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Moving contact line of a volatile fluid
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Interfacial flows close to a moving contact line are inherently multiscale. The shape of the interface and the
flow at meso- and macroscopic scales inherit an apparent interface slope and a regularization length, both named
after Voinov, from the microscopic inner region. Here, we solve the inner problem associated with the contact line
motion for a volatile fluid at equilibrium with its vapor. The evaporation or condensation flux is then controlled by
the dependence of the saturation temperature on interface curvature—the so-called Kelvin effect. We derive the
dependencies of the Voinov angle and of the Voinov length as functions of the parameters of the problem. We then
identify the conditions under which the Kelvin effect is indeed the mechanism regularizing the contact line motion.
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The dynamics of a macroscopic solid plunging in a liquid
bath [1,2] or withdrawn from it [3–5] depends sensitively on
its wetting properties, i.e., on the intermolecular interactions at
the nanoscopic scale. The motion of the contact line separating
the wet from dry regions is therefore an inherently multiscale
problem. Among the important consequences of the coupling
between the inner and outer scales (Fig. 1), the speed at
which a contact line can recede over a flat solid surface
cannot exceed a critical value, associated with a dynamical
wetting transition which leads to the formation of a dewetting
ridge [6,7], of a V-shaped dewetting corner [1,8–10], or to the
entrainment of films [2,10,11] (see Refs. [12,13] for detailed
reviews). In many applications, such as coating, imbibition
of powders, immersion lithography, or boiling-free heating,
these entrainment phenomena are crucial limiting factors for
industrial processes.

Figure 1 shows schematically the structure of the flow
close to a moving contact line. Even for an infinitesimal
velocity U , there exists a range of mesoscopic scales—
roughly six decades—separating the microscopic scale from
the macroscopic length L, in which the diverging viscous stress
is balanced by a gradient of capillary pressure. This balance
can be made quantitative in the lubrication approximation,
for which the angles are assumed small, and which gives a
third-order differential equation for the interface profile h(x):

γ
d3h

dx3
= −3ηU

h2
, (1)

where η is the liquid dynamic viscosity and γ the surface
tension; U is positive for an advancing contact line. This
equation has an exact solution [14] which reduces to the
asymptotic form proposed by Voinov [15] far from the contact
line, but for x � L:

h′(x)3 − θ3
V = 9ηU

γ
ln

(
x

�V

)
. (2)
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θV is by definition the apparent contact angle in the static case
(U = 0), which can be different from the Young angle θY due
to out-of-equilibrium processes taking place at a microscopic
scale. The Voinov length �V is also a quantity defined in the
mesoscopic range of scales but inherited from the inner region,
where the problem is regularized. The mesoscopic solution (2)
must also be matched at the macroscopic scale L to an outer
solution where viscosity can usually be neglected. Figure 1
features the case of a spreading drop or of a growing bubble
but the outer matching problem has been solved for many
other geometries including a gravity controlled bath [3,4,16]
or a capillary ridge [7]. For receding contact lines, Eq. (2) is
an intermediate asymptotic, only valid in the range of scales
for which the term on the right-hand side is small compared
to θ3

V , and can only be matched to an outer solution below the
dynamical wetting transition [4,13].

Different models have been proposed to solve the moving
contact line paradox, i.e., the singularity of Eq. (1) as x → 0.
The simplest regularization is obtained by imposing the Navier
slip boundary condition based on a slip length �s that can be
expressed using a statistical physics description of liquids [17]
and gas [18]. The Voinov angle is then the Young angle
θY and the Voinov length reads �V = 3�s/(e θV ), where e

is Euler’s number [4]. Alternative descriptions have been
proposed, based on disjoining pressure [�V then scales on
the Israelachvili length (A/6πγ )1/2, where A is the Hamaker
constant] and diffuse interface models (�V is then set by
a diffusion length). Finally, when the substrate presents
heterogeneities, the contact line dynamics becomes a thermally
activated process in the inner layer [13,19].

