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Instabilities at frictional interfaces: Creep patches, nucleation, and rupture fronts
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The strength and stability of frictional interfaces, ranging from tribological systems to earthquake faults, are
intimately related to the underlying spatially extended dynamics. Here we provide a comprehensive theoretical
account, both analytic and numeric, of spatiotemporal interfacial dynamics in a realistic rate-and-state friction
model, featuring both velocity-weakening and velocity-strengthening behaviors. Slowly extending, loading-rate-
dependent creep patches undergo a linear instability at a critical nucleation size, which is nearly independent
of interfacial history, initial stress conditions, and velocity-strengthening friction. Nonlinear propagating rupture
fronts—the outcome of instability—depend sensitively on the stress state and velocity-strengthening friction.
Rupture fronts span a wide range of propagation velocities and are related to steady-state-front solutions.
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Introduction. Predicting the strength and stability of fric-
tional interfaces is an outstanding problem, relevant to a
broad range of fields—from biology and nanomechanics
to geophysics. Recent modeling efforts [1–20] and novel
laboratory experiments [21–32] have revealed complex spa-
tiotemporal dynamics that precede and accompany interfacial
failure. In particular, frictional instabilities that mark the
transition from creep-like motion to rapid slip and a variety
of emerging rupture fronts have been observed. Quantitatively
understanding these complex dynamics and their dependence
on geometry, external forcing, system history, and constitutive
behavior of the frictional interface remains an important
challenge.

In this Rapid Communication we theoretically study a
simple, yet realistic, quasi-1D rate-and-state model [33,34]
in which friction is velocity-weakening at low slip velocities
and crosses over to velocity-strengthening at higher velocities
[35–37]. Using combined analytic and numeric tools we
elucidate the physics of a sequence of instabilities at a
frictional interface. In particular, we study the dynamics of
slowly extending creep patches [38–40], their stability, and
the emerging nonlinearly propagating rupture fronts.

The model. The friction model we study is the realistic
rate-and-state model introduced in [37], which is briefly
presented here. The spatially extended interface between two
dry macroscopic bodies is composed of an ensemble of contact
asperities whose total area Ar is much smaller than the nominal
contact area An [41]. The normalized real contact area, A ≡
Ar/An � 1, is given as A(φ) = [1 + b ln (1 + φ/φ∗)] σ/σH ,
where φ is a state variable quantifying the typical time
passed since the contact was formed (i.e., its “age”). σ is
the normal stress, σH is the hardness, b is a dimensionless
material parameter, and φ∗ is a short time cutoff [24,29]. The
frictional resistance stress τ is decomposed as τ = τ el + τ vis,
where τ el is related to elastic deformation of the contact
asperities and τ vis to their rheological response. The latter
is related to thermally activated processes and is given by
τ vis(v,φ) = η v∗A(φ) ln (1 + v/v∗) [5,42,43], where v is the
slip velocity, η is a viscous-friction coefficient, and v∗ is a
small velocity scale.

The dynamic evolution equations for the friction variables
take the form [5,34,37]

φ̇ = 1 − |v| φ

D
g(τ,v),

(1)

τ̇ el = μ0

h
A(φ)v − |v|τ

el

D
g(τ,v).

Here D is a characteristic slip distance, μ0 is the interfacial
elastic modulus, and h is the effective height of the interface.
To understand the role of g(τ,v), first set it to zero. Then,
the equations yield φ = t , which corresponds to the well-
established logarithmic aging of A(t), and an elasticity relation
τ el � μ0A(t)u/h [where A(t) varies much slower than the
elastic response and u is the slip displacement; recall that
u̇ = v]. These relations describe the response of the interface in
the absence of irreversible slip. When g(τ,v) = 1, the second
terms on the right-hand side of Eqs. (1) describe the breakage
of contact asperities accompanied by irreversible slip over a
length D on a time scale D/v. Therefore, g(τ,v) plays the
role of an effective threshold for the onset of irreversible slip.
In [37], g(τ,v) described a sharp threshold in terms of the stress
τ . Here, we choose g(τ,v) ≡ √

1 + v2
0/v

2, with an extremely
small v0 = 10−9 m/s. Thus, |v| g(τ,v) changes from v0 for
v → 0 to |v| for v � v0. Our results are insensitive to this
choice of g(τ,v).

