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The lattice Boltzmann method has been shown to be successful for microscale gas flows, and it has attracted
significant research interest. In this paper, the recently proposed filter-matrix lattice Boltzmann (FMLB) model
is first applied to study the microchannel gas flows, in which a Bosanquet-type effective viscosity is used to
capture the flow behaviors in the transition regime. A kinetic boundary condition, the combined bounce-back
and specular-reflection scheme with the second-order slip scheme, is also designed for the FMLB model. By
analyzing a unidirectional flow, the slip velocity and the discrete effects related to the boundary condition are
derived within the FMLB model, and a revised scheme is presented to overcome such effects, which have
also been validated through numerical simulations. To gain an accurate simulation in a wide range of Knudsen
numbers, covering the slip and the entire transition flow regimes, a set of slip coefficients with an introduced
fitting function is adopted in the revised second-order slip boundary condition. The periodic and pressure-driven
microchannel flows have been investigated by the present model in this study. The numerical results, including
the velocity profile and the mass flow rate, as well as the nonlinear pressure distribution along the channel, agree
fairly well with the solutions of the linearized Boltzmann equation, the direct simulation Monte Carlo results, the
experimental data, and the previous results of the multiple effective relaxation lattice Boltzmann model. Also, the
present results of the velocity profile and the mass flow rate show that the present model with the fitting function
can yield improved predictions for the microchannel gas flow with higher Knudsen numbers in the transition
flow regime.
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I. INTRODUCTION

Due to technological advances in microelectromechani-
cal systems (MEMSs) and their growing application areas,
microscale gas flows (microfluidics) have attracted an in-
creasing amount of attention in the past few decades [1–3].
Microscale gas flows behave differently from that predicted
by macroscopic theory, and they are usually characterized
by a dimensionless parameter, namely the Knudsen number
Kn = λ/H , where λ is the mean free path of gas molecules
and H is a characteristic length of the flow system. MEMS
devices involving gas flows typically operate in the slip flow
regime (0.001 < Kn � 0.1) and the transition flow regime
(0.1 < Kn � 10) [4] due to their small length scales, which
become comparable with the molecular mean free path. It
is well accepted that the conventional Navier-Stokes (NS)
equations based on the continuum assumption are normally
valid in the continuum flow regime (Kn � 0.001), and they can
also be extended as far as Kn � 0.1 with the introduction of
slip boundary conditions. Once Kn > 0.1, the continuum and
thermodynamic equilibrium assumptions begin to break down
and the rarefaction effects dominate the flow characteristics
[5]. To model gas flows ranging from the continuum regime
to the free molecular regime (Kn > 10) and to capture the
rarefaction effects exactly, it is necessary to solve the Boltz-
mann equation. However, this proves to be difficult and even
impractical except in a few cases, because the intermolecular
collisions are quite important when Kn < 10 and the collision
integral term in the Boltzmann equation is very expensive to
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solve. In the past two decades, the direct simulation Monte
Carlo (DSMC) method [6], based on the gas kinetic theory,
has emerged as the dominant numerical technique and has
become the most widely used approach for solving gas flows
in the transition regime, but it is computationally demanding
in practical engineering applications.

On the other hand, some other mesoscopic methods based
on the gas kinetic theory have also been proposed and applied
to study microscale gas flows, such as the discrete-velocity
method (DVM) [7], the gas-kinetic scheme (GKS) [8,9] and the
lattice Boltzmann method (LBM) [10,11]. Compared to these
numerical methods, the LBM has distinctive computational
features, such as easy implementation due to its simple
structure, parallelization in nature due to the locality of particle
interaction and the transport of particle information, and
reliable numerical robustness [12–14]. Actually, the LBM has
attracted an increasing amount of attention in recent years,
and it is considered to be a promising approach for low-speed
microscale gas flows.

Although the LBM has been shown to be successful for
microscale gas flows in the past decade [14,15], most of
the previous studies of the LBM were focused on devising
mesoscopic boundary conditions to precisely predict the
slip phenomenon of rarefied gas flow in the slip regime
[10,11,16–25]. For microscale gas flows with moderate and
high Knudsen numbers, the standard lattice Boltzmann (LB)
models with a slip boundary condition are insufficient to
capture the kinetic boundary layers, or the Knudsen layers,
that appear in the solutions of the Boltzmann equation near
solid boundaries [26,27]. The standard LBM captures just a
few low-order moments of the solutions of the true Boltzmann
equation, that is to say, it is only accurate at the NS level as
an approximation to the Boltzmann equation [27,28]. Thus,
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just like the NS equations, the standard LBM is incapable
of describing the gas motion within the Knudsen layer, and
will fail to work for high-Kn flows where the Knudsen layer
take a large portion of flow domain [26]. Recently, Zhang [15]
reviewed and discussed the LBM models and their applications
for microfluidics.

To improve the capability of the LBM for high-Kn flows in
the transition regime, two approaches have been proposed: one
is to design a higher-order LBM via increasing the number of
discrete velocities, and another is to introduce the effective
viscosity method into the LB models. Some higher-order
or multispeed LB models have been developed to increase
the approximation accuracy to the continuous Boltzmann
equation [28–32]. However, Kim et al. [33] recently showed
that the accuracy of the higher-order LBM did not increase
monotonically with the increases of the order of Gauss-
Hermite quadrature, and this method could not guarantee an
improved accuracy for microscale gas flow with the Knudsen
number up to Kn = O(1).

On the other hand, as reported in Ref. [26], taking the
gas-wall collision effects into account for a confined gas,
the local mean free path is affected significantly by the
wall boundaries, which are much smaller than that defined
in unbounded systems; especially for high-Kn flows, the
mean free path becomes comparable with the characteristic
length, and the Knudsen layer will take a large portion of
flow domain. Therefore, by introducing an effective relaxation
time that corresponds to the effective mean free path, the
Navier-Stokes-aimed LB models are also capable of capturing
the effects of the Knudsen layer for microscale gas flow in
the transition regime, as shown in recent studies [26,34–40].
In the literature, two kinds of strategies have been applied
for the LB investigations of microscale gas flow. One is
using a geometry-dependent expression of local effective
viscosity, such as the correction μe = μ/(1 + 0.7e−Cy/λ) with
an empirical parameter C proposed by Zhang et al. [34], and
the other is that based on the Stops expression μe = �(y,Kn)μ
used by Guo et al. [26], Tang et al. [36], and Liu and Guo [40].
Note that, as reported by Li et al. [37], the Stops-based function
�(y,Kn) is complicated, and it contains an exponential integral
function Ei(γ ) = ∫ ∞

1 t−1e−γ tdt (γ ∼ y/λ), which requires a
numerical integration and thus will reduce the computational
efficiency significantly. Although corrections can improve
the numerical accuracy to some extent, it still cannot give
satisfactory results for microscale gas flows with higher
Knudsen numbers.