This Rapid Communication deals with the the contact line
motion of a volatile liquid in contact with an atmosphere of
its pure vapor (see Refs. [20–26] and references therein. An
evaporation-condensation process has first been proposed as a
possible mechanism controlling the contact line motion at the
molecular scale by Wayner [27] and Pomeau [28]. The idea
that the Kelvin effect, i.e., a dependence of the local interface
temperature on the interface curvature, solves the hydrody-
namic contact line singularity was first introduced in Ref. [24].
Rednikov and Colinet [29] developed this idea by performing
an asymptotic matching of the inner and intermediate regions,
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FIG. 1. (Color online) Schematic showing a liquid vapor interface
h(x)—here, a spreading drop (U > 0) on a cooled plate (�T < 0)—
at different scales. The inner region, close to the moving contact line,
is controlled by evaporation or condensation (top right). The slope
changes from the Young angle θY to the Voinov angle θV across a
scale �V given by the Kelvin length �K . In a mesoscopic range of
scales, the shape of the interface results from the balance between
viscous friction and the Laplace pressure gradient, resulting in a slope
h′(x) which varies logarithmically in scale [Eq. (2)].

thus showing that the Kelvin effect indeed solves the singular-
ity. In this Rapid Communication we identify and analyze two
parameters inherited from the inner region, the Voinov length
�V and the Voinov angle θV , as functions of the substrate
overheating with respect to the saturation temperature.

Lubrication equations including the Kelvin effect. In this
Rapid Communication, we proceed in a hydrodynamical
framework, starting from the equation governing the evolution
of the interface position h:

∂th + ∂xq = −j, (3)

where q is the hydrodynamic flow rate. The rate j at which
a liquid evaporates is governed by the energy balance at
the liquid-gas interface. Assuming that the vapor pressure is
fixed, the interfacial temperature T i depends on the interface
curvature κ � h′′(x) according to Kelvin’s law

T i = Ts

(
1 + γ κ

ρL

)
, (4)

where Ts is the saturation temperature, L the latent heat,
and ρ the liquid density. In the lubrication approximation,
the temperature varies linearly across the liquid layer from
the substrate temperature Ts + �T , assumed to be imposed
(Fig. 1), to the interfacial temperature Ti . Neglecting the energy
flux in the vapor phase, the evaporation rate is controlled by
the conductive energy flux across the liquid,

j = k

ρLh

(
�T − Ts γ κ

ρL

)
, (5)

where k is the liquid heat conductivity.

Starting from the Voinov law (2), we define the reduced
capillary number [30], using θV as a characteristic slope:

δ ≡ 3ηU

γ θ3
V

. (6)

The characteristic length �K is obtained dimensionally by
balancing the two fluxes driven by the interface curvature,
namely, the evaporation rate j and the divergence of the
hydrodynamic flow rate q = γ h3κ ′/(3η):

�K ≡
√

3ηkTs

θ2
V ρL

. (7)

We therefore make the solution dimensionless using

h(x) = θV �KH (ζ ), ζ = x/�K.

Under the lubrication approximation, the governing equations
in the scaled variables then read

H ′′ = K, K′ = QH−3 − δH−2, Q′ = (K − ε)/H, (8)

where ε is the superheating parameter, defined by

ε ≡
√

3ηkTs

γ θ3
V

�T

Ts

(9)

and Q is the dimensionless counterpart of (q + Uh). The
fourth-order differential equation (8) must be complemented
by the appropriate boundary conditions. We choose x = 0
for the contact line position [so H (0) = 0] and impose the
slope H ′(0) = θY /θV according to Young’s law. As we look
for regular solutions of the problem, the continuity of the
temperature at the contact line requires K(0) = ε. Finally, to
make the problem compatible with the asymptotic expansion
(2), one assumes a vanishing curvature far from the contact
line: K(∞) → 0.

