. These, and further related topics, were actively
studied since the beginning of the last century, first by analytic
means and later using extensive numerical simulations. A
subset of those studies, relevant in the context of the presented
article, is reviewed in Sec. III. In all of these studies, a
random walker is considered that traverses a given (disordered)
environment subject to different dynamics-governing rules.

Here, we also consider a random walker on a disordered
“energy” landscape, where, in contrast to most previous
studies, the underlying energy values might have a positive or a
negative sign. Regarding the dynamics of the random walker,
we study different types of algorithms that are discussed in
detail in Sec. II. The basic principle underlying all these
algorithms is that in the course of exploring the lattice,
the random walker evaluates the energy values associated
with all the edges incident to the site it currently resides
on in order to determine its next stepping direction. More
precise, we consider “greedy” RWs for which the locally
optimal choice is to preferentially traverse edges with a large
negative weight. Here, this is associated with a net gain of
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“energy” for the walker, directly proportional to the weight
of the traversed edge (correspondingly, traversing an edge
with positive energy is associated with a decrease of the
energy resources of the walker). We further introduce precise
rules for performing a “biased” RW, causing the walker to
choose a stepping direction that might not coincide with the
best possible immediate choice. Note that the existence of
the negative energies fundamentally changes the behavior of
the model defined below and will be destroyed by lifting all
energies by the same amount to a positive value. The reason
for this fundamental difference is that, in the presence of a
suitable amount of (nonreplenishable) negative energies, the
walker might lower its energy more and more by performing
longer and longer walks, in contrast to the presence of only
positive energies. The energy values are drawn from specified
distributions wherein a disorder parameter ρ allows us to alter
the fraction of negative energies in the environment (see the
discussion below).

Regarding such a disordered environment, we have pre-
viously introduced [4] and investigated [5–9] the negative-
weight percolation (NWP) problem by numeric means.
Regardless of the spacial dimension of the underlying
(hypercubic) lattice graph, the observables in the NWP
problem are simple lattice paths with an intrinsic dimension of
d = 1. Therein the term simple means that, along such a lattice
path, no node is repeated. As observables in the NWP problem
one considers, e.g., minimum-weight paths (in the presence of
a possibly empty set of negative-weighted loops) that span the
underlying lattice between a pair of specified boundaries. The
problem of finding these paths numerically can be cast into a
minimum-weight perfect matching problem, e.g., discussed
in Refs. [6,8] in more detail (in the latter reference, a
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comprehensive description and illustration of the respective
algorithm can be found). A pivotal observation is that, as a
function of the disorder parameter ρ, the NWP model features a
disorder-driven phase transition, at which the actual minimum-
weight path energy becomes negative. In this question, note
that the aforementioned transition in the path energy is a
precursor to a further “geometric” phase transition at which
the paths exhibit a roughness of the order of the systems size
and where loops might appear that span the system along at
least one direction [4]. In the limit of large system sizes, there
is a particular value of the disorder parameter, signified as ρc,
at which paths with a negative energy appear for the first time.
For example, for the square (2D) lattice, considering a bimodal
disorder distribution, the average path energy turns negative
above ρc = 0.0869(2) [4]. Therein, the finite-size scaling
behavior is described by the critical exponent ν = 1.47(6),
consistent with the one that describes the geometric transition
of the loops-only setup. At ρ = 0.1032(5), slightly above
this critical threshold, the fractal dimension of the paths was
estimated to be df = 1.268(1). Further, at this critical point, the
loops that one finds in addition to the minimum-weight path
are rather small and isolated. Hence, they (presumably) do not
affect the precise configuration of the minimum-weight paths.

At this point, note that the NWP model is a prototypical
disordered model system of intrinsic interest. As an example
that makes use of the NWP problem statement, one might
imagine an agent that travels along the edges of a graph. While
traversing an edge, the agent either needs to pay some resource
(whenever the weight of the traversed edge is positive) or
he is able, once per edge, to harvest some resource (whenever
the weight of the traversed edge is negative). Now, if the
intention of the agent is to gain as much resources as
possible, paths or loops obtained in the context of the NWP
problem can serve as a guide to find routes along which
the agent might move so as to optimize his yield. Further,
the 2D variant of the NWP problem is interesting from a
technical and algorithmic point of view. As regards this, the
problem of finding ground-state spin configurations for the
2D random-bond Ising model, including the canonical Ising
spin glass, on a planar triangular lattice can be mapped to the
2D NWP problem on a honeycomb lattice [10]. Further, paths
including edges with possibly negative weights also appear in
the context of domain wall excitations in 2D random bond Ising
systems [11,12]. Thus, the NWP problem might serve to gain
insight concerning the behavior of more realistic disordered
systems.

As mentioned above, NWP was previously studied nu-
merically exactly by employing a mapping to an auxiliary
minimum-weighted perfect matching problem, which relies
on an involved optimization algorithm specifically tailored
for the problem at hand. Instead of using such a complex
algorithmic approach that finds the optimum of a given
optimization problem using global information, we here
address the question how well the aforementioned transition
point ρc (resulting from numerically exact simulations that
involve a high degree of optimization) can be resolved using
simple dynamic algorithms that have only local information
about the assignment of edge weights available. Therein, so
as to (locally) conform to the NWP optimization problem, we
consider random walks which are “greedy” in the sense that the

walker preferentially traverses edges with a negative weight.
This is a more physical viewpoint on the problem, where,
typically, the movement of particles is mostly determined
by local information. Hence, a comparison between global
static and dynamical physical viewpoints is possible. These
two perspectives are often taken for the study of disordered
and glassy systems [13–15]. Therefore we consider different
biased random-walk approaches and study their ability to find
system spanning paths with negative path weight. Averaging
over different realizations of the disorder, we compute the
probability to find a negative-weighted path as a function of
the model parameter ρ for different simple dynamics. The
algorithms we consider here all mimic moving particles (also
referred to as agents or walkers) in a disordered environment.
The simplest dynamics we study stems from a biased random
walk on the lattice and the most intricate dynamics is
implemented in terms of a particular heuristic algorithm known
as “ant colony optimization.” Subsequently, we will refer to
ρc as the “dynamic” transition points, as opposed to the result
from the “static” (global) simulations quoted above. One might
allude to this study as being dedicated to the behavior of “the
greedy ant in a disordered environment.”

The remainder of the presented article is organized as
follows. In Sec. II, we introduce the model in more detail and
we outline the different dynamic algorithms used to perform
the lattice walks. In Sec. III we review some of the related
literature that alludes to effects that we also expect to observe
within our simulations. In Sec. IV, we list the results of our
numerical simulations and in Sec. V we conclude with a
summary.

II. MODEL AND ALGORITHMS

In the present article we consider lattice graphs G= (V,E)
with a 2D square lattice geometry, having side length L

and periodic (free) boundary conditions (BCs) in the vertical
(horizontal) direction. The considered graphs have N =|V |=
L2 nodes (plus two extra “outer” nodes) i ∈V and M =|E|=
L(2L − 1) undirected edges {i,j}∈E that join adjacent nodes
i,j ∈V on the lattice, see Fig. 1. In addition, there are 2L extra
edges that attach the L nodes on the left and right boundary
to the respective outer nodes. We further assign a weight
ωij to each {i,j} ∈ E. These weights represent quenched
random variables that introduce disorder to the lattice. Here
we consider independent identically distributed weights drawn
from (i) the bimodal distribution,

Pbi(ω) = (1 − ρ)δ(ω − 1) + ρδ(ω + 1), (1)

where ρ signifies the fraction of negative edge weights
ω = −1, or (ii) the semicontinuous distribution,

Psc(ω) = (1 − ρ)δ(ω − 1) + ρu(−1,0), (2)

wherein u(−1,0) signifies a random number uniformly drawn
from the interval (−1,0].