Another type of effective viscosity is to design a non-
geometry-dependent expression which only takes the average
effect into consideration, e.g., the Bosanquet-type expression
μe = μ/(1 + a Kn) presented in the previous studies on the
microchannel gas flows using the traditional numerical meth-
ods [41,42] where the viscosity has been averaged over the
channel cross section. In other words, the real local viscosity
is not considered in the simulations, and the effective viscosity
only takes the overall rarefaction effect on gas viscosity into
consideration. Recently, Michalis et al. [43] investigated the
effects of rarefaction on gas viscosity through the DSMC
simulations of microchannel gas flow, demonstrating that the
Bosanquet-type of approximation describes very satisfactorily
the Knudsen number dependence of the viscosity over the

entire transition flow regime. By incorporating the Bosanquet-
type effective viscosity into the LBM frameworks, Li et al. [37]
and Homayoon et al. [38] successfully simulated microchannel
gas flows in the transition regime using the MRT and LBGK
models with different slip boundary conditions, respectively.
Li et al.’s study showed that taking the Bosanquet-type
effective viscosity and employing an appropriate slip boundary
condition can give satisfactory results for microchannel gas
flow at moderate Knudsen numbers (up to Kn ≈ 3), but it
still cannot provide satisfactory results for the mass flow rate
at relatively large Knudsen numbers (4 < Kn � 10) in the
transition regime. The main reason behind the deviation may
be that the constant slip coefficients used in the second-order
slip boundary condition, in which the effects of effective
viscosity are included, are inappropriate for relatively large
Kn flow simulations in the transitional regime.

In this study, we present an extended filter-matrix lattice
Boltzmann (FMLB) model [44] with Bosanquet-type effective
viscosity to study microchannel gas flows in the slip and
entire transition regime. Following the literature [22,26], we
first analyze a kinetic boundary condition for the FMLB
model in detail, and then we present an appropriate slip
boundary condition taking into account the discrete effects
for the simulations of microchannel gas flow. Finally, inspired
by Guo et al.’s study [26], we proposed a corrected slip
boundary condition, which contains an adjustable coefficient
as a function of the local Knudsen number, to improve the
capability of the present model in predicting a reasonable mass
flow rate for relatively large Knudsen numbers in the transition
regime.

The rest of the paper is organized as follows. The extended
FMLB model is described in Sec. II. The kinetic boundary
condition for the FMLB model is constructed and analyzed in
Sec. III. Section IV is used to present and discuss in detail the
simulation results of microchannel gas flows in the slip and
entire transition regimes. Finally, some concluding remarks
drawn from this study are made in Sec. V.

II. THE FMLB MODEL FOR MICROSCALE GAS FLOW

A. The FMLB model

Considering the staggered formulation of the discrete
velocity Boltzmann equation (DVBE) for the time-space
discretization, the evolution equation of the discrete density
distribution function Ni for the gas molecules reads [44–46]

Ni

(
�x + �ciδt

2
,t + δt

2

)
− Ni

(
�x − �ciδt

2
,t − δt

2

)
= δt�i(N ),

(1)

where �ci is the discrete particle velocity in the ith direction,
δt is the time step, and �i (N ) represents the discrete collision
operator, which includes the external force term and obeys the
basic conservation laws of mass and momentum:∑

i

�i (N ) = 0,
∑

i

�ci�i (N ) = �f , (2)

where �f is the body force experienced by the molecules.
For the two-dimensional (2D) applications and without loss

of generality, we consider the D2Q9 model in this work, and
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the discrete velocity �ci is defined as

�ci =

⎧⎪⎨
⎪⎩

(0,0)t , i = 0,

c(±1,0)t ,c(0, ± 1)t , i = 1 − 4,

c(±1, ± 1)t , i = 5 − 8,

(3)

where c = δx/δt is the lattice speed, with δx being the lattice
size.

To guarantee the recovery from Eq. (1) to the continuity and
momentum equations in the Navier-Stokes level, by assuming
constant kinematic viscosity (B = νB/ν = 1, with B denoting
the ratio of the bulk kinematic viscosity to the local kinematic
viscosity), the solution for the density distribution function Ni

can be expressed as (see [44] for details)

Ni = ρωi

[
1 + �ci · �u

c2
s

+ 1

2

(
(�ci · �u)2

c4
s

− �u · �u
c2
s

)

− ν

(
(�ci · �∇) (�ci · �u)

c4
s

−
�∇ · �u
c2
s

)]
, (4)

i = 0,1, . . . ,8,

where for the D2Q9 model, the weight factor, ωi , takes
the values ω0 = 4/9, ω1−4 = 1/9, and ω5−8 = 1/36, and
cs = √

RT = c/
√

3 is the sound speed, with R being the
gas constant and T the system temperature. The macroscopic
density and velocity are defined as

ρ =
∑

i

Ni (�x,t), ρ �u =
∑

i

�ciNi (�x,t). (5)

Substituting Eq. (4) into Eq. (1) with some high-order terms
dropped, the discrete collision operator �i (N ) can be written
as [44]

�i(N ) = ρωi

c2
s

[
(�ci · �∇)(�ci · �u) − c2

s
�∇ · �u] + ωi

c2
s

�ci · �f . (6)

With Eq. (1) taken into consideration, the first-order Taylor
expansions of Ni (�x ± �ciδt/2,t ± δt/2) lead to

Ni

(
�x ± �ciδt

2
,t ± δt

2

)
= Ni (�x,t) ± 1

2
δt�i (N ) . (7)

Based on the discrete velocity vectors given by Eq. (3), we
can define two moment vectors,

α±
k =

∑
i

EkiNi

(
�x ± �ciδt

2
,t ± δt

2

)
, (8)

where the corresponding invertible filter matrix Eki for the
D2Q9 model is given by

Eki = [
1,cix,ciy,3c2

ix − 1,3cixciy,3c2
iy − 1,cix

(
3c2

iy − 1
)
,

ciy

(
3c2

ix − 1
)
,
(
3c2

ix − 1
) (

3c2
iy − 1

)/
2
]T

. (9)

Also, the density distribution function Ni(�x ± �ciδt/

2,t ± δt/2) can be rewritten as a product of the inverse matrix
E−1

ki and the moment vector α±
k .

Substituting Eqs. (4), (6), (7), and (9) into Eq. (8), the
moment vectors α±

k can be written as

α±
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρux ± δt

2 fx

ρuy ± δt

2 fy

3ρuxux + ρ(−6ν ± δt )
∂ux

∂x

3ρuxuy + ρ(−6ν±δt )
2

(
∂ux

∂y
+ ∂uy

∂x

)
3ρuyuy + ρ(−6ν ± δt )

∂uy

∂y

T ±
1

T ±
2

F±

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where T ±
1,2, F± are two third-order terms and a fourth-order

term, respectively. As indicated in Eq. (10), the postcollision
moment vector α+

k can be computed from the precollision
moment vector α−

k (see [44] for details). For the high-order
terms T ±

1,2 and F±, apply T +
1,2 = −γ1T

−
1,2 with a free parameter

γ1 to deal with the third-order terms, and simply set F+ = 0
for the fourth-order term.

As shown above, the collision process of the FMLB model
is implemented in the moment space, which has been proven
to be similar to that of the standard MRT model in our
previous work [47]. Indeed, with the assumption of B = 1,
the present FMLB model can be viewed as a special case
(two-relaxation-time) of the MRT model with the trapezoidal
rule (see Appendix A for details).

