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Precise algorithm to generate random sequential addition of hard hyperspheres at saturation
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The study of the packing of hard hyperspheres in d-dimensional Euclidean space Rd has been a topic of great
interest in statistical mechanics and condensed matter theory. While the densest known packings are ordered
in sufficiently low dimensions, it has been suggested that in sufficiently large dimensions, the densest packings
might be disordered. The random sequential addition (RSA) time-dependent packing process, in which congruent
hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful
packing model to study disorder in high dimensions. Of particular interest is the infinite-time saturation limit in
which the available space for another sphere tends to zero. However, the associated saturation density has been
determined in all previous investigations by extrapolating the density results for nearly saturated configurations to
the saturation limit, which necessarily introduces numerical uncertainties. We have refined an algorithm devised
by us [S. Torquato, O. U. Uche, and F. H. Stillinger, Phys. Rev. E 74, 061308 (2006)] to generate RSA packings of
identical hyperspheres. The improved algorithm produce such packings that are guaranteed to contain no available
space in a large simulation box using finite computational time with heretofore unattained precision and across
the widest range of dimensions (2 � d � 8). We have also calculated the packing and covering densities, pair
correlation function g2(r), and structure factor S(k) of the saturated RSA configurations. As the space dimension
increases, we find that pair correlations markedly diminish, consistent with a recently proposed “decorrelation”
principle, and the degree of “hyperuniformity” (suppression of infinite-wavelength density fluctuations) increases.
We have also calculated the void exclusion probability in order to compute the so-called quantizer error of the
RSA packings, which is related to the second moment of inertia of the average Voronoi cell. Our algorithm is
easily generalizable to generate saturated RSA packings of nonspherical particles.
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I. INTRODUCTION

In d-dimensional Euclidean space Rd , a hard hypersphere
(i.e., d-dimensional sphere) packing is an arrangement of
hyperspheres in which no two hyperspheres overlap. The
packing density or packing fraction φ is the fraction of space
in Rd covered by the spheres, which for identical spheres of
radius R, the focus of the paper, is given by

φ = ρv1(R), (1)

where ρ is the number density and

v1(R) = πd/2

�(1 + d/2)
Rd (2)

is the volume of a d-dimensional sphere of radius R and �(x)
is the � function. Sphere packings are of importance in a
variety of contexts in the physical and mathematical sciences.
Dense sphere packings have been used to model a variety
of many-particle systems, including liquids [1], amorphous
materials and glassy states of matter [2–8], granular media [9],
suspensions and composites [10–12], and crystals [13]. The
densest sphere packings are intimately related to the ground
states of matter [13,14] and the optimal way of sending digital
signals over noisy channels [15]. Finding the densest sphere
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packing in Rd for d � 3 is generally a notoriously difficult
problem [15]. Kepler’s conjecture, which states that there is no
other three-dimensional arrangement of identical spheres with
a density greater than that of face-centered cubic lattice, was
only recently proved [16]. The densest sphere packing problem
in the case of congruent spheres has not been rigorously solved
for d � 4 [15,17], although for d = 8 and d = 24 the E8

and Leech lattices, respectively, are almost surely the optimal
solutions [18].

Understanding the high-dimensional behavior of disordered
sphere packings is a fundamentally important problem, espe-
cially in light of a recent conjecture that the densest packings
in sufficiently high dimensions may be disordered rather than
ordered [19]. Indeed, Ref. [19] provides a putative exponential
improvement on Minkowski’s lower bound on the maximal
density φmax among all Bravais lattices [20],

φmax � ζ (d)

2d−1
, (3)

where ζ (d) = ∑∞
k=1 k−d is the Riemann ζ function. For large

values of d, the asymptotic behavior of the Minkowski’s
lower bound is controlled by 2−d . Interestingly, any saturated
packing density satisfies the following so-called “greedy”
lower bound:

φ � 1

2d
. (4)
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A saturated packing of congruent spheres of unit diameter
and density φ in Rd has the property that each point in space
lies within a unit distance from the center of some sphere.
Thus, a covering of the space is achieved if each center is
encompassed by a sphere of unit radius and the density of this
covering is

θ = 2dφ � 1, (5)

which proves the lower bound (4). Note that it has the same
dominant exponential term as in inequality (3). The packing
density of 2−d can also be exactly achieved by ghost random
sequential addition packings [21], an unsaturated packing less
dense than the standard random sequential addition (RSA)
packing [22] in some fixed dimension d, implying that the
latter will have a superior dimensional scaling. Additionally,
the effect of dimensionality on the behavior of equilibrium
hard-sphere liquids [23–27] and of maximally random jammed
spheres [7,8,24] have been investigated.

Sphere packings are linked to a variety of fundamental
characteristics of point configurations in Rd , including the
covering radius Rc and the quantizer errorG, which are related
to properties of the underlying Voronoi cells [15]. The covering
and quantizer problems have relevance in numerous applica-
tions, including wireless communication network layouts, the
search of high-dimensional data parameter spaces, stereotactic
radiation therapy, data compression, digital communications,
meshing of space for numerical analysis, coding, and cryp-
tography [14,15]. It has recently been shown [14] that both
of these quantities can be extracted from the void exclusion
probability EV (R), which is defined to be the probability
of finding a randomly placed spherical cavity of radius R

empty of any points. It immediately follows that EV (R) is
the expected fraction of space not covered by circumscribing
spheres of radius R centered at each point. Thus, if EV (R)
is identically zero for R � Rc for a point process, then there
is a covering associated with the point process with covering
radius Rc. Finally, for a point configuration with positions
r1,r2, . . ., a quantizer is a device that takes as an input a
position x in Rd and outputs the nearest point ri of the
configuration to x. Assuming x is uniformly distributed, one
can define a mean-square error, called the scaled dimensionless
quantizer error, which can be obtained from the void exclusion
probability via the relation [14]

G = 2ρ
2
d

d

∫ ∞

0
REV (R)dR. (6)

It is noteworthy that the optimal covering and quantizer
solutions are the ground states of many-body interactions
derived from EV (R) [14,28].

The RSA procedure, which is the focus of the present
paper, is a time-dependent process to generate disordered
hard-hypersphere packings in Rd [22,29–35]. Starting with a
large, empty region of Rd of volume V , spheres are randomly
and sequentially placed into the volume subject to a nonoverlap
constraint: If a new sphere does not overlap with any existing
spheres, it will be added to the configuration; otherwise, the
attempt is discarded. One can stop the addition process at any
time t , obtaining RSA configurations with various densities
φ(t) up to the maximal saturation density φs = φ(∞) that oc-

curs in the infinite-time limit. Besides identical d-dimensional
spheres, the RSA packing process has also been investigated
for polydisperse spheres [36,37] and other particle shapes,
including squares [38], rectangles [39,40], ellipses [41,42],
spheroids [43], superdisks [44], sphere dimers [45], and sphere
polymers [46] in Rd and for different shapes on lattices [47]
and fractals [48,49]. The RSA packing process in the first three
space dimensions has been widely used to model the structure
of cement paste [50], ion implantation in semiconductors [51],
protein adsorption [52], polymer oxidation [53], and particles
in cell membranes [54]. The one-dimensional case, also known
as the “car-parking” problem, has been solved analytically and
its saturation density is φ = 0.7475979202 . . . [35]. However,
for d � 2, the saturation density of RSA spheres has only been
estimated through numerical simulations.

In general, generating exactly saturated (infinite-time limit)
RSA configurations in Rd is particularly difficult because
infinite computational time is not available. The long-time
limit of RSA density behaves as [30–32]

φ(∞) − φ(t) ∼ t−1/d . (7)

Previous investigators have attempted to ascertain the satu-
ration densities of RSA configurations by extrapolating the
densities obtained at large, finite times using the asymptotic
formula (7) [29,33,34].