Subsequently, we will study lattice walks on instances of
weighted 2D lattice graphs with side length up to L = 800.
The considered walks are confined to start at an outer node
attached to the left lattice boundary and end as soon as the
walker reaches an outer node attached to the right boundary;
see Fig. 1. More precisely, to construct the lattice walks, two
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FIG. 1. Example of a lattice walk on a disordered 2D square
lattice of side length L = 4 and open boundaries in the vertical
direction (note that in the actual simulations, periodic boundary
conditions in this direction are considered). The solid (dashed) lines
indicate edge weights 1 (−1) and the edges that connect the outer
nodes (open circles) to the nodes on their respective boundaries carry
zero weight. The fraction of negative edge weights it thus ρ ≈ 0.29.
The bold gray line indicates a possible exemplary lattice walk of
weight ωpath = −2.

classes of algorithms were used: biased and greedy RWs and
an ant colony optimization (ACO) heuristic.

A. Computing paths via biased and greedy
random walks (BGRWs)

In brief, the biased RWs explore the lattice graph while
greedily choosing the “best” direction at each discrete time
step. This might be the lowest weighted edge connected to
the node the walker currently resides on or, if there is a
draw, one of the lowest weighted edges picked at random.
By “biased RW” it is meant that following a certain rule, a
preferred direction is chosen for the next step, even if it is not
the best possible immediate choice. The rule employed during
our simulations reads as follows: Say the preferred direction is
given by the positive x direction. First, the walker determines
the direction corresponding to the best local edge choice. If
this direction is already in the positive x direction, the walker
goes there. Otherwise, if the best local choice does not lead
towards the positive x direction, the walker accepts the choice
only with probability 1 − B, where B ∈ [0,1] (termed “bias
probability” or short “bias”), that is, if its not the best local
choice, the walker goes towards the positive x direction with
probability B.

Thus, a walker experiences a drift that, depending on
the bias direction, effectively “guides” him or her towards
a particular direction (see discussion in Sec. III). Here, we will
refer to this kind of RW in a disordered environment as “biased
and greedy random walk” (BGRW). While traversing the
graph, the walker keeps track of the edge weights it encounters.
Consequently, a lattice walk is considered successful if the total
sum of the edges traversed by the walker is smaller or equal to
zero. Clearly, the walker will be able to find negative-weight
paths only if they exist, which can be detected by the previously
mentioned exact algorithms. We anticipate that there will be
an intermediate range, where negative-weight paths exist but

are so rare that they cannot be detected by the locally acting
walker.

We also study a variant of such lattice walks, where the
walker interacts with the graph by modifying the weights of the
traversed edges. This is to some extent motivated by studies,
as, e.g., the one reported in Ref. [16], aimed at mimicking the
foraging behavior of social monkeys. Here, we chose the rules
that the walker

(i) replaces both positive and negative edge weights by
weight ω = 0 (aimed at modeling a finite nonreplenishable
amount of both resources and costs) or

(ii) only replaces negative edge weights with the standard
positive value of ω = 1 (aimed at modeling nonreplenishable
finite resources, only).

These types of modifications were chosen to also prevent
the walker from getting stuck in regions of the lattice with a
high density of negative edge weights, as for RWs in disordered
energy landscapes at low temperatures, reviewed in Sec. III
above. If no such interaction with the lattice is implemented,
the walker could, in principle, collect unlimited amounts of
negative edge weights.

Four distinct variants of BGRWs, termed RWs of type A,
B, C, or D, were considered to evaluate which one performs
better in finding paths with an overall negative weight. Here,
the term “better” means “with higher probability for a given
disorder parameter value ρ.” Also bear in mind that, ultimately,
the aim is to quantify to which extent the transition point
ρc (known from numerical simulations that involve finding
the exact global optimum [4]) can be resolved using simple
dynamic algorithms that have only local information about
the assignment of edge weights available. The four variant of
biased RWs, along with a brief description of the dynamic
governing rules, are listed below. The variant A is based on
standard RWs, while the other three variants are based on
(partially) loop erased RWs.

1. BGRWs of type A

This type of walk is given by a BGRW that replaces negative
edge weights [rule (ii) above] and maintains a running sum of
the edge weights encountered while traversing the graph.

For completeness, note that also the variant wherein the
walker replaces edge weights according to rule (i) was
considered; see Fig. 2. In the figure, type A walks on a square
lattice of size L = 100 for different values of the disorder
parameter ρ are shown, considering the bimodal disorder
distribution Pbi(ω) [see Eq. (1)] for different fractions of
negative edge weights ρ.

While traversing the lattice graph, the walker modifies
positive and negative edge weights, replacing them by edge
weights with value zero. As a consequence, for a small fraction
of negative edge weights [as for ρ = 0.1 in Fig. 2(a)] it
can be observed that the walker backtracks along subpaths
of considerable length. This is due to the fact that, after the
walker modified the respective edge weights, they are actually
“cheaper” than the +1 edge weights that characterize the
majority of the edges. The bias is designed to induce a drift
along the positive x direction; hence, one finds a pronounced
“channeling effect” along the horizontal lattice axis. Once such
a region of zero-weighted edges develops, for small values
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FIG. 2. Examples of type A lattice walks on a disordered 2D
square lattice (considering bimodal disorder) of size L = 100 for
different values of the disorder parameter ρ. In this example, while
traversing the lattice graph under a bias parameter B = 0.05, the
walker modifies positive and negative edge weights, replacing them
by edge weights with value zero [i.e., rule (i) described in the
text]. The subfigures correspond to (a) ρ = 0.1, (b) ρ = 0.5, and
(c) ρ = 0.9.

of ρ, the walker has a hard time to escape from it. As is
evident from Figs. 2(b) and 2(c), the channeling effect is less
pronounced as the fraction of negative edge weights increases.
Note that this effect is conceptually similar to the behavior of
RWs in energetically disordered lattices, reviewed in Sec. III
(see Refs. [17,18]), where initially an effective activation
energy must be overcome in order to escape from a local
minimum in the energy landscape. The general characteristics
of such a lattice walk, basically confined to take place on edges
of zero weight in an environment that mostly features positive
edge weights, further bears some resemblance to the trapping
behavior observed for RWs on percolation clusters discussed
previously.

2. BGRWs of type B

This type of walk is given by a loop-erased BGRW,
traversing the graph without modifying the edge weights
(which is not necessary, due to the erasure of the loops; some
details on loop-erased random walks (LERWs) are given in
Sec. III; see also Ref. [19]). The sum of edge weights along
the loop-erased walk is computed as soon as the BGRW has
finished. Albeit the information processed by the walker is
local in space, loop erasure can imply a long-term temporal
memory of the walker, which might be interpreted as being
nonlocal in time.