B. Effective viscosity

Viscosity in gases is an inherent physical property and
arises principally from the molecular diffusion that transports
momentum between gas molecules, which is a very critical
parameter in the numerical simulations of real gas flows. In the
simulation of continuum flows, the viscosity can be determined
by the most important characteristic parameter, namely the
Reynolds number (Re). For the noncontinuum flows, e.g., mi-
croscale gas flows, the most important characteristic parameter
of the flow is the Knudsen number (Kn). Thus, as pointed
out in Refs. [22,26,35], the relation between the viscosity or
relaxation parameter(s) in the LB models and the Knudsen
number should be given appropriately for the simulations of
microscale gas flows.

From gas kinetic theory [48], the mean free path λ is related
to the dynamic viscosity μ = ρν, the macroscopic pressure p,
and temperature T , and can be expressed as

λ = μ

p

√
πRT

2
. (11)

For the isothermal D2Q9 LB models, according to Eq. (11)
and the equation of state p = ρc2

s , the kinematic viscosity can
be determined from the Knudsen number as

ν = 1

3

√
6

π
KnNδx, (12)
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where N = H/δx is the lattice number in the characteristic
length. Note that the fact that c = √

3cs = √
3RT = δx/δt =

1 for the D2Q9 model has been used in the deduction. Because
the dynamic viscosity of a real monatomic gas is independent
of density, for a specific gas and fixed characteristic length,
Eq. (12) indicates that the local kinematic viscosity is propor-
tional to the local Knudsen number, and it also implies that the
local Knudsen number is inversely proportional to the local
density for a constant μ.

For microscale gas flows over a solid wall, the collisions
between gas molecules are not sufficient due to the wall
confinement effects [26], especially in the near-wall region.
Thus, there exists a so-called Knudsen layer near the wall
and its thickness is in order of the mean free path. Within
the Knudsen layer, it can be expected that the local mean
free path is much smaller than that in a system without a
wall. For microflows with a large Kn, e.g., in the transition
flow regime, the effects of the Knudsen layer become very
important. Therefore, incorporating the wall effects on the
microflow into the LBM framework is necessary and helpful to
improve its capability for simulating microchannel gas flows.
Following the literature, the effects of the Knudsen layer can
be introduced into the present LBM framework via using the
effective mean free path, which is equivalent to making use of
the effective Knudsen number or effective viscosity.

In this study, we adopt the Bosanquet-type effective
viscosity in the form [41]

μe = μ

1 + aKn
, (13)

where a is the rarefaction parameter. Beskok and Karniadakis
[41] first applied this expression and used a = 2.2 in the
simulations of microchannel flows in the transition regime.
In later years, another choice, a = 2, was suggested by some
other researchers [37,43,49]. Noted that the Bosanquet-type
effective viscosity is independent of the distance from the
wall and only related to the local Knudsen number, which
implies it is not the real local effective viscosity, and just the
overall confinement effects are considered in the numerical
simulations. In the work of Michalis et al. [43], this overall
rarefaction effect on gas viscosity was investigated in detail
through the DSMC simulations of isothermal, low-speed flows
in a long microchannel, in which the average values of the
viscosity over a cross section were considered, and then the
relationship between the cross-sectional average viscosity and
the Knudsen number within the same channel was investigated.
It was noteworthy that Michalis et al.’s study showed that the
rarefaction parameter a is not constant and also depends on
the Kn value, but this dependence was rather weak over the
majority of the transition regime, suggesting an “effective”
value close to 2. Recently, this Bosanquet-type effective
viscosity with a = 2 has been successfully applied to the
LBGK and MRT models for microchannel gas flows in the
transition regime [37,39].

In the present FMLB simulations, we define an effective
kinematic viscosity with a = 2 based on Eqs. (12) and (13) as

νe = 1

3

√
6

π

KnNδx

1 + aKn
. (14)

III. KINETIC BOUNDARY CONDITION FOR
THE FMLB MODEL

As is well known, an appropriate boundary condition is
always one of the critical points in the numerical simulations
using the LB models, especially for the applications in
microscale gas flows. To our knowledge, two widely used
kinetic boundary conditions have been proposed for the
BGK- and MRT-LB models in the literature, namely the dis-
crete Maxwellian boundary conditions (DMBC) [16,18] and
the combined bounce-back and specular-reflection (CBBSR)
boundary condition [50]. Through detailed analysis on the
two boundary conditions for the BGK- and MRT-LB models,
respectively, given by Guo et al. [22] and Guo and Zheng [51],
the discrete effects were reported to be existing in the two
kinds of LB models, and the CBBSR schemes within both LB
models were found to be identical in a parametric range; also,
their analysis indicated that the CBBSR scheme has a wider
parameter range than that of the DMBC scheme, which means
the CBBSR scheme can be applied for a wider slip velocity
range than the DMBC ones. As reported in the literature, the
key to simulating microscale gas flows using the LB models
is how to correct the intrinsic unphysical discrete effects to
implement an exact slip boundary condition.

In this study, the CBBSR scheme is applied for the present
FMLB simulations, as illustrated in Fig. 1. If boundary
conditions are imposed at position �x + �ciδt/2, then �cī =
−�ci and �ci ′ = �ci − 2 (�ci · �n) �n (�n is the unit normal vector),
respectively, are the opposite and specular velocity of �ci ;
the unknown distribution Ni (�x + �ciδt/2,t + δt/2) entering the
fluid domain at that point can be computed as follows:

Ni

(
�x + �ciδt

2
,t + δt

2

)

= rN
ī

(
(�x + �ciδt ) + �cīδt

2
,t + δt

2

)

+ (1 − r) Ni ′

(
[�x + (�ci · �n) �nδt ] + �ci ′δt

2
,t + δt

2

)
, (15)

where r ∈ [0,1] is the portion of the bounce-back part in the
combination. According to Eq. (15), the CBBSR scheme on
the bottom wall for the D2Q9 model (see Fig. 1) can be

FIG. 1. Schematic diagram of the CBBSR scheme in the D2Q9
model.
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expressed as

N0+
2,I = N1+

4,I ,

N0+
5,I = rN1+

7,I+1 + (1 − r) N1+
8,I , (16)

N0+
6,I = rN1+

8,I−1 + (1 − r) N1+
7,I ,

where the dependence on (�x ± �ciδt/2,t ± δt/2) is dropped
for notation simplicity, e.g., the distribution functions
Ni (�x ± �ciδt/2,t ± δt/2) for the node at index of (I,J = 0)
have been simplified as N0±

i,I .
As reported in the literature [22,26,51], when the CBBSR

scheme is used to represent the slip boundary conditions within
the LBM framework, the parameter r plays an important role
in the simulations of microflows, which must be corrected
accurately to realize the exact slip boundary conditions, and
the corrected formulations are different for the different LB
models due to its different discrete effects. In the following
subsection, we first analyze the discrete effects of the CBBSR
scheme within the FMLB model and then present the corrected
bounce-back portion r to realize an exact prescribed slip
boundary condition.

