
PHYSICAL REVIEW E 88, 053309 (2013)

Efficient parallelization of short-range molecular dynamics simulations on many-core systems

R. Meyer*

Department of Mathematics and Computer Science and Department of Physics, Laurentian University,
935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada

(Received 16 May 2013; published 18 November 2013)

This article introduces a highly parallel algorithm for molecular dynamics simulations with short-range forces
on single node multi- and many-core systems. The algorithm is designed to achieve high parallel speedups
for strongly inhomogeneous systems like nanodevices or nanostructured materials. In the proposed scheme the
calculation of the forces and the generation of neighbor lists are divided into small tasks. The tasks are then
executed by a thread pool according to a dependent task schedule. This schedule is constructed in such a way
that a particle is never accessed by two threads at the same time. Benchmark simulations on a typical 12-core
machine show that the described algorithm achieves excellent parallel efficiencies above 80% for different kinds
of systems and all numbers of cores. For inhomogeneous systems the speedups are strongly superior to those
obtained with spatial decomposition. Further benchmarks were performed on an Intel Xeon Phi coprocessor.
These simulations demonstrate that the algorithm scales well to large numbers of cores.

DOI: 10.1103/PhysRevE.88.053309 PACS number(s): 02.70.Ns

I. INTRODUCTION

Molecular dynamics (MD) simulation is one of the most
important numerical methods in computational physics,
chemistry, biology, and materials science [1–3]. It is a very
versatile method that allows particle-based simulations of a
wide variety of systems provided that a suitable model for
the interactions between the particles exists. Advances of
computer technology have dramatically increased the number
of particles that can be handled by MD simulations. When
used in conjunction with a short-range interaction model,
i.e., a model where particle interactions become zero if the
distance between the particles exceeds a cutoff distance
rcut, simulations containing tens or hundreds of millions of
particles can be performed without too many difficulties.

In recent years, a strong increase of computational power
has been achieved through the introduction of multicore
processors that integrate multiple CPU cores on a single chip.
Currently the trend goes from multicore to many-core systems
which integrate hundreds or thousands of processors. An early
example of this technology is the Intel Xeon Phi coprocessor
[4]. Such massively parallel systems both enable and require
new approaches to the development of parallel programs.

In this article a task-based approach to the parallelization
of MD simulations is described. The cell task algorithm
overcomes some limitations of previous approaches and gives
excellent parallel performance in simulations of large-scale
systems. In its current form the algorithm is designed for
single-node systems with approximately uniform memory
access times. Applicable systems range from dual and quad
core desktop computers over typical HPC nodes or server
systems (8–48 cores) to the Intel Xeon Phi (60 cores, four
hardware threads per core). An extension of the algorithm into
a hybrid scheme that uses message passing between nodes
is straightforward. The algorithm is not designed for shared
memory systems with strongly nonuniform memory access
times (so-called virtual shared memory machines) or GPU

*rmeyer@cs.laurentian.ca

computing. The implementation of MD simulations on GPUs
has recently been discussed in Ref. [5].

The motivation for the development of a new MD algorithm
is twofold. On the one hand, the cell task method is an attempt
to explore new ways to adapt to the changes in computing
technology and to get the most out of modern hardware. On the
other hand, the applications of the MD method have changed
over time. It is now possible to simulate complete nanodevices
or nanostructured materials that combine different materials
on length scales of several nanometers. As discussed below,
the inhomogeneity of such systems reduces the efficiency of
previous methods. The proposed algorithm has been designed
specifically to provide an efficient parallelization for such
systems.

A necessary ingredient for large-scale MD simulations
is parallel computing. Three principal strategies for the
parallelization of MD simulations are space (or domain) de-
composition, particle decomposition, and force decomposition
[6,7]. On shared memory architectures one can also employ
thread-based approaches using, for example, OpenMP [8,9].

The particle decomposition method and the force decom-
position method are both based on a static decomposition
of the system’s force matrix. Particle decomposition assigns
complete rows of the force matrix to a processor while force
decomposition uses a block decomposition of this matrix.
As discussed by Plimpton [7], both methods are not ideal
for simulations of large systems with short-range forces due
to communication overhead. In addition to this, the force
decomposition method is subject to load balancing issues if
the force matrix is not uniformly sparse.

In the spatial decomposition approach (see, e.g., Ref. [7]),
the simulation cell is divided into as many domains as there
are processors. Each processor is then responsible for the cal-
culations of forces on particles in one domain. When a particle
crosses the border between two domains, it is reassigned to the
processor of the new domain. Spatial decomposition achieves
very good parallel speedups under two conditions: the domains
must be large enough so that most of the interactions happen
between particles on the same processor, and the particle
density system must be sufficiently homogeneous in order to

053309-11539-3755/2013/88(5)/053309(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.053309


R. MEYER PHYSICAL REVIEW E 88, 053309 (2013)

achieve comparable computational loads on the processors.
Strongly inhomogeneous systems do not satisfy the latter
condition, and the efficiency of spatial decomposition for these
systems is therefore reduced by load imbalances.