3. BGRWs of type C

This type of walk combines an interaction with the
environment (as for type A walks) with loop erasure (as for
type B walks). The lattice walk is constructed via the following
two-step procedure: In the first step, the walker performs a
BGRW and modifies the edge weights related to the traversed

edges according to rule (i) above. At each visited node it further
stores the sum of edge weights accumulated so far, the previous
node it has visited, and the original weight (i.e., the value of the
edge weight before it was modified by the walker) of the edge
it has just traversed. In the second step, after the BGRW has
terminated, the loop erasure and subsequent path evaluation is
performed. Therefore, the lattice path is traced back, starting
from the final node, by selecting at each intermediate node
the step that yields the lowest sum of the edge weights until
that point. This selection appears each time when a loop is
encountered while backtracking. This is a heuristic which
leads to lower path weights but is not able take combinatorial
cases like a loops inside loops inside loops, etc., into account,
since this would contradict the idea of using fast and local
heuristic algorithms for computing the walks. Finally, the total
weight of the path is computed by summing up the edges. For
completeness, note that also the variant wherein the walker
replaces edge weights according to rule (i) was considered.

4. BGRWs of type D

This type of walk might be referred to as a “partially”
loop erased BGRW, wherein only unfavorable loops along the
lattice walk are erased. More precisely, the walker modifies
the weights of the traversed edges and checks each time if
the node it currently resides on was visited previously. If
so, the walker checks whether the created loop has a negative
or positive weight. The loop is kept as part of the lattice walk
if it has a negative weight, or, if it has a positive weight, the
loop is discarded and the original edge weights are restored
along it.

Regarding these dynamics, only the variant where the
walker replaces edge weights according to rule (ii), i.e., the
modification of negative edge weights only, was considered.
This was done since the modification of positive and negative
weights led to the walker being stuck for a very long time in a
certain part of the graph, especially when using a low value for
the bias and a small fraction of negative weights. The cause
for this was that the walker created areas of zero weight in
the graph that it could not escape efficiently if the surrounding
edges were all positive and the bias was too low (somehow
similar to the effective activation energy that must be overcome
in the initial phase of RWs in energetically disordered lattices
reviewed in Sec. III). A similar horizontal “channeling” effect
can be seen in Fig. 2 for random walks of type A BGRWs,
where the walker is constrained to move on an almost straight
line because of the “repulsive” effect of the positive edge
weights.

B. Computing paths via ant colony optimization (ACO)

Previously we considered algorithms that took into account
local information only, that is, the random walk approaches we
considered so far made a decision on where to go next by only
considering the weights of the edges adjacent to the walkers
current location.

In this subsection we will consider a nature-inspired,
population-based heuristic for the solution of optimization
problems called ant colony optimization (ACO) [20,21].
Designed to mimic the foraging behavior of actual ants, the
ACO heuristic is a particular example of swarm intelligent
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systems, which has proven to be valuable in solving a wide
range of optimization problems that can be cast into the form of
optimal-path problems. As regards this, the ACO heuristic has
already been applied to different optimization problems such
as, e.g., the traveling salesperson problem [22], which is a hard
optimization problem, and the minimum-weight spanning tree
problem [23], which is polynomially solvable, i.e., easy.

The ant colony represents a population of, say, M individual
agents that are all able to construct solutions to the given
problem by considering local information only (these need not
necessarily be solutions of high quality). Albeit the M agents
do not interact directly, they are able to interact indirectly
through the deposition of pheromone on the graph edges
(see discussion below). These interactions should lead to
lower-energy solutions as compared to the single random-walk
algorithms discussed above.

Here, the problem is to find a loopless minimum weight path
from a specified source node s to a specified target node t in
a weighted undirected graph G = (V,E), as discussed earlier.
The ACO heuristic comprises an iterative algorithm, where in
the beginning, there is no pheromone on the edges {i,j} ∈ E.
Hence, the only information associated with a particular edge
is its weight ωij . A basic variant of the ACO algorithm for the
above problem can be cast into the following steps:

(i) Preprocessing of the edge weights: Transform the set
of edge weights ωij to a set of (initial) transition probabilities
τi→j = Z−1

i exp{−ωij }, where Zi = ∑
j∈Nb(i) exp{−ωij } with

Nb(i) specifying the set of nodes adjacent to node i. In this way
it is assured that an edge weight ωij with a comparatively large
negative weight will result in a comparatively high probability
for the agent to take the step i → j . These initial transition
probabilities can also be thought of as an initial distribution
of pheromone which affect the behavior of the individual
agents.

(ii) Generate solution to the problem: The ability of an
individual agent to construct loopless paths as solution to the
problem at hand can be implemented in various ways. For
a more clear illustration, let us consider one agent only, i.e.,
M = 1. Here, starting at a specified source node s, we let the
agent perform a LERW, guided by the transition probabilities
τi→j . During the loop erased walk, the agent sums up the edge
weights along the LERW edges. As soon as the agent reaches
a specified target node t , the guided LERW is completed and a
solution to the problem, i.e., a loopless (s,t) path, is obtained.
Note that this is not necessarily a solution with a good quality
regarding the given optimization criterion.

(iii) Evaluate quality of the solution and deposit pheromone:
In order to quantify the quality of the LERW obtained in
step (ii) and so as to reflect the optimization criterion of the
problem at hand, we compute the “fitness” parameter q =
α(1 − ωp/�p), where α > 0 is a tunable parameter, while ωp

and �p are the weight and length of the LERW, respectively.
Note that for edge weights drawn from a bimodal distribution,
it holds that q � 0. Further, note that the more negative the sum
of the edge weights, the larger the value of q. Then modify the
transition probabilities along the LERW to τi→j → τi→j + q

and normalize them as in step (i) above. This is called a delayed
pheromone update, since the local information on the edges
is updated after the LERW is obtained. The parameter α can
be tuned to alter the influence of the quality measure q on the

subsequent recomputation of the transition probabilities. Here,
we optimize the ratio ω/�, effectively measuring the average
edge weight that contributes to the path. This quantity was
chosen since it naturally normalizes the value of q to the range
q ∈ [0,2 · α] and thus allows us to control the influence of the
current local solution on the transition probabilities in an easy
way by using the parameter α (in contrast, note that in the
static NWP problem we optimize ω instead).

(iv) Evaporate pheromone: While pheromone is deposited
only on the edges of particular loopless paths, it can be useful
to also evaporate some of the pheromone from all edges.
For example., a simple evaporation heuristic is to modify the
transition probabilities along all edges to τi→j → β · τi→j ,
where β ∈ [0,1], and to normalize them as in step (i) above.