In order to describe more efficient ways of generating nearly
saturated and fully saturated RSA configurations, we first
need to define two important concepts: the exclusion sphere
and the available space. The exclusion sphere associated
with a hard sphere of diameter D (equal to 2R) is the
volume excluded to another hard sphere’s center due to the
impenetrability constraint and thus an exclusion sphere of
radius D circumscribes a hard sphere. The available space
is the space exterior to the union of the exclusion spheres
of radius D centered at each sphere in the packing. A
more general notion of the available space is a fundamental
ingredient in the formulation of a general canonical n-point
distribution function [55].

An efficient algorithm to generate saturated RSA configu-
rations was introduced in Ref. [29]. This procedure exploited
an economical procedure to ascertain the available space
(as explained in the subsequent section). Although a huge
improvement in efficiency can be achieved, this and all other
previous algorithms still require extrapolation of the density
of nearly saturated configurations to estimate the saturation
limit.

In this paper, we present an improvement of the algorithm
described in Ref. [29] in order to generate saturated (i.e.,
infinite-time limit) RSA packings of identical spheres in a
finite amount of computational time. Using this algorithm, we
improve upon previous calculations of the saturation packing
and covering densities, pair correlation function, structure
factor, void exclusion probability, and quantizer error in
dimensions two through eight.

The rest of the paper is organized as follows: In Sec. II,
we describe the improved algorithm; in Sec. III, we present
the packing and covering densities, pair correlation function,
structure factor, void exclusion probability, and quantizer

053312-2



PRECISE ALGORITHM TO GENERATE RANDOM . . . PHYSICAL REVIEW E 88, 053312 (2013)

error of saturated RSA configurations; and in Sec. IV, we
conclude with some discussions of extending this method
to generate saturated RSA packings of objects other than
congruent spheres.

II. IMPROVED ALGORITHM TO GENERATE
SATURATED RSA PACKINGS IN Rd

Reference [29] introduced an efficient algorithm to generate
saturated RSA configurations of hard d-dimensional spheres.
Specifically, a hypercubic simulation box is divided into
small hypercubic “voxels” with side lengths much smaller
than the diameter of the spheres. At any instant of time,
spheres are sequentially added to the simulation box whenever
there is available space for that sphere. Each voxel can be
probed to determine whether it may contain any available
space or not to add another sphere. By tracking all of
the voxels that can contain some portion of the available
space, one can make insertion attempts only inside these
“available voxels” and save computational time. This enables
one to achieve a huge improvement in computational effi-
ciency over previous methods. However, this and all other
previous algorithms still require extrapolation of the density
of nearly saturated configurations to estimate the saturation
limit.

The improved algorithm reported in the present paper
differs from the original voxel method [29] by dividing the
undetermined voxels (voxels that are not included in any
exclusion sphere after certain amount of insertion trials) into
smaller subvoxels. Repeating this voxel subdivision process
with progressively greater resolution enables us to track the
available space more and more precisely. Eventually, this
allows us to discover all of the available space at any point in
time and completely consume it in order to arrive at saturated
configurations.

The improved algorithm consists of the following steps,
which are illustrated in Fig. 1:

(1) Starting from an empty simulation box in Rd , the
Cartesian coordinates of a sphere of radius R are randomly
generated. This sphere is added if it does not overlap with any
existing sphere in the packing at that point in time; otherwise,
the attempt is discarded. This addition process is repeated until

the success rate is sufficiently low [56]. The acceptance ratio
of this step equals to the volume fraction of the available space
inside the simulation box,

Pacceptance = �available = Vavailable

Ld
, (8)

where Pacceptance is the acceptance ratio of this step, �available

is the volume fraction of the available space, Vavailable is the
volume of the available space, and Ld is the volume of the
simulation box with side length L.