Consider a rigid substrate and a long elastic body (in the x

direction) of height H (in the y direction) pressed against it
by a constant normal stress σ applied at y = H ; see Fig. 1(a).
The friction law formulated above describes the interface at
y = 0. The elastic body is described by Hooke’s law and its
force balance equation, in the limit of small H , reads

ρHü = Ḡ(ν)H∂xxu − τ, (2)

where ρ is the mass density and Ḡ(ν) is an effective elastic
modulus depending on Poisson’s ratio ν and proportional to
the shear modulus G [44]. In this quasi-1D approximation, σ

is space- and time-independent.
The material parameters we use below were extracted from

extensive experimental data of PMMA. We set D = 0.5 μm
and the rest of the parameters appear in [44]. The steady
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FIG. 1. (Color online) General phenomenology and creep patches. (a) The geometry and loading configuration studied here. (b) Steady-state
sliding friction vs slip velocity v (solid blue line). The dashed yellow line shows steady friction which is purely velocity-weakening. The dotted
purple line shows stronger-than-logarithmic (linear) strengthening. See text for details. (c) Spatiotemporal evolution of τ (x,t)/σ . The blue
regions correspond to the background stress τ = 300 kPa. (d) The tangential force per unit width fd (t). (e) Example of v(x,t), τ (x,t)/σ , and
A(x,t) of the creep patch at the time marked by a vertical dashed line in panel (c). (f) ccr vs xtip in log scale. The dashed line shows a slope of −1.

sliding friction curve [obtained by setting to zero the time
derivatives in Eqs. (1)] is shown in Fig. 1(b) (solid line). The
curve has a peak at extremely small slip velocities (related
to v0), which we believe to be a generic feature of friction,
though it is of no significance here [45,46]. Moreover, the curve
exhibits a crossover from velocity-weakening behavior to
velocity-strengthening behavior (at vm, here a few mm/s). This
feature has been experimentally observed in many materials
[47] and plays an important role below.

The initial conditions for the friction variables are repre-
sentative of laboratory experiments, τ el(x,t = 0) = 300 kPa
and φ(t = 0) = 1 s [28,29]. The existence of an initial stress
distribution τ el(x,t = 0) was shown to be a generic feature of
frictional systems [28], and—as also shown below—to affect
the subsequent failure dynamics. Additional shear stresses are
inhomogeneously applied to the system through moving its
trailing edge at x = 0 at a constant speed vd = 10 μm/s, again
typical to laboratory experiments [25,28,42]. The resulting
applied tangential force per unit thickness fd (t) is tracked.

Numerical results. We first characterize the phenomenology
of the model through numerical simulations (the spatially
discretized system of equations was integrated in time using
a standard ordinary differential equation solver in MATHE-
MATICA), a typical example of which is shown in Figs. 1(c)
and 1(d). fd (t) is shown in Fig. 1(d) to continuously curve
(after a short quasilinear increase) and to experience sharp,
discrete-like drops [25,48].

To better characterize this behavior, we focus on the
corresponding spatiotemporal dynamics of τ (x,t)/σ in the
color map in Fig. 1(c) [sharing the same time axis with Fig.
1(d)]. The continuous curving of fd (t) corresponds to the
propagation of a creep patch that extends from x = 0 into the
interface and decelerates continuously (marked with a white
arrow). When the creep patch reaches a certain size (marked

by the horizontal dashed line), at t � 16 s, it loses stability,
and a much faster rupture front emerges and propagates
until it arrests at x � 10 cm. The rupture front propagation,
responsible for the drop in fd (t) (marked by the black arrows in
both panels), appears as a vertical line in the color map because
of the enormous variation in the time scales involved, though
its velocity is finite (see below). A movie of the spatiotemporal
dynamics is available in the Supplemental Material [44].

When the rupture front arrests it leaves behind it an
inhomogeneous stress distribution with a rather localized peak
at the arrest location, which can be interpreted as the front tip.
At the same time, another creep patch initiates and extends
from the trailing edge until it loses stability at the same size
as before and again a much faster rupture front propagates,
collides with the previously arrested front tip, and continues to
propagate until it arrests deeper inside the interface (this time
at x � 14 cm). This process repeats itself almost periodically,
though some heterogeneity appears (not discussed here).

Creep patches. A closer look at the creep patch is shown in
Fig. 1(e), which presents a snapshot of the spatial distribution
of the fields v(x,t), τ (x,t)/σ , and A(x,t) at t corresponding to
the vertical dashed line in Fig. 1(c) (prior to the instability). All
fields relax to their spatially homogeneous background values
at the same point (x � 6 cm for that snapshot), which is the
boundary between slipping and nonslipping regions, denoted
by xtip. To compute the creep patch velocity ccr ≡ ẋtip, we
assume that its dynamics are quasistatic and therefore neglect
the inertial and viscous terms in Eq. (2). We further replace τ el

by its fixed point to obtain ḠH∂xxu � μ0DA(φ)/h.
Transforming to a comoving coordinate ξ = x − ccrt and

estimating ∂xv � vd/xtip, the above relation yields

ccr � vd

ḠHh

μ0DA(φtip)