Step (i) is a preprocessing step to generate transition
probabilities that reflect the weight assignment on G. Steps
(ii) and (iii) complete the “life cycle” of an individual agent: It
generates a (nonoptimal) solution to the optimization problem
and evaluates a fitness for the solution. The fitness is then
used to alter the transition probabilities which are associated
with the edges. Instead of using just one agent, steps (ii) and
(iii) straightforwardly generalize to M individual agents. The
construction and evaluation of M LERWs and the subsequent
pheromone evaporation, i.e., steps (ii)–(iv) comprise one
sweep. Consequently, the ACO algorithm is iterated for a
number of, say, n sweeps. The transition probabilities change
from sweep to sweep. Thereby, edges that belong to (s,t)
paths with a high fitness get equipped with a larger transition
probability. Albeit this induces a positive feedback that allows
us to distinguish “good” paths, the parameter α can be used
to limit the extent to which the transition probabilities are
modified from sweep to sweep (during our simulation we
used α = 1/M). Also note that the parameter β serves to
limit the “long-term memory” of the search process in order
to efficiently explore a large variety of (s,t) paths (during
most of our simulations we used β = 0.98). For example,
setting α = 0 and β = 1 completely suppresses the deposition
and evaporation of pheromone. For that parameter choice the
individual agents would construct LERWs which are guided
only by the transition probabilities induced by the edge weights
on the lattice [following step (i)] and they would not be able to
indirectly communicate through the deposition of pheromone.
Also note that in the extreme case where α → ∞ and β = 1,
the edges {i,j} that belong to a (s,t) path found in step (ii)
would get a transition probability τi→j ≈ 1 and all transition
probabilities that relate to those edges that depart from that
particular path would effectively be zero. Hence, once an
agent crosses that path (during a later sweep), it is immediately
“confined” to that path and is unlikely to escape from it. During
a simulation run for a particular realization of the edge weights
we store the best path found so far. This path is returned by
the ACO algorithm after it terminates.

III. REVIEW OF RELATED LITERATURE

A typical observable for the characterization of ordinary
RWs is given by their mean-square displacement (MSD)
〈R(t)2〉, which, as a function of time t , is expected to scale
as 〈R(t)2〉 = Dt . Therein, D signifies the diffusion coefficient
characteristic for the observed walks.
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A particular extension of the simple RW model, relevant
in the context of the presented study, consists in the addition
of disorder to the environment in which a walk is performed.
Different approaches to implement disorder can be found in the
literature: For example, one might consider percolation-like
“occupied vs. free” site (or bond) disorder [24–29], in which
case a fraction p of lattice sites (or bonds) is distinguished
as “occupied” and where a RW is performed on a cluster
of occupied nearest neighbor sites (a.k.a. “the ant in the
labyrinth”). For short walking times, i.e., times within which
the walker cannot fully trace the cluster, and in the vicinity
of the critical point pc, signaling the onset of percolation,
anomalous diffusion was observed [25,30]. Thereby, the MSD
of the RW scales according to 〈R(t)2〉 ∝ tα , characterized by
an effective dimension dRW = 2/α. At the critical point for
site dilution on 2D lattices, Ref. [24] reports dRW = 2.68(5),
i.e., α ≈ 0.75 indicating a subdiffusive behavior. As pointed
out in Ref. [31], considering a percolation-like “occupied
vs. free” disorder of the underlying lattice, the effective
dimension of the RWs increases from dRW = 2 in dimension
d = 1 to the mean-field value dRW = 6 for d � 6. Due to
the trivial nature of 1D percolation, which inhibits anomalous
diffusion, one obtains the scaling dimension that characterizes
unhindered random walks for the 1D setup. Also, for the
nondisordered case (i.e., in the limit p = 1), one would expect
to find dRW = 2, characterizing the effective “fractal” scaling
dimension of unhindered RWs in any dimension.

A different approach considers “energetic” disorder associ-
ated with sites or bonds [17,18], representing random barriers
that define site-to-site transition probabilities governed by
Boltzmann statistics. Therein, a model inherent temperature-
parameter T controls the ability of an individual walker to
overcome energy barriers. At low temperatures, a RW is likely
to get trapped at local minima in the energy landscape. Albeit
this trapping effect is only temporary, the RWs generally
display a rather limited mobility. With increasing temperature
the RWs gain mobility and behave similar to ordinary RWs
in the limit T → ∞. Regarding this energetic disorder one
might further distinguish static (i.e., quenched) disorder, which
remains unchanged in time, and dynamic disorder, which
is renewed after each discrete time step; see Ref. [18]. In
case of static disorder and after a temperature-dependent
crossover time scale τc, the MSD exhibits the same asymptotic
linear scaling as for unhindered RWs. Supported by analytical
arguments from classical chain-reaction theory, the crossover
time τc could be attributed to an effective activation energy
that must be overcome in order to escape from an initial
local minimum in the energy landscape. Intuitively, the lower
the temperature, the larger the crossover time tends to be.
In the early time regime, i.e., at times smaller than τc, the
scaling of the mean-square displacement is subdiffusive. In
case of dynamic disorder, no crossover time is found and the
same scaling as for the unhindered RW is observed for all
temperatures. The renewal of the disorder after each time step
creates an averaged environment in which the temperature
T directly reflects the transport efficiency in the medium,
resulting only in a temperature-dependent diffusion constant
D(T ).

A further extension that is heavily studied in the literature
consists in emphasizing a particular lattice direction along

which the RW effectively drifts. Also for this modification
there are different possible implementations, differing in the
particular way in which the transition probabilities are altered,
see Refs. [3,32–37]. In this regard we only briefly recap
one of those studies, which, for the first time, reported on
a direct observation of a sharp drift-to-no-drift transition
[35]. Therein the influence of a directional bias field on the
diffusive behavior of random walks on 3D lattice graphs with
percolation-like site disorder at p = 0.5, i.e., above the critical
point pc ≈ 0.3116 of the 3D setup, was addressed. Initially,
for a given realization of the disorder, noninteracting RWs
were started on randomly chosen occupied sites and individual
walkers were only allowed to advance to adjacent occupied
sites. A bias parameter 0 � B � 1 is used to control the
drift of the RWs along the x direction: The probability to
advance along the positive x direction is set to B, and the
probability to advance to any of the six neighbors is set to
1 − B. Once such a step is proposed, it is only executed if
the target site also belongs to the cluster. Hence, there is
the possibility that a walker remains at its current position
(speaking in terms of the popular phrases mentioned in the
introduction, it would be more precise to call this the “blind
biased ant in the labyrinth” since the decision on the direction
of the proposed move is made irrespective of whether the
target-site can actually be reached). For such noninteracting
walkers and prior to the numerical study reported in Ref. [35],
a drift-to-no-drift transition at a finite critical value Bc was
theoretically hypothesized [38,39]. For weak bias B, the
walkers exhibit a diffusive motion and their velocity v(t)
assumes a constant value which tends to increase with B. For
strong bias, diffusion is slowed down since the walkers tend to
wind up in “dangling ends” of the clusters on which they reside.
With increasing bias they have an increasingly hard time to
escape from such dangling ends. Neglecting initial transients,
three different regimes were observed: (i) B < Bc, where v(t)
tends to a constant; (ii) B = Bc, where v(t) ∼ 1/ log(t); and
(iii) B > Bc, where v(t) ∼ t−x(B) [and x(B) > 0]. The critical
bias strength at which the drift-to-no-drift transition occurs was
estimated as Bc ≈ 0.53. The behavior of the average velocity
for a large range of B values, covering all three scaling regimes,
could further be summarized by an extrapolated scaling form.
Similar studies were, e.g., also carried out to construct a full
phase diagram for the drift-to-no-drift transition in the B-p
plane for the 2D square lattice [36]. Regarding the MSD, the
RW component of the dynamics leads to diffusion 〈R(t)2〉 ∝ t