(2) When the fraction of the available space is low, we
improve the acceptance ratio by avoiding insertion attempts in
the unavailable space. To do this, the simulation box is divided
into hypercubic voxels, with side lengths comparable to the
sphere radius. Each voxel is probed to determine whether it
is completely included in any of the exclusion spheres. If not,
the voxel is added to the available voxel list. Thus we obtain
an “available voxel list.” A voxel in this list may or may not
contain available space, but the voxels not included in this list
are guaranteed to contain no available space.

(3) Since some unavailable space is excluded from the
voxel list, we can achieve a higher success rate of insertion
by selecting a voxel randomly from the available voxel list,
generating a random point inside it, attempting to insert a
sphere, and repeating this step. The acceptance ratio of this
step is equal to the volume fraction of the available space
inside voxels from the available voxel list,

Pacceptance = �available = Vavailable

NvoxelVvoxel
, (9)

where Pacceptance is the acceptance ratio of this step, �available

is the volume fraction of the available space inside the voxel
list, Vavailable is the volume of the available space, Nvoxel is the
number of voxels in the available voxel list, and Vvoxel is the
volume of a voxel.

(4) In the previous step, spheres were inserted into the
system, thus the volume of the available space will decrease.
Eventually, Vavailable is very low and Pacceptance is also low. Thus
we improve the efficiency again by dividing each voxel in the
voxel list into 2d subvoxels, each with the side length equal to
a half of that of the original voxel. Each subvoxel is checked

FIG. 1. (Color online) A description of the key steps involved to generate two-dimensional saturated RSA packings in a square box under
periodic boundary conditions. Gray circles are RSA disks and dotted circles are their corresponding exclusion disks. The shaded region (red
region in colored version) is the available space. Black squares are voxels in the available voxel list. A: Configuration after the first step. B:
Same configuration with the available voxel list generated in the second step. C: A new disk is inserted in the third step, reducing the available
space. D: In the fourth step, each available voxel is subdivided into 22 subvoxels. The available ones constitute a new voxel list. E: Return to the
third step with the new available voxel list and two additional disks are inserted. The program then subdivides each voxel into four subvoxels
and all subvoxels can be identified as unavailable. Thus the program finishes.
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for availability according to the rule described in step (2). The
available ones constitute the new voxel list.

(5) Return to step (3) with the new voxel list and repeat steps
(3) to (5) until the number of voxels in the latest voxel list is
zero. Since we only exclude a voxel from the voxel list when
we are absolutely sure that it does not contain any available
space, we know at this stage that the entire simulation box does
not contain any available space and thus the configuration is
saturated.

III. RESULTS

A. Saturation density

We have used the method described in Sec. II to generate
saturated configurations of RSA packings of hyperspheres in
dimensions two through eight in a hypercubic (d-dimensional
cubic) box of side length L under periodic boundary condi-
tions. In each dimension, multiple sphere sizes are chosen.
The relative sphere volume is represented by the ratio of a
sphere’s volume to the simulation box’s volume v1(R)/Ld ,
where R is the sphere radius and Ld is the volume of the
hypercubic simulation box. For each sphere size, multiple
configurations are generated. The number of spheres N con-
tained in these configurations fluctuate around some average
value inversely proportional to v1(R)/Ld . The relative sphere
volume v1(R)/Ld and number of configurations nc generated
for each sphere radius R in each dimension is given in Table I.
The mean density and its standard error for each sphere radius
R is calculated. Subsequently, we plot the mean density φs and
its standard error σ versus a quantity proportional to N−1/2,
namely [v1(R)/Ld ]1/2. We then perform a weighted linear

least-squares fit [57] to this function in each dimension in order
to extrapolate to the infinite-system-size [v1(R)/Ld → 0]
limit. The weight is given by

W (R) = 1

σ 2(R)
, (10)

where σ (R) is the standard error of the mean density for
spheres with radius R.

