PHYSICAL REVIEW E 88, 054101 (2013)

Effective diffusion coefficient of a Brownian particle in a periodically expanded conical tube
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Diffusion in a tube of periodically varying diameter occurs slower than that in a cylindrical tube because
diffusing particles get trapped in wells of the periodic entropy potential which is due to variation of the tube
cross-section area. To quantify the slowdown one has to establish a relation between the effective diffusion
coefficient of the particle and the tube geometry, which is a very complicated problem. Here we show how to
overcome the difficulties in the case of a periodically expanded conical tube, where we find an approximate
solution for the effective diffusion coefficient as a function of the parameters determining the tube geometry.
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Diffusion in systems of varying geometry is a hot topic
actively studied during the past decade. The reason is that
problems involving diffusion in such systems are ubiquitous
in nature and technology. Examples include transport in porous
media and materials [1], controlled drug delivery [2], transport
in spiny dendrites [3], and channel-facilitated membrane
transport [4], to mention just a few. This Brief Report considers
unbiased diffusion in a periodically expanded conical tube
whose radius linearly increases from its minimum value a to
its maximum value R over the tube period L, as shown in
Fig. 1(a). Variation of the tube radius leads to the slowdown of
the particle diffusion along the tube axis, since the particle gets
trapped in the wells of the entropy potential [see Fig. 1(b)].
The goal of this study is to quantify the slowdown and to
establish its relation to the tube geometry. The focus is on
the coarse-grained description of motion at sufficiently long
times when the particle displacement significantly exceeds the
tube period, and the motion can be treated as effective free
diffusion along the tube axis, characterized by the diffusion
coefficient Dgg. Our main result is the formula in Eq. (16),
which gives Dgg as a function of the geometric parameters
of the tube. It is worth mentioning that tubes of this type
have been made [5], and their application as a controlled
drug release device has been discussed in the literature [6].
Although biased diffusive transport in such systems has been
studied in recent papers [7] devoted to the force-dependent
mobility, entropic rectification, and separation of particles of
different sizes, the case of unbiased diffusion has not been
considered in the literature yet. The present work fills this
gap.

The problem of constructing a coarse-grained description
and finding Deg in a tube of periodically varying diameter
has a straightforward solution when the tube diameter is

*Corresponding author: yuam @ips.ac.ru

1539-3755/2013/88(5)/054101(4)

054101-1

PACS number(s): 05.40.Jc, 05.60.Cd, 02.50.Ey

a slowly varying function of the coordinate x measured
along the tube axis. The solution involves two steps:
(1) Reduction to the modified Fick-Jacobs equation [8—10],
which describes the particle motion as one-dimensional
diffusion along the tube axis in the presence of a periodic
entropy potential with periodic position-dependent diffusion
coefficient. (2) Finding D¢ using the Lifson-Jackson formula
[11], which gives the effective diffusion coefficient for such a
motion.

This strategy does not work for the tube shown in Fig. 1(a)
since the tube diameter changes abruptly. To obtain Deg in
this case, we adapt the strategy used in Ref. [12] to find
the effective diffusion coefficient of a particle in a tube of
alternating diameter. Specifically, we map the particle motion
onto a continuous time random walk among neighboring sites
separated by the tube period L. For such random walks D is
given by

Der = L?/(27), (1)

where t is the mean particle lifetime on a site, which is the
mean first-passage time of the particle from a starting point
X = Xxo to one of the points located at x = xy = L. In this way
the problem of finding D.¢ reduces to that of finding the mean
first-passage time 7.

To solve the latter problem, we first reformulate the initial
three-dimensional description of the particle motion in the
tube in terms of an approximate one-dimensional description
which contains two elements: (1) diffusion in the entropy
potential on intervals where the tube radius is a smooth
function of x, and (2) matching the solutions at points where
the tube radius abruptly changes from R to a. The former
is described by the modified Fick-Jacobs equation [8] with
a renormalized diffusion coefficient [8—10]. The matching
conditions are obtained as follows: (i) To describe the entrance
of the particle into the narrow part of a cone from the wide
part of the neighboring cone, we treat the cone base containing
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FIG. 1. Schematic representation of a periodically expanded
conical tube [panel (a)] and corresponding entropy potential Uey(x)
defined as Ueyw(x)/kpT = —In{A[r(x)]/A(a)} = =2 In[r(x)/al,
where kp is the Boltzmann constant and 7 is the absolute temperature
[panel (b)].

the entrance as a uniform partially absorbing boundary. The
trapping efficiency of such a boundary is characterized by the
trapping rate k., where the subscript “wn” indicates that this
rate is related to the wide-to-narrow transitions of the particle.
(i) When describing transitions of the particle in the opposite,
narrow-to-wide (nw) direction, we also treat the boundary
separating the two cones as partially absorbing characterized
by the rate «,,,. To find this rate we use the detailed balance
condition (the requirement of no net flux across the boundary
at equilibrium), which leads to the following relation between
the two trapping rates:

KunA(R) = knwA(a), 2)

where A(r) = nr? is the area of the cone cross section of
radius r, perpendicular to the tube axis.