and the bias induces a drift 〈R(t)2〉 ∝ t2. At this point note
that under drift, the asymptotic effective dimension dRW = 1
might be expected. At short (long) times diffusion (drift) is
dominant. Under a strong bias, the dangling ends act as traps
that inhibit drift by characteristic “trapping times” (depending
on the precise cluster structure). Consequently, the MSD is
governed by effective exponents αeff(p) that approach their
asymptotic value rather slowly [3,26,36,39]. Further, biased
diffusion for networks without underlying regular spatial
structure (i.e., regular random graphs, Erdős-Renyi random
graphs and scale-free networks) was recently investigated by
means of numerical simulations and analytic calculations [40].
Therein, the bias was designed in a way that it guides the walker
to a specified target node along the respective shortest path.
Using a model parameter, the strength of the bias, ranging
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from unbiased (yielding an ordinary random-walk dynamics)
to fully biased (effectively confining the walker to the shortest
path), could be tuned. Among other things it was shown that for
regular random graphs and Erdős-Renyi random graphs, the
scaling of the mean first passage time as function of the system
size changes from a power law to a logarithmic behavior at a
characteristic value of the bias parameter.

In addition to simple RWs, self-avoiding walks (SAWs),
conveniently used as models for randomly bent polymers that
exhibit an “excluded volume” effect [41], have been studied
for diluted systems exhibiting percolation disorder [42,43].
Therein, a basic observable is the mean-square radius 〈R2〉
of N -step SAWs which scales according to RN ∝ N2νSAW ,
where the exponent νSAW can be seen as an inverse of a SAW
characteristic scaling exponent dSAW = ν−1

SAW that is universal
in each dimension d. Depending on the fraction p of occupied
sites on the underlying lattice and the set of configurations over
which averages are computed, different SAW scaling regimes
can be found [43]. For the case of no disorder (equivalent to
p = 1), results consistent with νSAW = 0.75 (dSAW = 1.333)
are obtained in two dimensions, see, e.g., Ref. [44]. A
different study, aimed at clarifying the geometric and energetic
scaling behavior of minimum energy (ME) SAWs on lattices
with random site energies [45], reports νME−SAW = 0.80(2)
[dME−SAW = 1.25(3)] for the 2D case (obtained via exact
enumeration methods). Thus, under the influence of quenched
randomness, minimum energy SAWs tend to expand. Note
that within error bars this value is consistent with the fractal
dimension df = 1.268(1) of paths in the NWP problem at the
particular point ρ = 0.1032(5) (also in 3D the estimates of
the respective exponents stack up well: dME−SAW = 1.41(6) as
compared to df = 1.459(3) [6]).

A further variant of a simple RW, wherein a loop is erased as
soon as it is formed, is referred to as loop-erased random walk
(LERW) [19]. A LERW might be interpreted as a simplified
version of a SAW which has some correspondence to spanning
trees and, in 2D, exhibits a scaling dimension of dLERW = 1.25
[19,46].

IV. RESULTS

As pointed out in the introduction, minimum weight
paths on disordered lattices were already studied in terms
of the NWP model, which, for a given realization of the
disorder, can be solved numerically exact by using quite
involved optimization algorithms. Instead of using such a
complex algorithmic approach that takes into account global
information, we here address the question how well local
algorithms perform. In particular, we investigate how well
the transition point ρc = 0.0869(2) for the 2D square lattice
with bimodal disorder, resulting from static simulations
considering the NWP model, can be resolved using simple
dynamic algorithms. We study local algorithms because the
movement of particles in physical systems, or the decisions of
agents in populations, typically depend on local information
only. Hence, such an approach reflects real situations better.
Therefore we consider the dynamic biased and greedy RW
dynamics discussed previously in Sec. II A and the ant colony
optimization heuristic described in Sec. II B. The results are
reported in Secs. IV A and IV B, respectively.
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FIG. 3. Results for type A BGRWs where a walker interacts with
the lattice graph according to rule (i) described in the text. The
figure shows the probability P (ρ) of finding a lattice walk with a
negative weight as function of the disorder parameter ρ. (a) P (ρ) for
different bias strengths B (listed in the key). For a given value of
B the respective 4-tuple of curves correspond to the system sizes
L = 100,200,400,800 (the larger the system size the steeper the
curve). The common crossing point indicates a critical value ρc(B)
at which, in the thermodynamic limit, lattice walks with negative
energy might be found. (b) the main plot shows a scaling plot for the
particular bias strength B = 0.5, therein the abscissa was rescaled
according to (ρ − ρc)L1/ν with ρc = 0.2777(6) and ν = 1.97(4). The
inset illustrates (for fixed L = 800) the increasing steepness of data
curves for a decreasing bias parameter B. I.e., the steepest curve
is found for B = 0.05, while at B = 1.0 the curve increases most
gradual.

A. Biased and greedy random walks

First, we consider type A BGRWs where the walker
interacts with the environment via rule (i), i.e., while traversing
the graph it replaces positive and negative edge weights by
edge weights equal to zero. In Fig. 3 we show the probability
that, after termination, a lattice walk with negative weight
is found. Simulations are carried out for systems of size
L = 100,200,400,800 where data points represent an average
over 2 × 104 realizations of the disorder.

To facilitate intuition, for a bias strength B = 1 the
greediness of the walker has no effect. It starts at the outer
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node on the, say, left lattice boundary and performs a straight
line (i.e., L + 1-step) walk to arrive at the outer node on the
right lattice boundary (thus, the lattice walk is characterized by
a scaling dimension ds = 1). Since the disorder is uncorrelated,
the walker basically sums up L − 1 uncorrelated random edge
weights drawn from the disorder distribution Pbi, see Eq. (1).
At the value ρ = 0.5 of the disorder parameter and for large
values of L (on average) half of the edge weights will be
negative. Hence, above ρc(B = 1) = 0.5, the value of P (ρ)
will tend to 1 as L → ∞. At ρ = 0.5 this is equivalent to a
symmetric 1D RW, where, starting at the origin, one allows
the walker to perform L − 1 steps, afterwards asking for the
probability that the walker is located, say, left of the origin.
Also note that in this limit, the effective 1D problem statement
is trivially equivalent to the 1D NWP problem. To further
understand the scaling behavior of the data curves for the
case B = 1 shown in Fig. 3, one might follow a real-space
renormalization approach [47–49]. The basic idea is to replace
a subsystem of L edges (characterized by disorder parameter
ρ, which is, generally spoken, the probability to have a
negative weight) by one edge characterized via an effective
disorder parameter ρ ′ = P (ρ). In this regard, note that the only
condition to yield a “successful” negative-weighted L-step
path is that the number of negative edge weights along the
lattice walk needs to exceed the number of positive edge
weights by at least 1. In this question, the probability to find a
negative-weighted path for systems of odd L for a given value
of ρ is simply a sum of binomial terms,

P (ρ) =
L∑

k=L0

(
L

k

)
ρk(1 − ρ)L−k, (3)

where L0 = (L + 1)/2. The fixed points ρ∗ for P (ρ), which
charazterize phases and phase transitions in the renormaliza-
tion, are determined by ρ∗ = P (ρ∗). Intuitively, a stability
analysis of the three fixed points ρ = 0,0.5,1 reveals that the
only unstable fixed point is the previously discussed value
ρc = 0.5 (at B = 1). Linearizing P (ρ) about this critical point
yields the scaling power ν of the observable Eq. (3) via