The mean densities and the associated standard errors
for different sphere radii R are shown in Fig. 2, while
the extrapolated infinite-system-size densities are shown
in Table II. These density estimates for 2 � d � 8 have been
determined with heretofore unattained accuracy, including in
the most previously studied dimensions of d = 2 and d = 3.
For d = 2, several previous studies produced the following
density estimates: 0.547 ± 0.002 [32], 0.547 ± 0.003 [58],
and 0.54700 ± 0.000063 [29]. For d = 3, several previous
investigations yielded the following density estimates: 0.37–
0.40 [33], 0.385 ± 0.010 [59], 0.382 ± 0.0005 [60], and
0.38278 ± 0.000046 [29]. Compared with previous results of
saturation densities for 2 � d � 6 [29], our corresponding
results are only slightly higher for two dimensions, but the
discrepancy increases as dimension increases. This suggests
that the previous attempts did not generate fully saturated
configurations, especially in high dimensions. Table II also
includes corresponding RSA covering densities. A RSA
covering is obtained by replacing each sphere in a saturated
RSA packing in Rd with its exclusion sphere, and thus its
covering density is given by

θ = 2dφs. (11)

TABLE I. Dimensionless sphere size v1(R)/Ld and number of configurations nc generated for each dimension d .

d = 2
v1(R)/Ld 1.0884 × 10−7 5.4420 × 10−8 2.7210 × 10−8 1.3605 × 10−8

nc 250 250 250 250

d = 3

v1(R)/Ld 3.82925 × 10−7 1.91462 × 10−7 7.65850 × 10−8 3.82925 × 10−8

nc 250 250 250 250
v1(R)/Ld 1.91462 × 10−8

nc 250

d = 4

v1(R)/Ld 5.20225 × 10−6 2.60112 × 10−6 1.30056 × 10−6 5.20225 × 10−7

nc 250 250 250 250
v1(R)/Ld 2.60112 × 10−7 1.30056 × 10−7

nc 250 250

d = 5

v1(R)/Ld 1.71000 × 10−5 8.55000 × 10−6 3.42000 × 10−6 1.71000 × 10−6

nc 250 250 250 250
v1(R)/Ld 8.55000 × 10−7 3.42000 × 10−7

nc 250 250

d = 6

v1(R)/Ld 2.22500 × 10−5 1.11250 × 10−5 5.56250 × 10−6 2.78125 × 10−6

nc 50 50 50 50
v1(R)/Ld 1.39062 × 10−6

nc 50

d = 7

v1(R)/Ld 2.72744 × 10−5 1.36372 × 10−5 6.81859 × 10−6 4.54573 × 10−6

nc 70 30 20 20
v1(R)/Ld 3.40930 × 10−6 1.94817 × 10−6 1.36372 × 10−6

nc 20 20 15

d = 8
v1(R)/Ld 4.16930 × 10−5 2.08465 × 10−5 1.38977 × 10−5

nc 11 7 5
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FIG. 2. (Color online) RSA saturation packing density, φs (filled circles), of different system sizes as measured by a quantity proportional
to N−1/2, namely [v1(R)/Ld ]1/2, in different dimensions d . Included are the associated linear fits. Error bars associated with filled circles are
the standard error of the mean as obtained from averaging multiple configurations.

B. Pair correlation function and structure factor

We have used the methods described in Ref. [29] to
calculate the pair correlation function g2(r) and structure factor

S(k) of the saturated RSA configurations for 2 � d � 7. [For
d = 8, we can only generate relatively small configurations,
which are not suitable to calculate g2(r) and S(k) accurately.]

TABLE II. RSA saturation densities and covering densities in different dimensions, extrapolated to the infinite system size limit. Here φs

is saturation packing density and θ is the corresponding covering density.

Dimension φs (present work) φs (Ref. [29]) θ (present work)

2 0.5470735 ± 0.0000028 0.54700 ± 0.000063 2.188294 ± 0.000011
3 0.3841307 ± 0.0000021 0.38278 ± 0.000046 3.073046 ± 0.000017
4 0.2600781 ± 0.0000037 0.25454 ± 0.000091 4.161250 ± 0.000060
5 0.1707761 ± 0.0000046 0.16102 ± 0.000036 5.46483 ± 0.00015
6 0.109302 ± 0.000019 0.09394 ± 0.000048 6.9953 ± 0.00012
7 0.068404 ± 0.000016 8.75572 ± 0.0020
8 0.04230 ± 0.00021 10.829 ± 0.053
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FIG. 3. (Color online) Pair correlation function and structure factor of saturated RSA configurations in two through seven dimensions. It is
clearly seen that these pair statistics indicate that the packings become more decorrelated as the dimension increases.