Voinov angle. By definition, θV is the interface slope for
x 	 �K at vanishing capillary number δ. In this limit, the
outer boundary condition K(∞) → 0 is equivalent to the
constant slope condition H ′(∞) = 1. The dotted line in Fig. 2
corresponds to a typical solution obtained numerically for
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FIG. 2. Solution of the equations for a receding contact line (δ =
−0.02), with an overheating ε = 0.1. The dotted line corresponds to
the static case (δ = 0). The dashed line corresponds to the Voinov
outer asymptotics (2). These solutions allow one to obtain the Voinov
length �V and angle θV .
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FIG. 3. (a) Ratio of the Young angle to the Voinov angle as a
function of overheating parameter ε, determined numerically (solid
line). The dashed line is the analytical expansion (10). (b) Voinov
length �V rescaled by the Kelvin length �K as a function of ε.

δ = 0 [31]. Overheating (ε > 0) induces an evaporation flux
that would diverge as h−1 at the contact line [cf. Eq. (5)],
if not balanced by Kelvin’s effect. The induced liquid flow
towards the contact line is accompanied by a capillary pressure
gradient: The resulting interface curvature leads to an apparent
angle θV larger than θY . The crossover from θY to θV takes
place at the microscopic scale, for ζ of the order unity. The
ratio θY /θV is reported in Fig. 3(a) as a function of ε. Following
Ref. [24], we perform a linear expansion of the solution in ε

for δ = 0, writing H ≡ H0 = ζ + εHε + O(ε2). Linearizing
Eq. (8), one obtains a differential equation onKε = H ′′

ε , which
reads (ζ 3K′

ε)′ − Kε/ζ = −1/ζ . The solution verifying the
boundary conditions involves the modified Bessel function of
the first order K1: Kε = 1 − ζ−1K1(ζ−1). Integrating Kε from
∞ to 0, one obtains H ′

ε(0) = −π/2, which gives the expansion
for the Voinov angle

θY /θV = 1 − (π/2)ε + O(ε2), (10)

shown as a dashed line in Fig. 3(a).
The most important feature of the curve θY /θV (ε) is the

existence of a critical value εc � 0.297 of the overheating
parameter—note that the linear approximation (10) overesti-
mates εc by a factor �2. In the limit ε → εc, θV becomes much
larger than θY . Then, the Kelvin effect is just balanced by the

maximal available capillary force, so that H ′ goes from 0 to 1.
The equation ε = εc gives the large �T asymptotic expression
of the Voinov angle θV , which no longer depends on θY :

θV ≈
(√

3ηkTs

εcγ

�T

Ts

)1/3

. (11)

One may expect this asymptotic regime to be relevant close to
the gas-liquid critical point, in particular, to the description of
boiling [32,33].

Voinov length. We now consider a contact line moving
at a velocity U . We linearize the governing equations with
respect to δ, around the solution H0 obtained for δ = 0 [31]. A
typical solution is shown in Fig. 2 (solid line), together with the
asymptotic expansions around ζ → 0 (static solution obtained
for δ = 0, dotted line) and ζ → ∞ (Voinov expansion, dashed
line). It shows that a perfectly regular solution is obtained,
in spite of the no-slip boundary condition imposed at the
solid-liquid interface: At a scale smaller than �K , the interface
advances by the curvature driven condensation (or recedes by
evaporation). How can a contact line advance (even at ε = 0)
in the absence of any regularizing mechanism, leading to a slip
of the fluid at the boundary? Consider a perfect wedge initially
at rest at the Young angle. Imposing an hydrodynamics flux
towards the contact line leads to an increase of the apparent
contact angle. However, θY remains the true contact angle at
the molecular scale so that a positive curvature κ appears at
a small scale, which induces a condensation by the Kelvin
effect. As a consequence, the contact line advances, although
the liquid velocity vanishes at the contact line: The phase
transition flux j (0) = −UθY balances exactly that induced by
the contact line motion.