ν = ln(L)/ ln(dP (ρ)/dρ), (4)

Albeit the expression for ν converges rather slowly, e.g., it
assumes the values ν(L = 10) = 2.56, ν(L = 100) = 2.22,
and ν(L = 1000) = 2.14, it attains the limiting value ν = 2
as L → ∞ [obtained through a series expansion of the
derivative of Eq. (3) in powers of L]. This slow convergence
is presumably caused by the additive character of edge
weights: The total sum of the edges must be negative, while
subsystems of arbitrary size are free to have a positive weight.
Consequently, if the data curves for P (ρ) obtained in the
simulations exhibit the property of scaling, it should thus not
come as a surprise if the scaling behavior is governed by the
scaling parameter ν = 2. Indeed, we find that the data curves
show a smooth data collapse if rescaled according to

P (ρ) = f [(ρ − ρc)L1/ν], (5)

where for B = 1 the parameter values ρc = 0.5 and ν = 2
yield a good data collapse (not shown). This scaling behavior
still holds for values of B < 1, where ρc < 0.5. For example,
in Fig. 3 the scaled data for B = 0.5 is illustrated, where

TABLE I. Comparison of the critical values ρc above which the
path weight turns negative and the critical exponents ν for different
algorithms considered in the presented study. Here, the exemplary
results for the type A BGRWs were obtained using rule (i) at the bias
strength B = 0.5. The results for the ACO heuristic are derived in
Sec. IV B. The results for the static NWP algorithm, which determines
a global optimal path for a given realization of the disorder, are taken
from Ref. [4].

Algorithm type ρc (bi) ν

BGRW-A 0.278(1) 1.97(4)
ACO 0.14(1) 2.0(3)
NWP 0.0869(2) 1.47(6)

ρc = 0.2777(6) and ν = 1.97(4). For comparison, these results
are listed in Table I along with the corresponding values
obtained for the ACO heuristic, derived later in Sec. IV B,
and those for the static NWP algorithm, which determines a
global optimal path for a given realization of the disorder [4].

For decreasing bias strength B < 1 the greediness of the
BGRW has an increasing influence on the dynamics of the
walker. Hence, at a given value of ρ the average path weight
after a fixed number of steps is smaller at smaller bias strengths.
Consequently, the probability to find a negative-weighted
path principally increases. Albeit true for intermediate bias
strengths B = 0.2 . . . 1, this does not hold for comparatively
small values B < 0.2. As evident from Fig. 4, the critical
point ρc above which negative paths appear first as L → ∞
tends to increase for a decreasing bias strength < 0.2, that
is, one can observe a minimum value of ρc = 0.199(4) at
a characteristic value Bc ≈ 0.18(1) [for type A BGRWs
considering an interaction with the environment according to
rule (i)]; see Table II. A further extremal parameter set for
type A BGRWs is the case of vanishing bias strength B = 0 at
ρ > 0.5. Since ρc,bond = 0.5 indicates the onset of a system
spanning (percolating) cluster of sites joined by edges of
weight −1, for ρ > ρc,bond there is a nonzero probability that
the walker crosses the lattice without accumulating a single
positive edge weight.

TABLE II. Values Bc of the bias strength for which the smallest ρc

is attained for all types of BGRWs considered. The type of interaction
with the graph is specified by rule (i) [rule (ii)] in the case where
positive and negative [only negative] edge weights are modified
during the walk. The type of disorder distribution is indicated by
“bi” [bimodal distribution; see Eq. (1)] and “sc” [semicontinuous;
see Eq. (2)]. In case of type B and D walks, the values of ρc where
estimated from a fit of the data to a polynom of order three. We here
list the figures up to the third decimal, only (the estimated fit errors
where notoriously small; on the order of 10−6).

BGRW type Bc (bi) ρc (bi) Bc (sc) ρc (sc)

A [rule (ii)] 0.30(1) 0.344(4) 0.27(1) 0.464(5)
A [rule (i)] 0.18(1) 0.199(4) 0.12(1) 0.280(3)
B 0.0 0.258 0.0 0.465
C [rule (ii)] 0.23(1) 0.300(4) 0.20(1) 0.401(6)
C [rule (i)] 0.18(1) 0.174(6) 0.12(1) 0.241(4)
D 0.0 0.187 0.0 0.286
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FIG. 4. The critical threshold ρc as a function of the bias
parameter B for the different types of BGRWs. (a) Bimodal disorder
drawn from Eq. (1). The continuous line represents the value of
ρc = 0.0869(2) obtained using the static simulations in the context of
the NWP problem. (b) Semicontinuous disorder drawn from Eq. (2).

Regarding BGRW types A through D, Fig. 4 shows the
critical points ρc as function of bias strength B for both
the bimodal disorder distribution Eq. (1) [see Fig. 4(a)] and
the semicontinuous disorder Eq. (2) [see Fig. 4(b)]. As evident
from the figure, BGRWs of type A and C show a minimum
at critical disorder parameter value ρc at bias strengths in
the range B = 0 . . . 0.3. In contrast to this, BGRWs of type
B and D appear to reach a minimum only when the bias
strength is zero. This observation holds for both bimodal and
semicontinuous disorder, although for the different disorder
types the minima are located at different values ρc and Bc. For
all the types of BGRWs considered, Table II lists the lowest
value of ρc, attained at the corresponding bias strength Bc. This
can be thought of as a measure of efficiently for the different
walk dynamics. The lower the dynamical threshold ρc, the
more successful a walker upon traversing a graph aimed at
finding a path of total negative weight (under the respective
dynamics).

Another quantity that allows us to characterize the different
dynamics is the average number of steps taken by the different
BGRW types until the walk terminates; see Fig. 5. This
quantity can further be used to determine the effective scaling
dimension of the walks: Given that a walk of N steps spans

an linear distance L, its associated scaling dimension is
defined via N ∝ Lds (Note that the concept of the fractal
dimensionality of a random walk in the presence of anomalous
diffusion is also used in the literature, see Refs. [24,31]. As
pointed out in Sec. III, one situation in which one encounters
anomalous diffusion is, e.g., for RWs on percolating clus-
ters near the percolation thresholds and for short walking
times [31]).

Note that for the resulting paths, due to the possibility
of loop erasure for some algorithms, the scaling dimension
might differ. On a general basis, as soon as there is a bias
that causes an effective drift of a walker (as in the BGRWs
considered here), one can expect that on large enough lattices
one trivially finds ds = 1 (a RW for which the mean-squared
displacement scales ∝ N2, leading to an equivalent of ds = 1,
is usually said to exhibit a ballistic movement). Note that this
differs when the environment itself is fractal, as for biased
RWs on percolation clusters discussed in Sec. III. Here, for
completeness and to illustrate the precise dependence of the
dynamics on the disorder parameter ρ and different bias
strengths B, the rescaled number of steps N/L taken during
the lattice walks under the four BGRW dynamics are shown
in Fig. 5 for the bimodal disorder distribution.