The structure factor is calculated using the collective density
variables approach, i.e.,

S(k) = 〈|ρ̃(k)2|〉
N

, (12)

where N is the number of spheres in the periodic hypercubic
box of side length L,

ρ̃(k) =
N∑

j=1

exp(ik · rj ) (13)

is the complex collective density variable, and

k =
(

2πn1

L
,
2πn2

L
, . . . ,

2πnd

L

)
, (14)

where k is a wave vector and where ni (i = 1,2, . . . ,d) are
the integers. In presenting the structure factor, we will omit
the forward scattering contribution (k = 0); see Ref. [29] for
additional details.

These pair statistics are shown in Fig. 3 for dimensions two
through seven. The decorrelation exhibited with increasing
dimension was also observed in Ref. [29]. These trends are
clearly consistent with a recently proposed “decorrelation”
principle, which states that unconstrained spatial correlations
diminish as the dimension increases and vanish in the d → ∞
limit [19,21]. It is noteworthy that decorrelation is already
exhibited in these low dimensions, which has been observed
for other types of hard-sphere packings [21,24].

The pair correlation function g2(r) of saturated RSA
configurations has a logarithmic singularity when r approaches
the sphere diameter, D [30,31],

g2(r) ∼ − ln(r/D − 1), r → D+. (15)

Based on this analytical form, we have fit our pair correlation
functions at D < r < 1.018D to the following formula:

g2(r) = a0 ln(r/D − 1) + a1. (16)

Our results are shown in Table III. The absolute value of a0 in
each dimension are significantly higher than previous results
[29], which means that our g2(r)’s are much sharper near r =
D. This is due to the fact that our algorithm is capable of finding
even the smallest fragments of the available space. Finding
those pieces enables us to insert spheres that are very close to
other spheres, substantially increasing g2(r) near r = D.

It is of interest to see to what extent RSA packings
are hyperuniform, which is an exotic large-scale property
for a disordered system to possess. A packing (or general
point pattern) is hyperuniform if the structure factor in the
zero-wave-number limit, S0 ≡ limk→0 S(k), is zero, implying
that infinite-wavelength density fluctuations vanish (when
appropriately scaled) [61,62]. Thus, the magnitude of S0

quantifies the “distance” from hyperuniformity. It was reported

TABLE III. Results from fitting data to g2(r) = a0 ln(r/D − 1) +
a1 in the near-contact range D < r < 1.018D.

Dimension a0 a1

2 − 1.562 ± 0.031 − 2.155 ± 0.155
3 − 1.603 ± 0.026 − 2.709 ± 0.133
4 − 1.488 ± 0.028 − 2.582 ± 0.116
5 − 1.396 ± 0.030 − 2.565 ± 0.155
6 − 1.200 ± 0.039 − 1.984 ± 0.206
7 − 1.169 ± 0.055 − 2.116 ± 0.269
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TABLE IV. Structure factor S(k) at k = 0, obtained by fitting data
to S(k) = S0 + S2k

2 + S4k
4 at 0 < kD < 3, where S0, S2, and S4 are

fitting parameters.