A. Analysis of the CBBSR scheme within the FMLB model

Inspired by the analysis of the CBBSR scheme in the
MRT model [26,51], we consider a steady unidirectional
incompressible Poiseuille flow driven by a constant force
�f = (ρa,0)T, and we assume

ρ = const, uy = 0,
∂φ

∂t
= ∂φ

∂x
= 0 (17)

for any flow variable φ. Under such conditions and with
the collision equation in moment spaces Eq. (A1) taken into
account, substituting the second-order Taylor expansions of
Ni (�x ± �ciδt/2,t ± δt/2) into the left-hand side of evolution
equation (1) leads to

∂y(ciyNi) = �i(N ) = −[E−1�(α− − αeq)]i . (18)

Then, multiplying Eq. (18) by cix and subsequently sum-
ming over all i while utilizing the related expressions and
symmetry properties, we can obtain the following equation:

− ∂

∂y

(
ν
∂ux

∂y

)
= a. (19)

This indicates that, under this condition, the evolution equation
in the FMLB model, Eq. (1), is actually a second-order
numerical scheme of the exact Navier-Stokes equation for this
Poiseuille flow.

To investigate the discrete error introduced by the CBBSR
scheme, according to the procedures proposed in Ref. [26],
we can obtain the following relation between the horizontal
velocities at node indexes of J = 1 and 2 (cf. Fig. 1):

u2 =
(

1 + 2r (1 − G)

1 + G − 2rG

)
u1 − 1 − G

1 + G − 2rG

×
[

6 − r

(
6G

1 + G
+ 1 + 5γ1

1 + γ1

)]
δta, (20)

where u1,2 = ux |J=1,2 and G = (6ν − δt )/(6ν + δt ). More
details of this deduction are provided in Appendix B.

For the Poiseuille flow considered in the present study, with
an additional constraint ∂ux/∂y|y=H/2 = 0, we can obtain the
analytical solution of the macroscopic control equation (1) in
the form

uj = 4ucy
′
j (1 − y ′

j ) + us, (21)

where y ′
j = (j − 0.5) δy/H , uc = 8aH 2/ν, and us is the slip

velocity at the wall. Substituting the analytical solution of u1,2

and the expression of parameter G into Eq. (20) while utilizing
Eq. (12), the slip velocity at the wall produced by the CBBSR
scheme can be expressed in terms of Kn as

Us = us

uc

= 4
1 − r

r

√
6

π
Kn + 1 − γ1

1 + γ1

8

3

√
6

π
Kn� − �2,

(22)

where � = 1/N = δx/H , and note that δx = δt has been used
in this deduction. This equation shows that the nondimensional
slip velocity is not only influenced by the parameter r and the
Knudsen number, but is also related to the numerical part
depending on the grid resolution. To our knowledge, when
r = 1 the CBBSR scheme is reduced to the no-slip bounce-
back scheme, but Eq. (22) shows that the slip velocity still

exists, Us = 1−γ1

1+γ1

8
3

√
6
π

Kn� − �2; fortunately, similar to the
treatment in the MRT model [26], for the purely bounce-back
rule, the numerical slip velocity can be eliminated by setting
the free parameter γ1 = (8ν − δx)/(8ν + δx). In addition, the
most important point is that, similar to the results reported
by Guo et al. [22,26,51] for the cases of the LBGK and MRT
models, there exist some inherent discrete effects in this kinetic
boundary condition, which must be corrected to realize an
exact prescribed slip boundary condition. In the following,
we focus on how to correct this issue for the present FMLB
model.

B. Second-order slip boundary condition

For microscale gas flows, the widely used and so-called
second-order slip boundary condition can be written in the
form

us = A1λ
∂u

∂y

∣∣∣∣
wall

− A2λ
2 ∂2u

∂y2

∣∣∣∣
wall

, (23)

where A1 and A2 are the two slip parameters and are usually
determined from theory, experiments, or experiences. For
the Poiseuille flow mentioned above, substituting the Navier-
Stokes solution Eq. (21) into this boundary condition Eq. (23)
yields a slip velocity at the wall as

Us = 4A1Kn + 8A2Kn2. (24)

Therefore, combining Eqs. (22) and (24), we can conclude that,
in order to match the expected second-order slip boundary
condition, the parameter r in the CBBSR scheme must be
chosen as

r =
[
1 +

√
π

6

(
A1 + 2A2Kn − 1 − γ1

1 + γ1

2

3

√
6

π
� + �2

4Kn

)]−1

.

(25)

It can be found from this expression that the control parameters
r not only depend on the predetermined parameters A1 and A2,
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but they also relate to the Knudsen number Kn and the grid
resolution (recall that � = δx/H = 1/N ), which is different
from the MRT results reported in the literature [26,51].
Furthermore, the influence of grid resolution can be removed
by setting the free parameter γ1 = (8ν − δx)/(8ν + δx) in the
present FMLB model.

In this study, in order to obtain the exact second-order slip
boundary condition, the effects of the effective viscosity on
the CBBSR scheme must also be taken into consideration.
According to Eqs. (12)–(14), we can define a Bosanquet-type
effective Knudsen number Kne as follows:

Kne = Kn

1 + aKn
, (26)

where it is clear that Kne and νe still satisfy the original
relationship Eq. (12). Combining Eqs. (25) and (26), the
control parameter r with the corrections from the effects of
the “effective viscosity” method can be given as

r =
[
1 +

√
π

6

(
A1 + 2A2Kne − 1 − γ1

1 + γ1

2

3

√
6

π
�+ �2

4Kne

)]−1

,

(27)

in which the terms related to � can also be removed by setting
γ1 = (8νe − 1)/(8νe + 1) and then Eq. (27) can be simplified
as

r =
[

1 +
√

π

6
(A1 + 2A2Kne)

]−1

. (28)

As pointed out by Li et al. [37], due to the introduction
of the effective mean free path, the slip coefficients A1 and
A2 are different from that used in the original second-order
slip boundary condition (e.g., A1 = 1.11 and A2 = 0.61 [52],
A1 = 1.0 and A2 = 0.5 [53]) and both coefficients should be
modified properly. In the MRT simulations for microchannel
flows in the transition regime, Li et al. [37] suggested that the
two slip coefficients can be chosen as

A1 = 2 − σ

σ
(1 − 0.1817σ ) , A2 = 0.8, (29)

where σ is the tangential momentum accommodation coef-
ficient (TMAC). In the literature, the a posteriori method
was usually used to determine the slip coefficients via demon-
strating the capability of predicting an accurate mass flow rate
[37,52,54]. It should be noted that the results of the mass flow
rate for the periodic microchannel flow obtained by Li et al.
using the two constant slip coefficients obviously deviate from
the benchmark solutions of Cercignani et al. at relatively large
Knudsen numbers (4 < Kn � 10). Through investigations
with an adjustable second slip coefficient for the periodic
microchannel flow at 4 < Kn � 10, we find that the mass flow
rate obtained with a larger value of the second slip coefficient
better fits the benchmark solution. Hence, in the present
study, based on Li et al.’s suggestion, we choose the same
first slip coefficient A1 = (1 − 0.1817σ )(2 − σ )/σ and give a
nonconstant second slip coefficient B2 [see Eq. (30)], where
the value of B2 is close to A2 = 0.8 at the moderate Knudsen
numbers (0.1 � Kn � 2) and increases gradually with the

FIG. 2. The ratio of the present second slip coefficient to that
suggested by Li et al. as a function of Kn in the transition regime

further increase of Kn. In the present FMLB framework with
the effective viscosity, the corrected bounce-back portion r can
be determined as

r =
[

1 +
√

π

6
(A1 + 2B2Kne)