Considering type A BGRWs, see Figs. 5(a) and 5(b), it can
be seen that the number of steps generally decreases when
the density of negative edges is increased. This can be easily
explained by taking into account the greedy behavior of the
walker. In case that the walker only consumes the negative
edges [replacing them with a standard positive value of 1; see
rule (ii) discussed above], this behavior appears since, after
each step taken, the probability of returning to the previous
node is smaller than that of proceeding forward towards other
directions that might have negative edges. In the case where a
type A BGRW explores a graph with a low value of the disorder
parameter and alters both, positive and negative edge weights
(replacing them by edges with weight zero), an effective
“repulsive effect” takes place because of the comparatively
large probability that it might encounter excess edges with
positive weights. Hence, the walker is likely to return to its
previous location by traversing the edge with weight zero
created while performing the last step. This repulsive effect
is emphasized especially for a bias strength B < 0.5. As can
be seen in Fig. 5(b), this repulsive effect leads to an increase in
the number of steps taken by more than one order of magnitude
in the low bias regime, compared to the case when only the
negative bonds are altered. Also note that for different system
sizes L the data curves for the scaled number of steps N/L fall
on top of each other. Hence, the expected scaling dimension
ds = 1 can be verified from the figures.

Regarding BGRWs of type B, illustrated in Fig. 5(c), the
number of steps taken in the extreme cases ρ = 0 (positive
edge weights only) and ρ = 1 (negative edge weights only),
where there is no disorder at all, is the same, as one
would expect. Regarding the bimodal disorder distribution,
a minimum in the walk length is found when the disorder
parameter assumes the value ρ ≈ 0.25. This is caused by the
fact that each node is, on average, the end node of one edge
with negative edge weight that acts like a local trap for the
walker. Only under the influence of the bias the walker can
escape from such a trap. Until then, the walker has possibly
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FIG. 5. Results for the average number of steps taken by the different BGRW types until the walk terminates. The panels (a) through (f)
show the average number of steps as function of the disorder parameter ρ for the bimodal disorder distribution for different bias strengths B

(see right border of figures, respectively) and for different system sizes L. Note that, because the number of steps is normalized by the system
size L, the system-size dependence is very small, the main differences are through the bias parameter B.

traversed the edge with negative weight multiple times. After
the loop erasure process (discussed for type B BGRWs
in Sec. II A), this results in an almost straight-line walk.
Increasing ρ above ρ = 0.25 also increases the likelihood
of a node having, on average, more than one incident edge
with negative edge weight, thus preventing the walker from
getting stuck (however, note that for the 2D setup considered
here, only above ρ = 0.5 there is a system spanning cluster
of negative edge weights). Although not shown here, in the
case of a semicontinuous disorder distribution, the number of
steps shows a similar behavior up to ρ = 0.25 but instead of
increasing afterwards it has a steady decrease until it reaches
ρ = 1 density which is caused by the lack of degeneracy in
the bond weights.

A close similarity between BGRWs of type A and C can be
seen upon comparison of the respective subfigures in Fig. 5.
The most evident difference between the two dynamics is that
type C BGRWs do not reach the minimum number of steps
when the graph is fully equipped with negative edge weights.
This effect appears due to the additional optimization overhead
that takes advantage of the larger number of negative edge
weights at large values of ρ by increasing the length of the
random walk.

For type D BGRWs, shown in Fig. 5(f), a behavior that
strikingly differs from the other three BGRW dynamics can be
observed. The respective lattice walks exhibit a minimum in
the number of steps when no negative edges are present in the
graph and attain a maximum when the graph is fully equipped
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with negative edge weights. This is a telltale sign of an increase
in the efficiency of traversing edges with a negative weight,
while avoiding positive edge weights. Shorter lattice walks
are performed at small values of ρ and longer paths, possibly
with many detours, are found at larger values of ρ. The latter
characteristic for the optimal paths in a graph predominantly
equipped with negative edge weights.

It is interesting to note that the more efficient a random-walk
algorithm is at finding negative-weighted paths, the higher the
number of steps it will take at a low density of negative bonds
if it alters both negative and positive bonds, corresponding to
rule (i) discussed above. As we observe, this effect is especially
pronounced in the case of BGRWs of type D. The respective
algorithm could not even be used efficiently for ρ < 0.5 (no
results for this case are shown).

As pointed out above, the expected scaling dimension for
the BGRWs is ds = 1. The number of steps taken during
the lattice walks, normalized by the system size, verifies
this in the form 〈N〉/L ≈ const for given values of ρ and
B. Discrepancies in the curve overlap, corresponding to
deviations from the expected scaling behavior, are accentuated
at small values of B, because the size of the walk gets closer
to a B-dependent crossover length Lc (similar to the crossover
time τc discussed in Sec. III). For walks much shorter than
this crossover length the BGRWs exhibit a scaling dimension
larger than 1. Only for walks longer than the crossover length
do they assume the asymptotic scaling dimension ds = 1.
The simple explanation for this effect is that on short length
scales the diffusive (albeit greedy) behavior dominates the
configuration of the lattice walk, while on longer length scales
the drift induced by the bias is dominant. Note that the scaling
dimension of the lattice walks obtained here differes markedly
from the fractal scaling dimension of the paths in the 2D
NWP problem. For the 2D setup of the NWP problem, a
fractal scaling dimension of df = 1.268(1) was observed at
ρ = 0.1032(5) [4], increasing towards df = 1.756(8) at ρ = 1
(measured for the loops-only setup) [50].

B. Ant colony optimization

In order to find values of α and β that reflect the underlying
edge weights, leading to an exploration in the vicinity of
the “best” (s,t) path found so far (referred to as intensifi-
cation) but still allowing for an efficient exploration of many
different paths (referred to as diversification), we performed
several “calibration” runs of the ACO algorithm. During our
simulation we used M = L, α = 1/M , and β = 0.98. Below
we report the results of a finite-size scaling analysis for the
probability that the ACO algorithm finds a negatively weighted
optimal path for different values of the fraction ρ of negative
edge weights on square lattice graphs with L = 8, . . . ,20. At
each value of ρ, we considered n = 103 different realizations
of the edge weights drawn from a bimodal disorder distribution
[Eq. (1)] in order to compute averages. The considered systems
have periodic boundaries in the, say, vertical direction and
open boundaries in the horizontal direction. Further, two extra
“outer” nodes, i.e., the source node s and the target node
t , are introduced. The source (target) node is connected to
all nodes on the left (right) system boundary as shown in
Fig. 1. Consequently, a (s,t) path spans the system along the

FIG. 6. Exemplary (s,t) paths found by the ACO algorithm for
different fractions ρ of negative edge weights on a 2D square lattice of
side length L = 16. (a) ρ = 0.10, (b) ρ = 0.15, and (c) ρ = 0.90. The
black path indicates the best path found after the algorithm terminated
and the linewidth of the other edges (gray) indicate how frequently
the respective edge was visited by an agent.

horizontal direction. Depending on the fraction ρ of negative
edge weights it might also wrap the system along the vertical
direction. Figure 6 illustrates exemplary (s,t) paths found by
the ACO algorithm for three different values of the disorder
parameter on a 2D square lattice of side length L = 16. In
the figure, the black path indicates the best path found after
the algorithm terminated and the linewidth of the other edges
(colored gray) indicate how frequently the respective edge was
visited by an agent. As evident from Fig. 6(a), corresponding
to ρ = 0.10, if there are only a few negative edge weights, the
“best” (s,t) path found by the ACO algorithm is rather straight
lined. As the fraction of negative edge weights increases, see
Figs. 6(b) and 6(c), corresponding to ρ = 0.15 and ρ = 0.90,
respectively, the paths roughen up and eventually also wind
around the lattice in the vertical direction.

