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Stabilizing saddles
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A synergetic control technique for stabilizing a priori unknown saddle steady states of dynamical systems
is described. The method involves an unstable filter technique combined with a derivative feedback. The cut-
off frequency of the filter is not limited by the damping of the system, and therefore can be set relatively
high. This essentially increases the rate of convergence to the steady state. The synergetic technique is robust
to the influence of unknown external forces, which change the coordinates of the steady state in the phase
space.
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A variety of feedback methods for controlling unstable
steady states of dynamical systems have been described during
the past two decades. The first example is the derivative
feedback technique, applied to stabilize a laser [1] and an
electrochemical reaction [2]. Other examples are various
tracking filter methods [3–7]. They have been tested in many
experimental systems, including electrical circuits [3,4] and
lasers [5,6]. Some more complicated methods, originally
designed to stabilize periodic orbits, namely the time-delayed
feedback [8] and the notch-filter [9,10] methods with prop-
erly chosen parameters can stabilize the steady states as
well [4,10].

However, the above mentioned techniques, when applied
to control steady states, are able to stabilize nodes and
spirals only. They cannot stabilize the saddle states, i.e. the
states characterized with an odd number of real positive
eigenvalues. To solve the problem Pyragas et al. proposed
using an unstable filter (UF) [11]. The UF technique has
been demonstrated to stabilize saddles in several mathematical
models [11,12] also applied to experimental systems, e.g.,
an electrochemical oscillator [11] and the Duffing-Holmes
electrical circuit [12]. The UF method, however, works in the
dissipative systems only, similarly to the Ott-Grebogi-Yorke
method of controlling chaos [13], in the sense that it is
not applicable to the Hamiltonian systems [14]. Later the
UF method has been extended to conservative systems [15].
Another limitation of the simple UF method is its slow perfor-
mance, especially when applied to weakly damped systems. It
has been derived analytically from the Hurwitz criteria for a
pendulum [11,12] and for the Duffing-Holmes oscillator [12]
that the cut-off frequency of the UF should be set less than
the damping coefficient of the system. For weak damping,
consequently low cut-off frequency, the transients become very
long [11,12].

In the previous works [11,12,15] the performance of the UF
technique was demonstrated for the “installation” stage, i.e.,
the evolution from either the originally oscillatory and rotatory
states [11] or from an originally stable steady state [12] to the
saddle steady state have been considered. Whenever the steady
state is stabilized, the control methods should guarantee robust
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performance under the unknown and unpredictable external
perturbations, which change the coordinates of the steady
state.

In this work, we suggest an efficient synergetic method,
which combines the UF and the derivative techniques (we
abbreviate it as UFD), for stabilizing saddle steady states and
inspect the response of the overall system to the external a
priori unknown force.

We consider the Duffing-Holmes autonomous damped
oscillator [16] as an example:

ẍ + bẋ − x + x3 = 0. (1)

Here b is the damping coefficient. The oscillator has three
steady states (x0,ẋ0): two symmetrical stable spirals or nodes
(depending on b) at (±1,0) and a saddle at (0,0).

To stabilize the saddle we apply two methods for compar-
ison, namely, the simple UF method [11] and the synergetic
UFD method. The first one is given by

ẋ = y, (2a)

ẏ = x − x3 − by + k(u − x) + p, (2b)

u̇ = ω(u − x). (2c)

The second method is described by

ẋ = y, (3a)

ẏ = x − x3 − by + k(u + u̇ − x − ẋ) + p, (3b)

u̇ = ω(k − 1)(u − x). (3c)

In Eqs. (2) and (3) the p is an unknown perturbation. When
linearized around the saddle steady state Eqs. (2) and (3) read

ẋ = y, (4a)

ẏ = x − by + k(u − x), (4b)

u̇ = ω(u − x), (4c)
ẋ = y, (5a)

ẏ = x − by + k(u + u̇ − x − ẋ), (5b)

u̇ = ω∗(u − x), (5c)

respectively, with ω∗ = (k − 1)ω and k > 1. Here we assumed
p = 0 for simplicity without the loss of generality.
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FIG. 1. Stabilizing the saddle by means of simple UF method,
b = 0.1, ω = 0.06 (ω < b). (a) Real parts of the eigenvalues Reλ1,2,3

versus the control gain k from Eq. (6). (b) Same as (a), but the
vertical scale is zoomed by a factor of 10. (c) Imaginary parts of the
eigenvalues Imλ1,2 versus the control gain k from Eq. (6). (d) Variable
x from Eq. (2). (e) Control term k(u − x) from Eq. (2). In (d) and (e)
k = 5, perturbation p = −0.3 is applied at t = 50.