]−1

, B2 = A2
1 + aKn

� (Kn)
,

(30)

where the value of A2 is still set at 0.8, and � (Kn) is a function
of Kn. It can be found that Eq. (30) can be reduced to Eq. (28)
by setting � (Kn) = 1 + āKn with ā = a. In the present study,
through choosing different values of ā for the different Kn, we
can give a better fitting between the mass flow rate predicted by
Eq. (30) and the solution of the linearized Boltzmann equation
for microchannel flows in the upper transition regime. Finally,
according to the discrete data of ā in the tests and choosing
a proper basis function, � (Kn) can be approximated as the
following fitting function:

� (Kn) ≈ 3.57(1 + Kn)0.68 − 2.67. (31)

To give a straightforward view of this fitting function, in Fig. 2
we plot the ratio of the value of B2 to that of A2 suggested by
Li et al. as a function of the Knudsen number Kn in the entire
transition regime, which is obtained by substituting Eq. (31)
into Eq. (30) while setting a = 2.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Microchannel gas flows with periodic or pressure bound-
ary conditions have been studied by many researchers and
employed as the benchmark cases for steady incompressible
microscale gas flow. In this study, both cases are investigated
using the present FMLB model with the effective viscosity
method and the corrected CBBSR boundary condition, where
r is determined from Eq. (28) or Eq. (30). All numerical
tests performed in this study use Cartesian coordinates with
a uniform gird (δx = δy = 1), the corresponding time step
size is δt = 1, and the characteristic length takes the width
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FIG. 3. (Color online) Dimensionless slip velocities as a function of γ1 or r with different resolutions N (Kn = 0.1): (a) γ1 = −0.9,
(b) γ1 = 0, (c) γ1 = 0.9, (d) γ1 = (8ν − δx) / (8ν + δx), and (e) r = 1.

of the channel (H = Nδy = N ). In the present simulations,
the convergence criterion toward the steady state is set as
follows:√∑

i |�u (�xi,tn) − �u (�xi,tn − 1000δt )|2∑
i |�u (�xi,tn)|2 < 10−12. (32)

A. Validation of the CBBSR scheme within the FMLB model

In this subsection, we carry out some numerical tests to
validate our theoretical analysis in Sec. III for the CBBSR
scheme within the FMLB model. It should be pointed out
that, for all test cases in this validation, the effective viscosity
method is not introduced.

We first perform a systematic investigation on the discrete
effects of the CBBSR scheme within the present FMLB
framework, including the numerical tests with the different
bounce-back parameter r and the different values of free
parameter γ1, as well as the different resolutions N varying
from 5 to 51. A series of force-driven Poiseuille flows in a
microchannel at Kn = 0.1 are simulated by the present FMLB
model. In the simulations, the fluid density is ρ = 1 and the
constant acceleration a is set at 10−4. The periodic boundary
conditions are applied to the inlet and outlet of the channel, and
the CBBSR scheme is applied at the two parallel walls. The

present results of these test cases are classified and grouped
into five plots in Fig. 3. Figures 3(a), 3(b), 3(c), and 3(d)
illustrate the present simulated dimensionless slip velocities
as a function of r for γ1 = −0.9, γ1 = 0, γ1 = 0.9, and γ1 =
(8ν − δx)/(8ν + δx), respectively, and Fig. 3(e) shows the
present simulated dimensionless slip velocities as a function of
γ1 in the study of the purely bounce-back scheme (r = 1) for
the no-slip boundary condition. For the purpose of comparison,
those analytical results obtained by Eq. (22) are also included
in those plots in Fig. 3. All present results in Fig. 3 show
an excellent agreement with the analytical solutions given
by Eq. (22), demonstrating the correctness of our theoretical
analysis.

To further investigate the influence of the control parameters
r in the CBBSR scheme on the realization of the expected slip
boundary condition, and to validate the present analysis on the
correction of the parameters r [see Eq. (25)], the fully diffusive
case [A1 = 2ζ/

√
π ≈ 1.1466, A2 = (1 + 2ζ 2)/π ≈ 0.9757,

with ζ = 1.016 15] that was often tested in the literature
[22,23,51] is simulated by the present FMLB model at
Kn = 0.2. Here, the influences of different grid resolutions
are also investigated by varying the grid resolution N from 5
to 51. For the fully diffusive walls, the bounce-back fraction
r is usually set to 0.5 when ignoring the discrete effects of
the CBBSR scheme, while it must be computed from the
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FIG. 4. (Color online) Velocity profiles for the Poiseuille flow
at Kn = 0.2 for the fully diffusive walls with different grids. The
analytical solution of Cercignani [48] is extracted from Fig. 4 of
Ref. [22].

correction Eq. (25) to consider those discrete effects within
the FMLB model. For all three chosen grids N = 5, 25, and
51, the velocity profiles predicted by the present FMLB model
with the corrected parameter r given by Eq. (25) are plotted
in Fig. 4, in which the results obtained with r = 0.5 are also
included for comparison purposes. It can be seen that all of
the present results obtained with the corrected parameter r are
in excellent agreement with the analytical solution reported
by Cercignani [48], but for those results with r = 0.5, the
grid-dependent deviations from the benchmark solution can
be clearly observed. As revealed in Fig. 4, there are inherent
discrete effects existing in the CBBSR scheme for the FMLB
model, and it is necessary to correct r in order to accurately
realize the slip boundary condition for the microscale gas
flow.

B. Microchannel flows with the periodic boundary condition

Gas flow in a microchannel with a periodic or pressure
boundary condition has been investigated by many researchers
using the LBGK and MRT models and employed as the
benchmark cases of steady incompressible microscale gas
flow (cf. Refs. [26,35,37,38,40]). In this subsection, we apply
the present FMLB model with the Bosanquet-type effective
viscosity to study the periodic microchannel flow driven by
a constant force. Here, all simulations are performed on
a uniform grid (Nx × Ny = 51 × 51), and the driven force
is set as fx = ρa = 10−4. The periodic boundary condition
is applied at the inlet and outlet of the channel, and the
CBBSR boundary condition with the fitting function � (Kn)
is applied at the top and bottom walls, which are assumed
to be fully diffusive (σ = 1). Figure 5 shows the velocity
profiles normalized by the mean velocity over the cross section
of the channel ū = (1/H )