The characteristics of the weight of the best path found by
the ACO algorithm as a function of the number of sweeps
carried out by the algorithm is shown in Fig. 7(a). As can
be seen in the curve corresponding to ρ = 0.01 and after a
short exploration time (t = 0–500 sweeps), the ACO algorithm
maintains an average best pathweight 〈ωbest

p 〉 ≈ L. Since the
underlying edge-weight distribution is bimodal, i.e., it allows
for ωij = ±1 only, this reflects that at very small values of ρ

almost all edges contained in (s,t) paths will have weight 1
and the paths tend to have length ≈ L. The situation changes
upon increasing the value of ρ. As can be seen from Fig. 7(a),
already at ρ = 0.15 and after a certain initial exploration time
(t = 0–1000), the ACO algorithm is able to identify (s,t) paths
with a negative weight so 〈ωbest

p 〉 < 0.
Finally, Fig. 7(b) illustrates the scaling behavior of the

probability P (ρ), that the ACO algorithm returns a negative-
weighted (s,t) path as a function of the fraction ρ of negative
edge weights. As can be seen from the inset of Fig. 7(b),
the data curves for the different system sizes cross at ρc ≈
0.13. Below (above) ρc and for increasing system size, the
probability that the ACO algorithm returns a path weight
ωp < 0 tends to zero (1). As can be seen from the main plot
of Fig. 7(b), P (ρ) can be rescaled using Eq. (5), similarly
to the paths found using the BGRW dynamics discussed
previously. Considering the system sizes L � 10, a best data
collapse (attained in the range (ρ − ρc)L1/ν ∈ [−0.3,0.3] on
the rescaled ρ axis) results in the estimates ρc = 0.14(1) and
ν = 2.0(3) with a quality S = 1.84 of the data collapse [51]
(the numerical value of S measures the mean-square distance
of the data points to the master curve, described by the scaling
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FIG. 7. Results for the ACO heuristic on 2D square lattice graphs
for the case of a bimodal disorder distribution. (a) Best path weight
found so far as function of the number of sweeps carried out
by the ACO algorithm, averaged over different realizations of the
edge weight disorder at L = 16 for three different values of ρ. (b)
Probability P (ρ) that the ACO algorithm returns a (s,t) path with
negative weight as a function of the fraction ρ of negative edge
weights. The main plot shows the scaled data (see text for more
details) and the inset illustrates the unscaled data in the vicinity of
the critical point ρc = 0.14(1).

function, in units of the standard error [52]). Performing the
analysis for different intervals on the rescaled ρ axis led
to various estimates in the range ρc = 0.13 . . . 0.14. Further
estimates of ρc and ν can be obtained from the scaling behavior
of the variance var(P ). It assumes a peak at an effective,
L-dependent critical point ρeff

L at which P (ρeff
L ) = 0.5 (not

shown). We find that ρeff
L seems to saturate at a value consistent

with ρc. In particular, we find ρeff
20 = 0.137(1) [for the smaller

system size L = 10 we find ρeff
10 = 0.137(2)], obtained by

fitting a Gauss-shaped curve to the data of var(P ). The value
of ρeff

L specifies the location of the peak of the fitting curve
and the error-bar is the respective fitting error. Further, the
width σL of the Gauss-shaped fitting function is consistent with
σL = aL−1/ν , where we found a = 0.098(6) and ν = 2.1(1)
considering L = 8 . . . 20. Note that the value of the exponent
ν found here is also in agreement with the one found for the
BGRWs in the preceeding subsection.

V. CONCLUSIONS

In the presented article we have investigated the principle
characteristics of BGRWs on 2D lattices with quenched
disorder on the lattice edges. Four different types of BGRWs
and an algorithm based on the ACO heuristic were considered.
Regarding the BGRWs, the precise configurations of the lattice
walks constructed during the numerical simulations were
influenced by two parameters: a disorder parameter ρ that
controls the amount of negative edge weights on the lattice and
a bias strength B that governs the drift of the walkers along a
certain lattice direction. Focus of the presented study was the
probability that, after termination, a lattice walk exhibits a neg-
ative weight as function of ρ and B. All four types of dynamics
exhibit a phase transition with a characteristic disorder value ρc

above which lattice walks with a negative weight appear first.
Further, the data curves for the probability that a walk with
negative energy is found as function of ρ could be rescaled well
according to a simple scaling form. The respective scaling pa-
rameters in the extremal case of maximal bias B = 1, where the
dynamics is effectively one dimensional, could be estimated
from a simple renormalization argument. A lower bound on
the value of ρc can be obtained from the NWP problem in
2D. Regarding those “static” simulations considering bimodal
disorder on 2D square lattices, negative-weighted paths appear
first above the threshold ρc = 0.0869(2) with critical exponent
ν = 1.5(1). Considering the BGRW dynamics only, the type
C BGRW [implementing rule (i) for the walker–edge weight
interaction discussed in Sec. II A] yields the closest estimate,
reading ρc = 0.174(6) at bias strength Bc = 0.18(1), followed
closely by type D lattice walks with ρc = 0.18(1) at vanishing
bias; see Table II. Correspondingly, algorithm A (i) needs the
largest number of steps to yield the best results. Interestingly,
algorithm D is considerably faster, also compared to almost all
variants. Nevertheless, as visible from Fig. 5, all algorithms,
due to the bias, have an asymptotic running time O(L).
Thus, the greedy random walks perform faster than the exact
algorithms, which in practice perform in time O(L2) [4]. This
explains why the greedy random walks are only able to achieve
considerably larger values for the thresholds ρc compared to
the exact approach.

The ACO-based algorithm outperforms these estimates,
yielding ρc = 0.14(1). Note that, in comparison to the type
A and B BGRWs, which perform slightly worse, the dynamic
rules governing the type C and D lattice walks and the ACO
heuristic are rather involved. Also note that, albeit all the
dynamic rules implement some degree of “local” optimization,
they were not able to reach the threshold value obtained from
the static simulations in terms of the NWP problem. Also the
value ν = 2 of the critical exponent, for all types of BGRW and
ACO dynamics, and the fractal behavior of the walks, hence of
the paths, differs from the static negative weight paths. Thus
the static and dynamic behaviors of the problem differ, as for
many glassy systems.

Whether one can reach this static threshold and find the
same critical exponents by means of simple dynamics that
implement local optimization remains an intriguing open
problem. This could be possible, in principle, because the cor-
responding optimization problem can be solved in polynomial
time. At least we could not succeed in doing so via the biased
greedy random walks considered in the presented study.
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Another interesting problem is whether a collective algo-
rithm, which explores, e.g., the dynamics of an ensembles of
paths connected to a heat bath at temperature T , with the path
weight being the energy, exhibits phase transitions as function
of the disorder parameter ρ as well. These transitions could
be in the limit T → 0 similar to the phase transitions found
previously for the exact algorithms. For lower temperatures,
maybe below a critical dynamical threshold, these transitions
could be more similar to the transitions investigated in this
work. Related studies are currently being performed.
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