1

xtip
, (3)
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where φtip is an estimation of φ at the tip. This result shows that
the creep patch propagation is directly driven by the loading
as ccr is proportional to vd [48]. Possibly related loading-rate-
dependent creep patches were observed in [49]. Moreover,
Eq. (3) predicts that the creep patch decelerates as it extends,
its propagation velocity being inversely proportional to its size,
which is a property of the side-loading configuration. This
prediction is verified in Fig. 1(f). Finally, we note that while ccr

is significantly larger than the loading rate vd = 10 μm/s—in
the cm/s range for our parameters here [cf. Fig. 1(f)]—it is
still orders of magnitude slower than “slow” rupture [23,27,28]
and should not be confused with it.

Instability of creep patches (rupture nucleation). Rapid slip
nucleation (instability) at a critical size Lc has been extensively
discussed previously [2,22,49–51] and is understood to result
from a competition between frictional weakening and the
variation of the effective bulk stiffness with the patch size.
The present framework allows us to analyze the instability
very cleanly and carefully test the analytic predictions.

To analyze the stability of the creep patch we first note that
its slip velocity is small and belongs to the weakening branch
of the steady friction curve shown in Fig. 1(b). Therefore,
we rewrite Eq. (2) as ḠH∂xxu � τ � τss(v), where τss(v) is
the velocity-weakening steady-state friction branch. We then
introduce a displacement perturbation of the form δu(x,t) =
δu0 eikx+λt in the above relation to obtain

k2ḠHδu � |∂τss/∂v| δv � λ |∂τss/∂v| δu, (4)

resulting in an instability spectrum λ ∼ k2, in which larger
k-vector modes grow faster. The spectrum is regularized by
the intrinsic friction time scale, λ � v/D, which yields for
the most unstable mode kc = 2π/Lc the following critical
wavelength:

Lc � 2π

√
ḠHD

|∂τss/∂ ln v| . (5)

The analysis above predicts that creep patches undergo
a linear instability when xtip = Lc, given in Eq. (5). This
prediction is tested in detail in Fig. 2. The dependence (and
independence) of Lc on various parameters in Eq. (5) is verified
in Fig. 2(a). A snapshot of the velocity distribution during
the initial growth of the instability is shown in Fig. 2(b).
Superimposing cos (2πx/Lc) (i.e., the real part of eikcx) on
it yields excellent agreement (see figure for details), which
demonstrates that this is indeed a linear instability. Finally, our
linear stability analysis predicts that λ � vd/D � (50 ms)−1,
where vd (the loading rate) is the maximal slip velocity in the
creep patch [cf. Fig. 1(e)]. Figure 2(c) shows that the instability
amplitude initially grows exponentially with a typical time of
26 ms, in favorable agreement with the predictions. A movie of
the instability is available in the Supplemental Material [44].

To conclude the discussion of the instability we note that
since |∂τss/∂ ln v| in the weakening regime is v-independent,
Lc in Eq. (5) is v-independent as well. Moreover, Lc is
independent of the stress state as is clearly demonstrated by
the horizontal dashed line in Fig. 1(c) (see below additional
results concerning this point). The connection between Eq. (5)
and available results in 2D is discussed in the Supplemental
Material [44].

FIG. 2. (Color online) Onset of instability. (a) The measured Lc

(in the simulation) vs the prediction [Eq. (5)]. The parameters varied
are shown in the legend (the dashed red line has a slope 1 and
goes through the origin). (b) Snapshot of v(x,t) near the onset of
instability [solid red line; t corresponds to the vertical line in (c)].
1 + cos (2πx/Lc), x-shifted and amplitude-scaled, is superimposed
(dashed blue line). (c) The instability grows exponentially with time
scale of 26 ms. vmax(t) is the instantaneous spatial maximum of v(x,t)
and tc is defined in Fig. 3.

Outcome of instability (rupture fronts). After an initial
exponential growth, the instability enters the nonlinear regime,
characterized by a steadily propagating rupture front that is
excited for a few tens of μs and is accompanied by significant,
much faster slip (see Fig. 3). What determines the rupture front
properties?