∫ H

0 u dy at Kn = 2k/
√

π , with k

ranging from 0.1 to 10. The numerical results obtained by

Guo et al. [26] and Li et al. [37] using the MRT models,
respectively, with Stops’ expression of effective viscosity
and the Bosanquet-type effective viscosity, as well as the
benchmark solutions of the linearized Boltzmann equation
given by Ohwada et al. [55], are also grouped in Fig. 5
for comparison purposes. Noted that, as reported in the
literature [26,37], the solutions of the Navier-Stokes equations
with the second-order slip boundary conditions [48,52] are
increasingly deviating from the linearized Boltzmann results
with increasing Kn beyond 0.1128, so the slip-NS results
are not presented again in Fig. 5. It can be clearly seen
from Fig. 5 that the velocity profiles predicted by the present
FMLB model with the fitting function Eq. (30) and those MRT
solutions given by Li et al. [37] are almost the same for Kn
varying from 0.1128 to 4.5135, and both results are in good
agreement with the linearized Boltzmann solutions; the MRT
results given by Guo et al. using Stops’ expression of effective
viscosity show a visible deviation from the benchmark solution
as Kn � 1.1284. For larger Knudsen numbers Kn = 6.7703,
9.0270 and 11.2838 (k = 6, 8, and 10), the velocity profiles
were not given in the studies of Guo et al. [26] and Li
et al. [37], but the velocity profiles predicted by the present
FMLB model with Eq. (30) are presented here and also agree
well with the solutions of the linearized Boltzmann equation,
as shown in Fig. 5. To investigate the influence of the fitting
function � (Kn) used in the corrected CBBSR scheme [see
Eqs. (30) and (31)], the present results at the four relatively
large Knudsen numbers Kn = 4.5135, 6.7703, 9.0270, and
11.2838, which are obtained with the constant slip coefficients
suggested by Li et al., Eq. (28), are also plotted in Fig. 5. The
comparisons between the two group results and the benchmark
solutions show that, in the present FMLB frameworks, using
the fitting function Eq. (30) can yield a slightly better match
for the velocity profile at relatively large Kn in the transition
regime.

To further validate the present model, in Fig. 6 we plot the
nondimensional mass flow rate Q = ∫ H

0 ρu dy normalized by
ρaH 2/

√
2RT against the Knudsen number. It can be found

from Fig. 6 that the mass flow rate predicted by the present
FMLB model with Eq. (30) is almost identical to the solution
of the MRT model given by Li et al. [37], because the same
effective viscosity and the same second-order slip boundary
condition are used in the two models, and both models can
only provide reasonable results up to Kn ≈ 3. However, when
taking the fitting function � (Kn) into consideration, the
present model with Eq. (30) can provide a satisfactory mass
flow rate for the entire transition flow regime (up to Kn ∼ 10)
in comparison with the solution of the Boltzmann equation
given by Cercignani et al. [48]. The comparisons between
the two present results with and without the fitting function
show that the second-order slip term in the boundary condition
plays an important role in simulating rarefied gas flows with
relatively large Knudsen numbers, and the present FMLB
model with the effective viscosity can be extended to simulate
microchannel flow at a relatively larger Knudsen number by
making appropriate fixes in the slip boundary conditions.
Besides, the well-known Knudsen minimum phenomena are
all observed for those results obtained by different methods,
which is captured at Kn ≈ 0.9 for both of the present
results.
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FIG. 5. (Color online) Velocity profiles of gas flow in a periodic microchannel (U = u/ū).

C. Microchannel flows with the pressure boundary condition

The present FMLB model is also applied to simulate
pressure-driven gas flow in a long microchannel, which is
a basic phenomenon and has wide engineering applications in
MEMS. In this problem, the flow is driven by the substantial
drops between the pressures at the inlet and outlet of the
channel, and the pressure distribution along the microchannel
is usually nonlinear [27,37,40]. Following the literature, in
this study the ratio of the length to the height of the channel
is set to be L/H = 100, and the pressure at the inlet and
at the outlet is set to be pin and pout, respectively. In our
simulations, the outlet density is set to be ρout = 1; to keep
the dynamic viscosity constant along the channel, the local

Knudsen number is inversely proportional to the local density
and varies along the channel, Kn (x) = Knoutρout/ρ (x), where
the local density ρ (x) takes the value at the centerline of the
channel and Knout is the Knudsen number at the outlet.

Throughout the numerical experiments presented in this
section, a 2100 × 21 uniform grid is adopted and the top and
bottom walls are still assumed to be fully diffusive (σ = 1)
unless otherwise notified, where the CBBSR scheme with the
fitting function is applied. The consistent linear extrapolation
scheme [24,40] is used to realize the pressure boundary
condition at the inlet and outlet, in which the densities at
the inlet and outlet are renormalized so that the average
densities satisfy the pressure boundary conditions, and this
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FIG. 6. (Color online) Nondimensional mass flow rate against
the Knudsen number for microchannel gas flow. Present 1: for the
periodic case; Present 2: for the pressure-driven case.

treatment can ensure the smooth transition of the pressure and
velocity fields from the interior nodes to the boundary. The
details of the implementation procedure can be found in the
literature [40].

For the pressure-driven microchannel flows, we first con-
sider the following two cases ranging from the slip flow regime
to the transition regime: (i) Knout = 0.0194, pin/pout = 1.4;
(ii) Knout = 0.388, pin/pout = 2, which have been investi-
gated using different numerical methods in the literature
[26,37,56,57]. In Figs. 7 and 8, the nondimensional streamwise
velocity u/umax at the outlet and the pressure deviation
δp = (p − pl)/pout along the centerline of the channel are
presented for the above three cases. Here, umax is the maximum
velocity at the outlet, and pl (x) = pin + x(pout − pin)/L is the
linear profile of the pressure along the centerline. It should be
pointed out that the DSMC and IP-DSMC results of Shen
et al. [56], the analytical results of Arkilic et al. [57] obtained
by the NS equations with the first slip boundary condition, as
well as the MRT results (for the later two cases) reported by
Li et al. [37] are also grouped in those plots in Figs. 7 and 8
for comparison purposes.

For Knout = 0.0194 and pin/pout = 1.4, both profiles of
velocity and pressure deviation predicted by the present FMLB
model agree well with those of the DSMC, IP-DSMC, and
Slip-NS methods, as shown in Fig. 7. When Knout increases
up to 0.388 and pin/pout = 2, the whole flow field falls into
the transition flow regime; it can be observed from Fig. 8 that
both results of the velocity profile and pressure deviation given
by the slip-NS method show significant deviations from those
benchmark solutions of the DSMC and IP-DSMC methods,
while both results predicted by the present model with the
effective viscosity also agree fairly well with the benchmark
solutions, which confirms that it is necessary to take the effects
of the Knudsen layer into consideration for the simulations
of microscale gas flow in the transition regime. Also, it can
be clearly seen from Fig. 8 that both results predicted by
the FMLB model with the Bosanquet-type effective viscosity
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FIG. 7. (Color online) Pressure deviation along the channel
centerline (a) and streamwise velocity at the outlet (b) for the
pressure-driven flow in a long microchannel with Knout = 0.0194
and pin/pout = 1.4.

and the fitting function are in fairly good agreement with
those obtained by the MRT model with the same effective
viscosity method in Li et al.’s study [37], although different
second slip coefficients are used in the second-order slip
boundary conditions for the CBBSR scheme within the two
different LB models. The above comparisons demonstrate
that by using the corrected CBBSR scheme with the fitting
function � (Kn), the present FMLB model is still able to
accurately capture the characteristics of the pressure-driven
flow in a long microchannel in the slip and slight transition
regimes.