The replacement of the cone base containing the entrance
into the neighboring cone by a uniform partially absorbing
cone base is an example of the so-called boundary homog-
enization (BH) (see Refs. [13,14], and references therein).
The reason why such a replacement is possible can be
understood if one considers a steady-state flux of diffusing
particles to the cone base containing an absorbing spot in its
center. The point is that this flux becomes indistinguishable
from the steady-state flux to the partially absorbing cone
base with correctly chosen trapping rate at distances larger
than the base radius. Recently we have used BH to study
diffusion in cylindrical tubes of abruptly changing diameter
[12,15,16].

Here, for the first time, we apply BH in the presence of
the entropy potential which is due to varying diameter of
the conical tube. This potential “pushes” diffusing particles
towards the cone base [see Fig. 1(b)]. We found «,,, in the
presence of the entropy potential by means of Brownian
dynamics simulations, following the same computer-assisted
BH strategy as that used in Ref. [14] to determine the effective
trapping rate for particles diffusing in a cylindrical tube
containing an absorbing disk in the center of its end wall. In
view of the fact that the reduction to the modified Fick-Jacobs
equation is applicable only when the radius variation rate A,
A = (R —a)/L, does not exceed unity [17], we numerically
studied BH in the same range of A, A < 1. To our surprise,
we found that «,, is practically independent of A and well
described by the formula proposed in Ref. [14] by fitting
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numerical results obtained for a cylindrical tube (A = 0). This
formula gives the trapping rate as a function of the ratio v
of the tube radius R to the radius a of the absorbing spot,
v=a/R,

4Dy 4Dy ,
Kwn = —Uf(l)) =—_—_V f(v)» (3)
TR ma
where Dy is the particle diffusion coefficient in a
cylindrical tube and function f(v) is given by f(v)=
(1 + 1.37v — 0.37v%)/(1 — v?)?. As v increases from zero to
1, f(v) monotonically increases from unity to infinity.

Although we have no arguments explaining why «, is
practically independent of A for the entire range of v,0 < v < 1,
we point out that this independence can be rationalized in
the limiting cases of v close to zero and v = 1. Indeed, it is
obvious that «,, tends to infinity as v — 1 for all A because
the entire cone base is perfectly absorbing in this limiting
case. In the opposite limiting case of small v, using the
Hill-Berg-Purcell (HBP) formula [18] for the rate constant
of a perfectly absorbing disk of radius a on a flat reflecting
wall, kygp = 4Dya, it can be shown that k,, = 4Dya /(7 R?)
independent of A.

To find 7, consider a particle initially located at point
xo which is between points x =0 and x =L, 0 < x9 < L,
assuming that the tube radius changes its value from R to
aatpointsx =nL,n =0,+£1,%2,.... Let G(x,?|xp) be the
particle propagator (Green’s function), which is the probability
density of finding the particle at pointx,xo — L < x < xo+ L,
at time ¢, conditional on that the particle starts from x = xg
at t = 0. The propagator satisfies the modified Fick-Jacobs
equation on the intervals xo — L <x <0, 0 <x < L, and
L < x < xo+ L, absorbing boundary conditions at points
x = xo £ L, and matching conditions at points x =0 and
x = L. The particle survival probability for time ¢, S(¢), is
related to the propagator by

xo+L
S(t) = / G(x,t|xp)dx. )

o—L

Using S(#), we can find the probability density of the particle
lifetime, ¢(t) = —dS(t)/dt, and the mean lifetime,

T = /Ootgo(t)dt = /oo S(t)dt. 5)
0 0

Substituting here the expression for S(¢) in Eq. (4), we can
write T as

xo+L
r= / F(x|xo)dx, ©)
ngL
where
F(xlxo) = / G x.tlxo)dr. %
0

The expression in Eq. (6) has a transparent physical
interpretation. The product F(x|x()dx is the mean cumulative
time spent by the particle in the interval of length dx around
point x. Thus, Eq. (6) gives T as a sum of the mean cumulative
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times spent by the particle at all points of the entire interval
(xo—L, xo+ L).

In the tube under study, the tube radius r(x) is a periodic
function of x, r(x +nL) =r(x), n =0, 1, £2,..., with
r(x) given by

r(x) =a+ Ax, 0<x<L. ®)

As x increases from zero to L, the tube radius grows from
a to its maximum value R = a + AL. Since dr(x)/dx = A =
const, the diffusion coefficient entering into the modified Fick-
Jacobs equation is a position-independent function of A, which
we denote by D;. Thus the propagator G(x,?|xg) is a solution

to
G } )]
ox Alr(x)]

on the intervals xo — L <x <0, O<x <L, and L <
X < xo+ L, subject to the initial condition G(x,0|xy) =
8(x — x¢) and absorbing boundary conditions at the end points,
G|x,+L =0. At the matching (m) points, x,, = 0 and L, the
propagator satisfies the matching conditions,

G

0x A[r(0)] =, -0
G

DA )EA[r(x)] R
— Kkwn Glyzy,—0 - (10)

_:DA_ {A[ (x )]

DA()

= anG|x:xm+0
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The first equality in Eq. (10) guarantees conservation of the
total flux across the boundary, while the second one provides
the relation between the flux and the propagators on the two
sides of the boundary, which follows from BH.

