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Discrete-network versus modal representations of brain activity: Why a sparse regions-of-interest
approach can work for analysis of continuous dynamics
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The efficacy of the common practice of tracking brain dynamics using a few key regions of interest is explained
via the fact that these regions are sensitive to underlying extended modes of activity, not just local dynamics.
This underlines the inseparable interplay between modes and regions and reflects the reality that brain functions
range from highly localized to highly extended.
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I. INTRODUCTION

It has long been debated whether brain functions are
localized or extended, discrete or continuous, and in what
terms they are best described. Much evidence for localization
comes from studies of normal function, lesions, and brain
injuries, which show that specific functions and deficits are
often associated with to localized regions [1,2], such as parts
of the visual cortex. Conversely, integration of responses
to produce unified percepts from disparate sensory stimuli
appears to be widely dispersed even when specific processing
is localized [2,3]. The full situation is thus a mixture of the
two limiting cases.

Much data has been collected in recent years on the
networks that underpin the flow of information between
different areas of the brain [3,4]. On one hand, individual
neurons are often highly specific in their projections from one
region to another; conversely, there is sufficient divergence
in the projections from a single brain area that all parts
of the brain are connected to all others within only a few
steps [2,3], so networks are generally not highly compart-
mentalized. Moreover, neural field theory (NFT) approaches
that approximate couplings as spatially continuous have had
much success in explaining a wide variety of brain phenomena
[5–10], often via extended modes of activity. Such extended
modes are also widely reported in studies of spontaneous
and task-evoked brain activity [3,4,11–15]. These activity
patterns are sometimes pictured as discrete structural networks
that either exist continuously or are formed temporarily to
process particular inputs [2,4,11,13–16], and analysis is often
conducted in terms of the dynamics of just a few nodes or
regions of interest (ROIs) that are specific to the brain state
or task of interest. An alternative viewpoint is that the resting
state networks (or modes) are simply the lowest (principal)
eigenmodes of the brain structure [17] and that these are
likely to be preferentially excited during task execution. All
these points imply that there are roles for both localized
and delocalized activity in brain dynamics and that analysis
methods based on these two pictures need to be reconciled.

An approach based on a limited number of ROIs is often
successful in distinguishing between different dynamics in
task conditions, for example [13,14]. ROIs are the basis for
dynamical causal modeling (DCM), which attempts to infer
causal links between ROIs by using a generic model of their

dynamics and Bayesian inference [13,14]. Recently, it was
noted that even when one seeks a description in terms of
dynamics at these ROIs only, these links must be mediated
by activity in modes of the system [13], whether these are
viewed as modes of a discrete network or of a continuous
medium.

This Brief Report shows how the dynamics of a relatively
small number of localized ROIs can accurately capture even
distributed brain dynamics via their behavior being represen-
tative of the dominant underlying modes. The properties that
distinguish “good” ROIs (i.e., ones that capture the dynamics
successfully) from other choices are discussed, and the number
of ROIs required is estimated. In Sec. II we introduce a class of
equations widely used to describe brain dynamics and express
them in both network and field forms. We then carry out their
systematic decimation to a restricted network of ROIs and use
underlying modal dynamics to explain why this decimated
ROI representation works.

II. THEORY

In this section we introduce equations for neural dynamics
in a form compatible with a wide range of analyses in the
literature and show how their dynamics can be systematically
approximated via decimation to a set of discrete ROIs.

A. Dynamical equations

Because time delays are not critical to the issues addressed
here, we assume that we are dealing with low-frequency
signals and neglect time delays for neural signals to propagate
between different parts of the brain, which is a reasonable ap-
proximation under these circumstances [13,14]; generalization
to include time delays is possible but not needed to address
the issues considered here. We write the following equation
for the neural firing rate Q(r,t) at position r and time t of the
dominant population (such a form also results when multiple
populations are included):

DQ(r,t) =
∫

�(0)(r,r′)Q(r′,t)dr′ + N (r,t). (1)

Here, �(0) is the propagator for activity to travel to r from
r′ (a special case is the direct effective connection matrix, or
gain matrix, which measures the instantaneous strengths of
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anatomical connections between points [3,4,14,16,17]), D is a
purely temporal differential operator, N embodies any external
inputs, and the integral extends over all brain coordinates r′.
If the brain is discretized into a fine network of ROIs, or if
a coarse-grained subset of these ROIs is used, the integral in
Eq. (1) is replaced by a sum, and we can write it in matrix
notation as

DQj (t) =
∑

k

�
(0)
jk Qk(t) + Nj (t), (2)

where j and k denote locations. Equation (2) makes the reason
for identification of �(0) as a connection matrix [17] more
obvious. This equation is of the form used in DCM, except
that DCM assumes �(0) to be a function of the activity.

For present purposes, Dirac bra-ket notation is most useful
and compact [18,19], with Eqs. (1) and (2) becoming

〈r|D|Q(t)〉 = 〈r|�(0)|r′〉〈r′|Q(t)〉 + 〈r|N (t)〉. (3)

Here, the eigenstates |r〉 and their adjoints 〈r| are orthonormal
δ-function eigenstates of the position operator and �(0) is
interpreted as an operator. In Eq. (3) and henceforth we adopt
the Einstein summation convention in which any repeated
index is summed over and this is interpreted as an integral
wherever the index is continuous.