Dimension S0

2 0.05869 ± 0.00004
3 0.05581 ± 0.00005
4 0.05082 ± 0.00007
5 0.04544 ± 0.00029
6 0.03834 ± 0.00072
7 0.03140 ± 0.00173

in Ref. [29] that S0 of saturated RSA packings decreases
with dimension but because these simulations were not as
precise in higher dimensions, the high-d asymptotic behavior
of S0 was difficult to ascertain. We fit the structure factors
that we have determined in the present paper to a function
of the form S(k) = S0 + S2k

2 + S4k
4 in each dimension near

k = 0 in order to estimate S0. This form is the exact behavior
of the structure factor as k goes to zero, as shown in Ref.
[29]. The results for S0 are summarized in Table IV. It is
seen that as d increases, S0 decreases, i.e., the “degree of
hyperuniformity” (the ability to suppress infinite-wavelength
density fluctuations) increases. The data indicate that S0 tends
to the perfect hyperuniformity limit of zero as d → ∞. As we
will show in Sec. III C, in the d → ∞ limit, the void exclusion
probability of RSA packings tends to a step function [14].
This indicates that the vacancies in infinite-dimensional RSA
packings are spherically shaped with similar sizes. Thus, S0

tends to zero in the d → ∞ limit. This also explains why RSA
packings become more stealthy [S(k) is nearly zero for larger
range of k near k = 0] [63] as d increases.

C. Void exclusion probability and quantizer error

We have calculated the void exclusion probability EV (r)
(discussed in the Introduction) of saturated RSA configura-
tions for 2 � d � 8 and findings are summarized in Fig. 4.
The void exclusion probability in all dimensions vanishes at
r → D−, confirming that the exclusion spheres with radius
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FIG. 4. (Color online) Void exclusion probability of saturated
RSA configurations, in two through eight dimensions.

TABLE V. Scaled dimensionless quantizer error G.

Dimension G (present work) G (Ref. [14])

2 0.08848 ± 0.00018 0.09900
3 0.08441 ± 0.00013 0.09232
4 0.08154 ± 0.00011 0.08410
5 0.07936 ± 0.00009 0.07960
6 0.07765 ± 0.00007 0.07799
7 0.07623 ± 0.00007
8 0.07508 ± 0.00009

Rc = D cover the space and that our RSA configurations
are saturated. Our results are similar to previously reported
results [14] and strongly supports the theory that the void
exclusion probability of RSA packings tend to a step function
in the infinite-dimensional limit [14], i.e.,

EV (r) → 
(r − D) (d → ∞), (17)

where


(x) =
{

0, x < 0
1, x � 0

, (18)

is the Heaviside step function. This indicates that the “holes”
in RSA packings become spherically shaped with similar
sizes as d tends to infinity. It is interesting to note that the
void exclusion probability of fermionic systems have similar
behavior in the high-dimensional limit [64].

We have calculated the quantizer error G for saturated RSA
configurations for 2 � d � 8. These results are summarized
in Table V. Compared with results in Ref. [14] for 2 � d � 6,
our corresponding results for G are somewhat lower.

IV. CONCLUSIONS AND DISCUSSION

We have devised an efficient algorithm to generate exactly
saturated, infinite-time limit RSA configurations in finite
computational time across Euclidean space dimensions. With
the algorithm, we have improved previous results of the
saturation density and extended them to a wider range of
dimensions, i.e., up through dimension eight. The associated
covering density, pair correlation function, structure factor,
void exclusion probability, and quantizer error have also been
improved. In particular, we found appreciable improvement
for g2(r) near contact and S(k) in the k → 0 limit, which
are especially sensitive to whether very small fragments of
the available space are truly eliminated as the saturation state
is approached. We observed that as d increases, the degree
of “hyperuniformity” (the magnitude of the suppression of
infinite-wavelength density fluctuations) increases and appears
to be consistent with limd→∞ S(0) = 0. Our results also
support the “decorrelation principle,” which in turns lends
further credence to a conjectural lower bound on the maximal
sphere packing density that provides the putative exponential
improvement on Minkowski’s lower bound [19].