To further investigate the capability of the present model,
pressure-driven microchannel flows with larger Knudsen
numbers are also simulated in this study, and the predicted
mass flow rate is compared with the benchmark solutions of the
Boltzmann equation given by Cercignani et al. [58] and the ex-
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FIG. 8. (Color online) Same as Fig. 7 but for Knout = 0.388 and
pin/pout = 2.

perimental results for helium flows [54,59,60]. First, for com-
paring to the solutions of the linearized Boltzmann equation,
the normalized mass flow rate Qx=L/2/(ρaH 2/

√
2RT ) against

the average Knudsen number Knave = (Knin + Knout)/2 is also
plotted in Fig. 6. Here, the present results for this pressure-
driven case are taken from the simulation with pin/pout = 2
and σ = 1, which are denoted by “Present 2, Eq. (30)” in
Fig. 5. It can be found that, for this case, the present model with
Eq. (30) can still give reasonable results in comparison with
the benchmark data and our solutions obtained for the periodic
case. Also, it should be pointed out that, for the Knudsen
minimum phenomenon, there exists a small difference between
both of the present results for the periodic and pressure-driven
cases: it is captured at Kn ≈ 0.9 for the former case, while it
occurs at Kn ≈ 1 for the latter one.

Next, following Li et al.’s study [37], the rarefaction effect
on mass flow rate is also investigated by comparing the present

(a)

(b)

FIG. 9. (Color online) Nondimensional mass flow rate for the
pressure-driven flow in a long microchannel compared with the
experimental data of (a) Maurer et al. [59] and (b) Colin et al. [54,60],
the solutions of Aubert and Colin’s second-order slip model [61], and
the MRT results of Li et al. [37].

results with the experimental data for helium gas reported by
Maurer et al. [59] and Colin et al. [54,60]. In the following
comparisons, the nondimensional mass flow rate is defined as
S = Q/QNS, where QNS represents the corresponding mass
flow rate without rarefaction effects, which is obtained from the
present simulations with the no-slip boundary condition [r =
1, γ1 = (8ν − δx)/(8ν + δx)]. Also, to compare the present
results with the solutions of Li et al. [37], in our computations,
the TMAC is set to be σ = 0.93 and the pressure ratio pin/pout

is taken as 1.8.
In Figs. 9(a) and 9(b), the nondimensional mass flow rate

S and the inverse one 1/S are shown as a function of the
average and outlet Knudsen numbers, respectively. Here, not
only are the experimental results of Maurer et al. [59] and Colin
et al. [54,60] included, but also Li et al.’s results [37] obtained
by the MRT model with the Bosanquet-type effective viscosity
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and the solutions of Aubert and Colin’s second slip model [61]
are included for comparison purposes. It can be found from
Fig. 9(a) that, as reported by Li et al. [37], Aubert and Colin’s
second-order slip model can only predict an accurate mass flow
rate up to Knave ≈ 0.18 (corresponding to Knout ≈ 0.23) when
compared with the experimental data of Maurer et al. [59].
However, the present model can always predict fairly accurate
results for all chosen Knudsen numbers (0.05 � Knave � 0.8),
as shown in Fig. 9(a). In Fig. 9(b), a similar phenomenon
can also be observed. Compared with the experimental data
of Colin et al. [54,60], the separation point for the results
of Aubert and Colin [61] is show to be Knout ≈ 0.24, while
the present model still gives a satisfactory prediction up to
Knout = 0.5. In addition, it is noteworthy that, as shown in
Fig. 9, the agreement between the present solutions predicted
using the FMLB model and the MRT solutions of Li et al.
looks fairly satisfactory, although the fitting function used in
this study gives a variable second slip coefficient while the
fixed one was adopted in Li et al.’s study.

V. CONCLUSIONS

In this paper, we proposed an extended filter matrix lattice
Boltzmann (FMLB) model for microchannel gas flow in
which wall-confinement effects are considered. A kinetic
boundary condition (CBBSR) that combines the bounce-back
and specular-reflection schemes is proposed for the present
FMLB model, and it is analyzed based on a unidirectional
flow. The present analysis shows that the bounce-back portion
r in the CBBSR boundary condition must be corrected for the
present FMLB model to realize the exact prescribed boundary
conditions, whether they are no-slip or slip schemes, e.g., the
discrete error in the no-slip case can be eliminated via choos-
ing an appropriate free parameter γ1 = (8ν − δx)/(8ν + δx),
which is similar to the treatment in the case for the MRT
model; to realize the specified second-order slip boundary
condition, the control parameter r should be corrected accord-
ing to the two slip coefficients A1 and A2 and the Knudsen
number.

To take account of the wall-confinement effects on gas
viscosity, the Bosanquet-type effective viscosity, in which the
mean value of the viscosity is considered, is incorporated
into the framework of the FMLB model in this study. Also,
we propose a modified second-order slip boundary condition
with a fitted second-order coefficient as a function of the
local Knudsen number to give a satisfactory result of the
mass flow rate for the high-Kn microchannel gas flow. In
this work, we have implemented the present extended FMLB
model to simulate the microchannel gas flows with a wide
range of Knudsen numbers covering from the slip regime up
to the entire transition regime. For all test cases conducted in
this study, including the microchannel flow with the periodic
boundary condition and the pressure-driven microchannel
flow, the present FMLB results, including the velocity profile
and the mass flow rate, as well as the nonlinear pressure
distribution only, for the pressure-driven case, are found to
be in quite good agreement with the solutions of the linearized
Boltzmann equation, the results of the DSMC and IP-DSMC
methods, the available experimental results, and the MRT

results reported in previous studies. In particular, we also
investigate the influence of the proposed fitting function on the
numerical results of the mass flow rate, and the results obtained
by the present extended FMLB model with the constant slip
coefficients suggested in Li et al.’s study are also presented
for comparison purposes. Those comparisons show that, for
microchannel flows at low and moderate Knudsen numbers,
the present FMLB model with the fitting function can give
almost the same results as that with the fixed slip coefficient of
Li et al.; the former can give satisfactory results over almost
the entire transition flow regime, while the latter give the same
results as those of the MRT-LB model reported by Li et al.,
which can only provide reasonable results up to Kn ≈ 3. In
addition, the Knudsen minimum phenomenon is also well
captured in all the simulations of both kinds of cases in this
study.

Through this study, the present FMLB model has shown,
in general, noticeably good accuracy and robustness for
isothermal microchannel gas flows in the slip and transition
regime, as indicated by various demonstrated comparisons.
It looks promising for more extensive applications of the
present FMLB method to other more challenging simulation
scenarios in the future, e.g., the nonisothermal rarefied gas
flows involving curved boundaries.
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APPENDIX A: THE COMPARISON BETWEEN THE FMLB
MODEL AND THE MRT MODEL WITH THE

TRAPEZOIDAL RULE

To simplify the analysis and without loss of generality, we
consider the isothermal D2Q9 LB models. For the FMLB
model, when the parameter B is fixed at 1 and taking an
external force term into account, the collision process can
be implemented in the moment space (see [47] for details):

α+ = α− − δt�(α− − αeq), (A1)

with a non-negative diagonal matrix

� = diag(0,2/δt ,2/δt ,(3ν + δt/2)−1,(3ν + δt/2)−1,

(3ν + δt/2)−1,(γ1 + 1)/δt ,(γ1 + 1)/δt ,0). (A2)

In Eq. (A1), αeq denotes the equilibrium moment vector
corresponding to the equilibrium distribution functions N

eq
i ,

and it can be expressed as

α
eq
k = EkiN

eq
i

= (ρ,ρux,ρuy,3ρuxux,3ρuxuy,3ρuyuy,0,0,0)T. (A3)
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Next, we start the MRT formulations from the discrete
velocity Boltzmann equation (DVBE):