At distances much larger than the scale �V , one recovers as
expected the Voinov solution H ′(ζ ) ∼ 1 + δ log(ζ�K/�V ) +
O(δ2). The Voinov length �V is obtained from the matching
to this outer expansion, as shown geometrically in Fig. 2
(intersection between the dashed line and the horizontal
line H ′ = 1). Figure 3 shows the dependence of �V on
the overheating parameter ε. As expected from dimensional
analysis, �V is on the order of the Kelvin length �K . The ratio
�V /�K turns out to increase with the overheating parameter,
from �1.32 at ε = 0 to �3.00 at ε = εc.

Kinetic regime. We have so far assumed that the evaporation
process is limited by the energy flux across the interface or,
equivalently, that the characteristic time of the kinetics of
evaporation was small enough to consider it instantaneous.
Actually, the rate of evaporation j must satisfy two conditions
simultaneously: the energy conservation (5) at the interface
and a kinetic equation based on the Hertz-Knudsen law. The
kinetic equation is a balance between desorption at a rate
determined by the interfacial temperature T i and adsorption at
a rate proportional to the interfacial vapor density ρi

v (Fig. 4).
It takes the form

j = β
(
ρsat(T i) − ρi

v

)
ρ

, (12)

where β is a thermal velocity, ρsat(T i) the saturation vapor
density at the interfacial temperature T i , and ρi

v the actual
vapor density at the interface. Importantly, ρi

v is defined at
the scale of the mean free path �̄. As Kelvin’s effect takes
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FIG. 4. (Color online) Voinov length �V as a function of the ratio
�β/�K for ε = 0, as predicted by Eq. (13). Inset: Schematic of the
kinetically limited regime. The desorption or adsorption takes place
over a scale given by the mean free path �̄.

place at a scale smaller than �̄, can ρi
v can be considered as

a constant determined at the contact line? This effect, often
called “interfacial thermal resistance” [20–25,31], regularizes
the thermal flux equation (8) according to

Q′ = K − ε

H + �K/�β

. (13)

The kinetic length �β is defined by

�β ≡ 3ηTsβ

θ3
V ρ2L

dρsat

dT
. (14)

Figure 4 shows that the energy controlled regime is recovered
when the kinetics of evaporation is fast enough, namely, when
�K � �β . In the opposite limit, the kinetics becomes the
limiting process and the Voinov length scales on the kinetic
length: �V � 1.17�β (see the Supplemental Material [31] for
the analytic solution).

Discussion. The theory developed above is directly appli-
cable to the microscopic description of boiling, as nucleating
bubbles are constituted of pure vapor. It may help solving
the demanding problem of the boiling crisis [33]. As long
as one aims to address a macroscopic problem involving a
moving contact line, the only quantities inherited from the
inner molecular-scale region are the Voinov length and the
Voinov angle. For a liquid surrounded by its pure vapor with
a vanishing slip length, we have shown here that the Voinov
length is set by the smallest of the Kelvin length and the kinetic
length. In reality, a fluid presents both slip at the solid/liquid
interface and evaporation or condensation at the solid/vapor
interface. The results obtained in this Rapid Communication
are applicable if the Voinov length produced by the Kelvin
effect is larger than that induced by the slip length �s . One
therefore needs to compare �K , �β , and �s/θV . The slip length
�s is around two molecular sizes when θY < π/2 [13,17].
The product θ2

V �K depends only on the liquid properties and
ranges from 0.3 nm for water and methanol to 1 nm for
alkanes and refrigerants such as ammonia or fluorocarbon.
It can be even larger, for fluids such as glycerol or silicon
oils whose large viscosities are due to glassy effects. At
ambient temperature, the product θ3

V �β is generically smaller
than the nanometer scale. Kelvin’s effect can therefore be
the mechanism regularizing the stress singularity only for
very small contact angles. This can be achieved in low
temperature helium, pressurized water, or in refrigerants at
ambient temperature, close to a wetting transition. In other
situations, the slip length is dominant. In a forthcoming paper,
we will address the case of a drop evaporating in a different
gas (the so-called “coffee stain” problem), where evaporation
also presents a singularity that must be regularized by different
physical mechanisms.

Noted added: Recently we became aware of an independent
work discussing the regularization of the lubrication equation
by the Kelvin effect, now published as Ref. [29].
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