B. Decimation

We wish to represent the above system via its dynamics at
a less numerous, decimated, set of spatial points R, which we
denote by upper case letters [there should be no confusion with
the state Q(t)]. We discuss the choice of these points below.
We also introduce eigenfunctions |φ〉 of the propagator �(0),
which we denote by Greek letters. We thus write

〈r|D|Q(t)〉 = 〈r|φ〉〈φ|�(0)|ψ〉〈ψ |r′〉〈r′|Q(t)〉 + 〈r|N (t)〉,
(4)

= 〈r|φ〉〈φ|�(0)|ψ〉〈ψ |Q(t)〉 + 〈r|N (t)〉, (5)

where 〈ψ | and 〈φ| are adjoints of |ψ〉 and |φ〉.
We note that if

�(0)|φ〉 = λφ|φ〉, (6)

where λφ is the eigenvalue corresponding to the eigenstate |φ〉,
then [18,19]

[�(0)]−1 =
∑

φ

|φ〉〈φ|
λφ

. (7)

We further note that only the lowest eigenmodes of brain
activity are weakly damped [6,8,10], and hence that activity
is dominated by relatively few modes, which we denote by
upper-case Greek letters. We thus obtain

〈R|D|Q(t)〉 ≈ 〈R|�〉〈�|�(0)|�〉〈�|Q(t)〉 + 〈R|N (t)〉,
(8)

where we have restricted attention to the locations R without
loss of generality; the only approximation in going from Eq. (5)
to Eq. (8) is the restriction to a subset of (say) M propagator
eigenstates.

Equation (8) involves the evaluation of inner products of
each of the M retained propagator eigenstates with |Q(t)〉. As
in the general theory of integration using orthogonal functions,
one can evaluate the relevant integrals exactly using only
∼M appropriately chosen points R′ and associated weights
w�R′ [20]. Then the approximation in going from Eq. (5) to
Eq. (8) involves only the neglect of higher modes, not errors
in evaluation of the terms retained. We can then write

〈R|D|Q(t)〉 ≈ 〈R|�〉〈�|�(0)|�〉
∑

R′
w�R′ 〈�|R′〉〈R′|Q(t)〉

+ 〈R|N (t)〉, (9)

=
∑

R′
[〈R|�〉〈�|�(0)|�〉w�R′ 〈�|R′〉]〈R′|Q(t)〉

+〈R|N (t)〉, (10)

= 〈R|�(0)
eff |R′〉〈R′|Q(t)〉 + 〈R|N (t)〉, (11)

where Eq. (11) defines �
(0)
eff , which is not equal to �(0) unless

M equals the total number of points required to fully resolve
the dynamics. This is an important point, since observed brain
networks are already coarse-grained representations of brain
tissue.

The above analysis implies that ROIs must be at locations
appropriate to approximate the inner products in Eq. (8) well
and should thus predominantly lie in places where |�〉 and
|�〉 do not have zeros. Most importantly, the result Eq. (11)
is not a trivial approximation of Eq. (3). It is justified only by
the relative unimportance of high-order modes of the system.
The contribution of these modes can be estimated from the
spectrum of the system activity in the relevant resting-state or
task-evoked conditions and can be more formally estimated by
Bayesian means, for example [4,13,14].

C. Transfer function and evoked activity

Activity is often evoked transiently by stimuli, including
ones applied by experimenters. To analyze such situations we
rewrite Eq. (3) as

〈r|D − �(0)|r′〉〈r′|Q(t)〉 = 〈r|N (t)〉. (12)

Equation (12) can be inverted to yield

〈r|Q(t)〉 = 〈r|T |r′〉〈r′|N (t)〉, (13)

T = [D − �(0)]−1, (14)

where T is the linear transfer function, and we have swapped
the primed and unprimed coordinates in going from Eq. (12) to
Eq. (13) without loss of generality. Recent work identified � =
T − I as the total effective connection matrix that includes
both direct and indirect influences of one point on another [17]
and I is the unit matrix. The expansion in [17] of � in powers
of �(0) implies that T can also be written in the form of
Eq. (7), with the same eigenfunctions but different eigenvalues.
Equations (13) and (14) recast the present cases of these recent
results in Dirac notation.

The decimation in Sec. IIB can be carried out in a similar
way to obtain the analog of Eq. (13) involving an effective
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transfer function Teff , giving

〈R|Q(t)〉 = 〈R|Teff|R′〉〈R′|N (t)〉, (15)

Teff = [
D − �

(0)
eff

]−1
. (16)

ROIs are often chosen to include the site R0 of a localized
incoming stimulus, in which case, one can write

|N (t)〉 = N (t)|R0〉, (17)

〈R|Q(t)〉 = N (t)〈R|Teff|R0〉. (18)

Equation (18) involves only one row of the M × M matrix
Teff , and it may be that only a subset of entries 〈R|T |R0〉 in
this row of the matrix are significant for a particular stimulus.
This further explains how it is often possible for just a few
ROIs to capture much of the relevant dynamics, as is often
found in DCM, for example [2–4,13–15].

III. SUMMARY AND DISCUSSION

This Brief Report has used a modal decomposition to show
how to capture brain dynamics via the behavior of a decimated

set of ∼M pointlike regions of interest, so long as the relevant
activity is confined to a set of M dominant modes. However,
the modes themselves do not need to be tracked because the
point dynamics of the decimated ROI network are equivalent.
The number of ROIs required can be very small in cases where
only a few entries in the transfer matrix couple significantly
to the location of an applied stimulus, as is the case when
specialized pathways are activated.

These results explain why the ROI approach often works,
highlight the need to interpret the inferred connectivities
�

(0)
eff carefully, and emphasize that these effective interactions

include couplings via extended modes, not just discrete direct
connections. They thus elucidate the combination of local and
extended dynamics inherent in brain activity. Moreover, they
imply that many researchers have selected ROIs that sample
dominant modes effectively, but that this selection could be
done on a more systematic first-principles basis in future.
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