∂Ni

∂t
+ �ci · �∇Ni = �′

i + Fi, (A4)

where �′
i is the collision operator, and Fi is the external force

term accounting for a body force �f .
Integrating the DVBE (A4) along the characteristic line

with a time step δt , we obtain

Ni (�x + �ciδt ,t + δt ) − Ni (�x,t)

=
∫ δt

0
[�′

i(�x + �ci t
′,t + t ′) + Fi(�x + �ci t

′,t + t ′)]dt ′. (A5)

For the remaining integration on the right-hand side, we
approximate it by the trapezoidal rule to yield a second-order
accurate but implicit in time equation,

Ni(�x + �ciδt ,t + δt ) − Ni(�x,t)

= δt

2
[�′

i(�x,t) + Fi(�x,t)] + δt

2
[�′

i(�x + �ciδt ,t + δt )

+Fi(�x + �ciδt ,t + δt )]. (A6)

Following He et al. [62], the implicitness can be removed by
introducing a transformation,

N̄i(�x,t) = Ni(�x,t) − δt

2
[�′

i(�x,t) + Fi(�x,t)]. (A7)

Then, the previous implicit scheme Eq. (A6) can be expressed
equivalently as

N̄i(�x + �ciδt ,t + δt ) − N̄i(�x,t) = δt [�
′
i(�x,t) + Fi(�x,t)].

(A8)

The collision operator in the D2Q9 MRT model can be
given in the form [51,63]

�′
i = −(M−1SM)ij

(
Nj − N

eq
j

)
, (A9)

where M is a transformation matrix and S =
diag(τ0,τ1, . . . ,τ8)−1 is a non-negative diagonal matrix,
with τi being the relaxation time for the ith moment. Using
the transformation matrix, the distribution functions Ni , N

eq
i ,

and N̄i can be projected onto the moment space as

mi = MijNj , m
eq
i = MijN

eq
j , m̄i = Mij N̄j . (A10)

Combining Eqs. (A7), (A9), and (A10), the relation
between both velocity moments mi and m̄i can be expressed
as

m̄i = mi − 0.5δt

[−S
(
mi − m

eq
i

) + F̄i

]
(A11)

and

mi = (I + 0.5δtS)−1 (m̄i + 0.5δtSm
eq
i + 0.5δt F̄i

)
, (A12)

where I is the unity matrix and F̄i = MijFj are the force terms
in the moment space.

Utilizing Eqs. (A9)–(A12), the evolution equation (A8) for
N̄i can be easily transformed into the MRT framework and
the corresponding collision process can be carried out in the
moment space as

m̄i (�x + �ciδt ,t + δt ) = m̄i − δt S̄
(
m̄i − m

eq
i

) + δtS′F̄i (A13)

with

S̄ = (S−1 + 0.5δtI)−1, S′ = (I + 0.5δtS)−1 = S−1S̄. (A14)

Substituting Eq. (A4) into Eq. (A7), it can be found that
the variables N̄i (�x,t) and N̄i (�x + �ciδt ,t + δt ) actually are the
first-order Taylor expansions of Ni (�x − �ciδt/2,t − δt/2) and
Ni (�x + �ciδt/2,t + δt/2), respectively, which is the same as
the treatment [see Eq. (7)] in the FMLB model.

In addition, note that (i) the external force terms F̄i can be
directly structured in the moment space without computing it
from the expression in the disperse velocity space, which is
the same as the treatment of the equilibrium moment m

eq
i in

the standard MRT framework; (ii) in the FMLB model, the
external force terms in the moment space can be computed by
F̄k = Ekiωi �ci · �f /c2

s = (0,fx,fy,0,0,0,0,0,0)T, so Eq. (A1)
can be rearranged into the same form as Eq. (A13); (iii) for
the conserved moments ρ �u, the corresponding value in the
diagonal matrix � is fixed at 2/δt for the FMLB model, which
is equivalent to setting τρ �u = 0 in this MRT framework; that
is to say, there are two non-nil relaxation terms in the FMLB
model, (3ν + δt/2) and δt/(γ1 + 1) if collated with this MRT
framework, as shown in Eqs. (A13) and (A14).

The comparison discussed above reveals that, with the
assumption of B = 1, the FMLB model can be completely
regarded as a special case (two-relaxation time) of the MRT
model with the trapezoidal rule.

APPENDIX B: THE DETAILS OF THE CBBSR SCHEME
WITHIN THE FMLB MODEL

For the steady incompressible Poiseuille flow driven by a
constant force, as mentioned in Sec. II, the CBBSR scheme
within the D2Q9 FMLB model produces the relation between
the horizontal velocities near the wall, Eq. (20). In the
following, we make a detailed analysis to derive that formula.

First, according to the transformation between the distribu-
tion functions Ni and the moments αi (i = 0,1,2, . . . ,8), we
have

N±
1 − N±

3 = (2α±
1 − α±

6 )/3, (B1)

N±
5 − N±

6 = (α±
1 + α±

4 + α±
6 )/6,

N±
8 − N±

7 = (α±
1 − α±

4 + α±
6 )/6.

(B2)

Combining the collision expression in the moment space
Eq. (A1) and the constraints Eq. (17) while utilizing Eqs. (10)
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and (B1), we can obtain

α
1,2+
4 = Gα

1,2−
4 , (B3)

α
1,2+
6 = 2γ1

1 + γ1
ρaδt , α

1,2−
6 = − 2

1 + γ1
ρaδt . (B4)

Taking the constraint ∂Ni/∂x = 0 into consideration, the
transport step between the inner node at J = 0, 1, and 2 can
be simply written as

N1−
5,6 = N0+

5,6 , N1−
7,8 = N2+

7,8 , N2−
5,6 = N1+

5,6 . (B5)

Then, substituting Eq. (B5) into Eq. (B2) yields

α1+
1 + α1+

4 + α1+
6 = α2−

1 + α2−
4 + α2−

6 , (B6)

α1−
1 − α1−

4 + α1−
6 = α2+

1 − α2+
4 + α2+

6 . (B7)

According to Eq. (10), the momenta α
1,2±
1 are expressed as

α
1,2±
1 = ρu1,2 ± ρaδt/2. (B8)

Combining Eqs. (B3), (B4), and (B6)–(B8), the moment α1−
4

can be expressed in the form

α1−
4 = ρ (u1 − u2)

1 − G
− 3ρaδt

1 + G
. (B9)

In addition, from Eqs. (16) and (B5), the CBBSR scheme gives
that

N1−
5 − N1−

6 = (1 − 2r)
(
N1+

8 − N1+
7

)
. (B10)

Then, substituting Eq. (B2) into Eq. (B10) gives

α1−
1 + α1−

4 + α1−
6 = (1 − 2r)

(
α1+

1 − α1+
4 + α1+

6

)
. (B11)

With the aid of Eqs. (B3), (B4), (B8), and (B9), we can obtain
from Eq. (B11) that

u2 =
(

1 + 2r (1 − G)

1 + G − 2rG

)
u1 − 1 − G

1 + G − 2rG

×
[

6 − r

(
6G

1 + G
+ 1 + 5γ1

1 + γ1

)]
δta. (B12)
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