The corresponding characteristic equations are

λ3 + (b − ω)λ2 + (k − 1 − ωb)λ + ω = 0, (6)

λ3 + (b + k − ω∗)λ2 + (k − 1 − ω∗b)λ + ω∗ = 0. (7)

The overall system is stable, if the real parts of all three eigen-
values are negative. The necessary and sufficient conditions

FIG. 2. Stabilizing the saddle by means of the synergetic UFD
method, b = 0.1, ω = 0.6. (a) Real parts of the eigenvalues Reλ1,2,3

versus the control gain k from Eq. (7). (b) Imaginary parts of the
eigenvalues Imλ1,2 versus the control gain k from Eq. (7). (c) Variable
x from Eq. (3). (d) Control term from Eq. (3). In (c) and (d) k = 10,
perturbation p = −0.3 is applied at t = 5.

can be found from the Hurwitz matrices

H =

⎛
⎜⎝

b − ω ω 0

1 k − 1 − ωb 0

0 b − ω ω

⎞
⎟⎠, (8)

H ∗ =

⎛
⎜⎝

b + k − ω∗ ω∗ 0

1 k − 1 − ω∗b 0

0 b + k − ω∗ ω∗

⎞
⎟⎠. (9)

The eigenvalues Re λ1,2,3 are all negative if the diagonal minors
of the H and H ∗ matrices are all positive. For the matrix H

the diagonal minors are

�1 = b − ω > 0, (10a)

�2 = (b − ω)(k − 1 − ωb) − ω > 0, (10b)

�3 = ω�2 > 0. (10c)
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FIG. 3. Experimental circuit diagrams. (a) Duffing–Holmes
oscillator. L = 19 mH, C = 470 nF, ρ = √

L/C = 200 �, the
characteristic frequency f0 = (2π

√
LC)−1 ≈ 1.7 kHz, R = 20 �

(b = R/ρ = 0.1), R1 = R2 = R3 = 10 k�, R4 = 1 M�, operational
amplifier is the NE5534 integrated circuit, diodes are the 1N4148
type devices (forward voltage drop Vb ≈ 0.5 V at 0.1 mA), Vcontr

is control voltage, V ∗ is external perturbation voltage. (b) Simple
UF controller, R0 = 10 k�, C0 is specified in Fig. 4, instrumentation
amplifiers IA1...IA3 are the AD620 integrated circuits. (c) Synergetic
UFD controller, R0 = Rd = 10 k�, C0 and Cd are specified in Fig. 4,
IA1...IA4 are the same as in (b). Vin = Vx .

These inequalities are satisfied if

ω < b, k > kth = b

b − ω
+ ωb. (11)

For example, at b = 0.1 and ω = 0.06 the kth ≈ 2.5. On one
hand, the ω could be only slightly less than b. On the other
hand, it should not be too close to b, because small value of
the denominator b − ω would heavily increase the stabilization
threshold kth.

Numerical solution of the characteristic equation is plotted
in Fig. 1. The largest eigenvalues Re λ1 = Re λ2 cross zero
axis at k ≈ 2.5 in good agreement with the analytical result.
We note very small absolute values of the largest Re λmax at
k > kth. In the full scale [Fig. 1(a)] the curve lays almost on
the abscissa. Only the zoomed in plot [Fig. 1(b)] reveals the
negative values. However, even at k = kopt = 5 the |Re λmax| =
0.01. Such a low value, related to small parameters b and
ω, results in slow convergence to the steady state. This is a
serious shortcoming of the UF method, especially if applied
to weakly damped (b � 0.1) and Hamiltonian dynamical
systems. Numerical results of the control dynamics under the
influence of an a priori unknown external constant force p,
which changes the position of the saddle steady state, are
shown in Figs. 1(d) and 1(e).

FIG. 4. Stabilizing the saddle in the Duffing–Holmes oscilla-
tor. Perturbation V ∗ = 15 V; p = −(R2/R4)(V ∗/Vb) = −0.3. (a,b)
Simple UF method, C0 = 175 nF (ω = √

LC/(R0C0) = 0.06),
k01 = 1, k02 = 2, k03 = 2.5, k = k02k03 = 5. (c,d) Synergetic UFD
method, C0 = 16 nF (ω = 0.6), Cd = 330 pF (RdCd ≈ 3.10−6s �√

LC ≈ 10−4s), k01 = 1, k02 = 10, k03 = 30, k04 = 1, k = k02k04 =
10, (RdCd/

√
LC)k03 ≈ 1. (a,c) Output signals Vx , (b,d) Control

signals Vcontr.