In [37] it was conjectured that transient rupture fronts
propagating under spatially inhomogeneous stress conditions
might be short-lived excitations of steady-state rupture fronts
propagating under homogeneous stress conditions. The latter
exist only in the presence of a nonmonotonic steady friction
law [cf. Fig. 2(b)] and span a continuous spectrum of
propagation velocities with a finite minimal value [37]. To

FIG. 3. (Color online) Outcome of instability. (a) High temporal
resolution of the dynamics of τ (x,t)/σ during instability (see movie
in the Supplemental Material [44]). tc is defined as the zero of
the time axis here (roughly at the onset of nonlinearity). (b)–(d)
A snapshot of the field distributions during rupture propagation at
a time corresponding to the vertical dashed line in panel (a) (solid
purple lines). The propagation velocity is c = 902 m/s. The dashed
blue lines are described in the text.
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FIG. 4. (Color online) Effect of velocity-strengthening and initial
stress. (a) The front location xtip during the first rupture event for
logarithmic velocity-strengthening (solid blue line) and for purely
velocity-weakening friction (dashed yellow line). The dotted red line
corresponds to the elastic wave speed. (b) xtip for linear strengthening.
Note the dramatic change in the time scale as compared to panel (a).
The dashed red line corresponds to c = 10 m/s. (c) Lc (dotted purple
line, right y axis) and c (solid blue line, left y axis) vs τ el(t = 0)/σ .
The dashed horizontal line is the elastic wave speed.

test this idea, we choose a steady-state-front solution whose
propagation velocity c is the same as in Fig. 3 (c = 902 m/s,
which is 32% of the elastic wave-speed cs =

√
Ḡ/ρ = 2783

m/s) and which penetrates an interface of the same “age”
(i.e., φ = 17.4 s). When superimposing it on the transient
front [solid purple lines in Figs. 3(b)–3(d)], we observe that
all fields exhibit reasonable agreement, including the detailed
distribution of τ (x,t)/σ and the typical slip velocity behind the
front, lending support to our conjecture. Currently we cannot
theoretically predict the selection (i.e., why this particular c

was selected), which might be a “soft selection” due to the
(weak) logarithmic velocity-strengthening.

To further test this conjecture, and explore the role played
by the velocity-strengthening branch in general, we study
two variants of our model, one in which friction is purely
velocity-weakening [cf. the dashed yellow line in Fig. 1(b)]
and one in which velocity-strengthening is linear in v [cf. the
dotted purple line in Fig. 1(b)] [26,35,36,47]. In the former
case, rupture propagates at the elastic wave speed cs , penetrates
much deeper into the interface, and results in a much larger
stress drop [see Fig. 4(a)]. In the latter case, rupture propagates
at a much slower velocity c � 10 m/s � cs [see Fig. 4(b)],
comparable to the smallest velocity member in the spectrum
of steady-state-front solutions [37,48]. We identify it as
“slow” rupture [23,27]. These results clearly indicate that the

existence and functional form of the velocity-strengthening
branch significantly affect rupture dynamics. This seems to
be directly related to the new experimental observations of
[52] and might also explain why models that do not include
velocity-strengthening friction typically feature only very fast
rupture events [10].

Finally, we study the effect of the initial stress level on the
onset of instability and the resulting rupture (for logarithmic
velocity-strengthening). Figure 4(c) shows that a prestress
τ el(t = 0) significantly affects the rupture velocity (and hence
the event’s magnitude), while Lc is almost unaffected [note
that at t = 0, τ el(t =0) is balanced by ∂xxu in Eq. (2)]. In
a geophysical context, this result seems to agree with the
statement that “the size of an event is determined by the
conditions on the fault segments the event is propagating into
rather than by the nucleation process itself” [2]. In addition, we
note that the variation of the rupture propagation velocity with
the prestress level resembles the recent experimental results
of [28] (cf. Fig. 3 therein).

The results described in this communication were obtained
in the quasi-1D limit of small H . The scaling structure of
the corresponding 2D results may be obtained through the
procedure described in the Supplemental Material [44]. While
we suspect that the qualitative nature of our results remains
unchanged in higher dimensions, quantitative aspects should
be carefully explored in future research.

Concluding remarks. In conclusion, we showed that creep
patches extending at frictional interfaces undergo a linear
instability at a critical nucleation size that is nearly independent
of the stress state and the presence of velocity-strengthening
friction. The post-instability nonlinear evolution results in
rapid slip mediated by rupture fronts whose properties do de-
pend on the stress state, the presence of velocity-strengthening
friction, and its functional form. In particular, the absence
of velocity-strengthening friction facilitates large slip events
that propagate at velocities approaching the elastic wave
speed and its presence gives rise to significantly smaller and
slower slip events. Finally, we related transiently propagating
rupture fronts to homogeneously driven steady-state fronts
[37] and showed that initial stresses systematically affect
the rupture dynamics. These robust results (i.e., parameter-
insensitive) may have significant implications for our un-
derstanding of interfacial failure and are currently extended
to 2D.
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