Correspondingly, the function F(x|xo), defined in Eq. (7),
satisfies the equation which is obtained by integrating Eq. (9)
with respect to time from zero to infinity. Using the initial
conditions for the propagator, we find that on the intervals
xo—L<x<0,0<x<L,and L <x <x9+ L, F(x|xp)
is a solution to

0
Dka_{A[ ( )]a Alr()]

At the matching points it satisfies the matching conditions that
follow from Eq. (10),

} = —8(x —x0). (11

D AR) 2L
ax Alr(x)] (€9 | F_—
F
DiAa )B_XA[r(x)] R
= anF|x:xm+O — Kwn F|x=xm70 . (12)

Finally, at the end points x = xo &= L this function satisfies
absorbing boundary conditions, F|,,+; = 0, as the propagator
does.

We find F(x|xo) by integrating Eq. (11). Substituting
the result into Eq. (6) and performing the integration, we
obtain

L L
T = (/ Alr(x)] dx) </ Alr(o)] dx + D;\/‘/A(R)A(a)an/cnw> /(ZDA). (13)
0 0

Using this we can write D defined in Eq. (1) as

D;

Desr =

where ( f(x)) denotes averaging of a function f(x) over the tube period, (f(x))

(A[r D1/ ALr()]) + Dy /(L AR A(@)K k)]

(14)

= fo f(x)dx/L. One can check that for r(x)

given in Eq. (8) we have (1/A[r(x)]) = 1/+/A(R)A(a). This allows us to write Eq. (14) in the following form:

D;

Dy =

(Alr)(1/A[r(x)DIL + D; /(L /Kunknw)]

15)

The explicit dependence of D on the geometric parameters of the tube, which is the main result of this Brief Report, is

given by

Dy

(16)

T+ A212/13(1 4 AV + A2+ 7 (1 + AD/ELF W) umtja4ap)]

where [ = L/a and we have used the Reguera-Rubi formula
[9] for Dy, Dy = Dy/~/1 + A2. To illustrate the slowdown of
diffusion, in Fig. 2 we show the ratio Dy/ D, predicted by
Eq. (16), as a function of A for/ =5, 10, 25, 50, and 100. In
this figure we also give the values of the ratio obtained from
three-dimensional Brownian dynamics simulations, which are
shown by symbols. One can see that the theoretically predicted
behavior is in good agreement with the simulation results.

Finally, we discuss the asymptotic behavior of the effective
diffusion coefficient given in Eq. (16) in the limiting cases of
A =0and Al > 1. As follows from Eq. (16), when the tube
is cylindrical (A = 0) Deg reduces to Dy, as it must be. In the
limiting case of large Al, D¢ takes the form

3Dy,
Dot = o>, a17)
N MWT 22+ 704
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FIG. 2. (Color online) The ratio Dy/D.g as a function of the
radius variation rate A at fixed values of the dimensionless tube period
I = L/a. Solid curves are the theoretically predicted dependencies
drawn using Eq. (16). Symbols are the values of the ratio obtained
from three-dimensional Brownian dynamics simulations.
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which shows that at a fixed value of A, A # 0, D¢ approaches
zero with increasing tube period as 1/l =a/L. This is a
consequence of the fact that as Al increases, the barrier in the
entropy potential [Fig. 1(b)] becomes higher and higher, since
the ratio a/R = 1/(1 + Al) becomes smaller and smaller.

In summary, although at first sight the problem of finding
the effective diffusion coefficient for the periodically expanded
conical tube shown in Fig. 1(a) looks hopeless because of the
complex tube geometry, we managed to find an approximate
solution for D¢, Eq. (16), which is the main result of this Brief
Report. In deriving Eq. (16) we used the modified Fick-Jacobs
equation and treated the cone base containing the entrance into
the neighboring cone as a uniform partially absorbing cone
base. Its trapping rate was determined in computer-assisted
boundary homogenization. We found that the rate is insensitive
to the presence of the entropy potential and well described
by the formula obtained for a cylindrical tube in Ref. [14].
It is worth mentioning that both boundary homogenization
[16] and the reduction to the Fick-Jacobs equation [19] are
applicable only when the tube period is larger than the diameter
of the openings connecting neighboring cones. This condition
supplements the above-mentioned requirement that the radius
variation rate should not exceed unity [17]. If this condition
is not met, Eq. (16) fails. However, the slowdown of diffusion
due to the varying tube diameter in this case is small and
can be neglected. Comparison shows that predictions of the
formula in Eq. (16) agree well with the values of Dg obtained
from three-dimensional Brownian dynamics simulations over
a wide range of the parameters determining the tube geometry.
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