The diagonal minors of the matrix H ∗ are

�∗
1 = b + k − ω∗ > 0, (12a)

�∗
2 = (b + k − ω∗)(k − 1 − ω∗b) − ω∗ > 0, (12b)

�∗
3 = ω∗�∗

2 > 0. (12c)

Inequalities (12) provide the following stability criteria:

ω <
b + k

k − 1
, k > kth ≈ 1. (13)

For large k the required cut-off frequency of the filter ω < 1
and in contrast to the UF method does not depend on b. In
(13) kth is derived for weak damping (|b| � 1); the value
kth ≈ 1 is in good agreement with the numerical results
[Fig. 2(a)].

There are three main advantages of the UFD method over
the UF technique. First, in the case of the UF method at
the optimal control gain k = kopt = 5 the Re λmax = −0.01
[Fig. 1(b)], while in the case of the UFD method at k = kopt =
12.5 the Re λmax ≈ −2, which is about 200 times larger than
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for the UF technique, resulting in extremely fast convergence
to the steady state. Secondly, the |Im λ1,2| for the UFD method
is several times smaller than for the UF method. Finally,
in the case of the UFD method there is no negative drop
of the x(t) at the time moment when the perturbation is
applied.

Circuit diagrams of the Duffing-Holmes electronic os-
cillator and the controllers are sketched in Fig. 3. The
electronic oscillator actually is a modified version of the low
frequency Young-Silva oscillator [17]. It operates in the
kilohertz range. The oscillator has been used previously to
illustrate switching from a stable spiral to the saddle point
[12] also to demonstrate chaos control in a nonautonomous
(periodically driven) Duffing-Holmes system by means of
the time-delayed feedback [18]. The experimental results,
presented in Fig. 4, coincide rather well with the corresponding
numerical simulations.

To better understand the reasons for the enhanced perfor-
mance of the UFD method we replace in Eq. (5b) ẋ with y

from Eq. (5a) and u̇ with ω∗(u − x) from Eq. (5c). Then the
following explicit form is obtained:

ẋ = y, (14a)

ẏ = x − (b + k)y + (1 + ω∗)k(u − x), (14b)

u̇ = ω∗(u − x). (14c)

One can see that Eq. (14) for the UFD method has exactly
the same form as Eq. (4) for the UF method, but with
the effective parameters b∗ = b + k, k∗ = (1 + ω∗)k, and
ω∗ = (k − 1)ω. The most important issue is, that the effective
damping coefficient b∗ is increased considerably due to the
summand +k. The effective cut-off frequency ω∗ is increased
by a factor of (k − 1). The inequality ω∗ < b∗ can be still
satisfied, like ω < b in (11) for the UF method, but at
essentially higher values of both b∗ and ω∗. Eventually, the
ω∗ < b∗ yields the first inequality in the stability criteria (13),
where for large k the actual cut-off frequency ω ≈ 1 is much
higher than in the common UF method (ω < b � 1). This
is the main reason for the faster performance of the UFD
method.

In conclusion, we have proposed a synergetic UFD control
method for stabilizing a priori unknown saddle steady states
of dynamical systems. The controller is model independent
and reference-free. It requires neither the mathematical model
nor the coordinates of the steady state, but automatically tracks
and stabilizes the state. The numerical and the experimental
results have been presented for the Duffing-Holmes oscillator
only. However, the general form of a saddle given by Eq. (5)
indicates that the UFD technique can be applied to many other
dynamical systems as well. The suggested UFD controller
is essentially faster than the simple UF version [11,12].
Moreover, it is suitable to stabilize saddle steady states also
in dynamical system with zero (b = 0) and negative (b < 0)
damping. In contrast to the simple UF technique the cut-off
frequency of the UFD controller ω can be set relatively
high and is independent of the damping of the dynamical
system; the effective frequency is further increased by a factor
of (k − 1) in Eq. (3c). The UFD controller exhibits robust
performance in the presence of external unknown forces,
which change the coordinates of the steady state in the phase
space.

Recently an attempt was made to improve the UF method of
stabilizing saddle steady states by combining two filters in the
feedback, namely, an unstable filter and a stable one [19]. The
enhancement was noticeable, but not so good as expected.
Though the transients in weakly damped systems became
shorter (≈1 ms in the experiment), the main variables and
the control signals still exhibited ringing effects. In contrast,
the UFD method ensures very short transient (≈0.2 ms),
which is close to the intrinsic response time of the oscillator√

LC ≈ 0.1 ms, and practically no ringing is observed. From a
mathematical point of view, an additional filter in the enhanced
UF method [19] increases dimension of the overall system
from three to four, thus making analysis of the 4 × 4 Hurwitz
matrix and its four diagonal minors extremely complicated.
Whereas in the UFD method the stability criterium (13)
is easy to derive and has a very simple compact form:
k > 1 > ω.

E.T., S.B., and A.T. were partly funded by Grant No. MIP-
064/2013 from the Research Council of Lithuania.
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