It is noteworthy that the RSA packing inRd has relevance in
the study of high-dimensional scaling of packing densities. For
example, Ref. [29] suggested that since RSA packing densities
appear to have a similar scaling in high dimensions as the
best lower bound on Bravais lattice packings densities, the

053312-7



G. ZHANG AND S. TORQUATO PHYSICAL REVIEW E 88, 053312 (2013)

density of disordered packings might eventually surpass that
of the densest lattice packing beyond some large but finite
dimension. Our improvements to the saturation densities, as
well as a previous investigation [19], support this conjecture.
Converting a packing into a covering by replacing each sphere
with its exclusion sphere is rigorous only if the packing
is exactly saturated. By guaranteeing that the packings that
we generated are saturated, we rigorously met this condition
(in a large finite simulation box). Although the best-known
lattice covering and lattice quantizer perform better than
their RSA counterparts in low dimensions, RSA packings
may outperform lattices in sufficiently high dimensions, as
suggested in Ref. [14].

It is useful here to comment on the ability to ascertain
the high-dimensional scaling of RSA packing densities from
low-dimensional data [14,29]. We have fitted our data of the
saturation densities as a function of d for 2 � d � 8 using
a variety of different functions. The best fit we find is the
following form:

φs = a1 + a2d + a3d
2

2d
, (19)

where a1 = 1.0801, a2 = 0.32565, and a3 = 0.11056 are
parameters. However, it is not clear how accurate this form
is for d � 9. In fact, this form is likely not correct in high
dimensions, where it has been suggested from theoretical
considerations [14] that high-dimensional scaling may be
given by the asymptotic form

φs = b1 + b2d + b3d ln(d)

2d
, (20)

where b1, b2, and b3 are constants. It is noteworthy that (20)
provides a fit that is very nearly as good as that of (19).
Nonetheless, for d = 15, the estimates of the saturation
densities obtained from (19) and (20) differ by about 20%,
which is a substantial discrepancy and indicates the uncer-
tainties involved in applying such dimensional scalings for
even moderately sized dimensions. When d is very large,
extrapolations based on fits of low-dimensional data is even
more problematic. In this limit, Eq. (19) is dominated by
the a3d

2/2d term, which can be significantly larger than the
a3d ln(d)/2d dominating term in Eq. (20), although it is safe
to say that the saturation density grows at least as fast as d2−d .
Therefore, caution should be exercised in attempting to ascer-
tain the precise high-d asymptotic behavior of RSA saturation
densities from our data in relatively low dimensions. The same

level of caution should be employed in attempting to determine
high-d scaling behavior by extrapolating low-dimensional
packing densities for other types of sphere packings. For
example, a rigorous understanding of the high-dimensional
density scaling of the maximally random jammed (MRJ) state
[8] is an outstanding problem [65]. In summary, it is nontrivial
to ascertain high-d scalings of packing densities from low-
dimensional information. In contrast, in the study of the
dimensional dependence of continuum percolation thresholds,
it is possible to obtain exact high-d asymptotics and tight upper
and lower bounds that apply across all dimensions [66,67].

RSA packings of spheres with a polydispersity in size have
also been investigated previously [36,37]. Our algorithm can
easily be extended to generate saturated RSA packings of poly-
disperse spheres in Rd by constructing a (d + 1)-dimensional
auxiliary space for the associated radius-dependent available
space and voxels, where the additional dimension is used to
represent the radius of a sphere that could be added in the
RSA process. RSA packings of nonspherical particles have
also been studied, including squares [38], rectangles [39,40],
ellipses [41,42], spheroids [43], and superdisks [44]. While
packings of polyhedra have received recent attention [10,68],
RSA packings of such shapes have not been considered,
to our knowledge. Our algorithm can also be extended to
treat these situations by constructing auxiliary spaces for the
associated orientation-dependent available space and voxels.
The dimension of such an auxiliary space is determined by the
total number of degrees of freedom associated with a particle,
i.e., translational and rotational degrees of freedom. The
extensions of the methods devised here to generate saturated
packings of polydisperse spheres and nonspherical particles is
an interesting direction for future research.
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[45] M. Cieśla and J. Barbasz, Surf. Sci. 612, 24 (2013).
[46] M. Ciesla, Phys. Rev. E 87, 052401 (2013).
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