Recently a number of variations of the spatial decompo-
sition approach have been developed [10–13]. These neutral
territory methods have the potential to outperform traditional
spatial decomposition for high levels of parallelism. These
methods are, however, not well suited to handle strongly
inhomogeneous systems.

While it is fairly straightforward to parallelize MD pro-
grams using OpenMP, this approach rarely leads to satisfactory
speedups. The reason for this are uncoordinated accesses to
the particle data by the threads. In order to avoid race con-
ditions particle updates must be protected by synchronization
constructs or Newton’s third law cannot be exploited. The
performance is further degraded since accesses to the same
particle by different threads may result in frequent transfers of
cache lines between the CPUs.

Task-based programming is a modern approach to parallel
computing. This technique uses high-level abstractions to
subdivide the problem into small work units (tasks) without
regard for details of the task execution on the hardware. These
techniques are generally most efficient if the number of tasks
that can be executed concurrently is much larger than the
number of available processors. Task-based programming and
examples of task-based programming models are discussed in
Refs. [14–17].

The cell task method described in this article uses a
task-based programming model. The method subdivides the
calculation of the forces in a large number of small tasks. These
tasks are then executed according to a dependent task schedule
that avoids access conflicts between the threads. For suffi-
ciently large systems this leads to excellent parallel speedups
that are largely independent of the degree of homogeneity of
the simulated system. In addition to this, the algorithm relieves
the user from technical considerations like the best subdivision
of the system for a given number of processors.

II. DESCRIPTION OF THE CELL TASK ALGORITHM

A. Partitioning of the problem into tasks

The primary objective of this work was the design of an
efficient parallel MD algorithm that achieves high parallel
speedups for large and strongly inhomogeneous systems.
Secondary goals were consistent speedups for all numbers
of processors and to make the method robust against external
perturbations that might temporarily delay computations on
individual processors.

The problems of spatial decomposition and simple thread-
based approaches can both be traced to the kind of geometric
information used by the methods. Spatial decomposition
fails to achieve a good load balance if the size of the
processor domains exceeds the characteristic length scale of
inhomogeneities in the system. In the simple thread-based
approach, on the other hand, the efficiency is reduced by the
need for synchronization, which is ultimately due to the fact
that no geometric information is used at all. These observations
lead to the idea to use geometric information on a small length
scale for the parallelization.

In order to avoid synchronization constructs during the
calculation of forces on the particles, one must ensure that two
threads will never update the same particle at the same time.
This means that threads must keep a distance of 2rcut between
the particles on which they work. Fortunately, the necessary in-
formation to ensure this condition is readily available in many
cases or it can be obtained easily. Most general purpose MD
codes use the so-called linked-cell technique [1,18] to facilitate
the construction of neighbor lists. In the linked-cell method, the
simulation box is subdivided into a grid of small cells whose
width is larger than rcut, and for each cell a linked list of the
particles in the cell is constructed. A particle can then interact
only with particles in the same cell or one of its neighbors.

The proposed parallelization method reuses the data struc-
tures from the linked cell technique to partition the problem of
the force calculation into tasks. A task in this method consists
of the calculation of the forces on all particles in one grid cell.
Since particles in one cell do only interact with particles in
neighboring cells, two tasks can be executed concurrently if
there are at least two grid cells between them in all directions.
Tasks that fulfill this condition are called nonoverlapping
otherwise they are said to be overlapping. Figure 1 shows
a two-dimensional example of a cell grid and a set of tasks that
can be executed in parallel since they are nonoverlapping.

The essence of the proposed algorithm is the following:
(1) The particles are binned into grid cells (as part of the

linked cell technique).
(2) The force calculation is broken into cell tasks. A cell

tasks consists of the calculation of forces on all particles in
one grid cell.

(3) The tasks are executed in parallel by a thread pool
according to a dependent schedule that ensures that only
nonoverlapping tasks are executed simultaneously.

The algorithm does not assume that the execution of the
tasks requires similar amounts of computing time. Even in
a homogeneous system this might not be the case, and in
inhomogeneous systems a substantial amount of grid cells
might in fact be empty. Notwithstanding, a good load balance
is achieved if the tasks are dynamically scheduled rather then
statically. Dynamic scheduling assigns the tasks to the threads
as these finish previous tasks. This keeps all threads busy
and averages the imbalances. In addition to this, dynamic
scheduling limits the impact of external disturbances such as
unrelated processes running on one of the cores or differences
in memory access times. If a processor is slowed down by
external factors, other processors will take on a larger number

FIG. 1. Example for a set of nonoverlapping tasks on a two-
dimensional cell grid. Tasks are indicated by ⊗ symbols in the
respective grid cells.

053309-2



EFFICIENT PARALLELIZATION OF SHORT-RANGE . . . PHYSICAL REVIEW E 88, 053309 (2013)

of tasks, thereby minimizing the delay. With static scheduling
a delay of one processor leaves the rest of the system idling.

Another positive side effect of the cell task algorithm is
an improved memory access pattern. Particles in the same
grid cell have similar sets of neighbors. The calculation of
the forces on particles in the same cell within the same task
therefore leads to high cache reuse without a special ordering
of the particles.

After the force calculation, the second most time-
consuming part of an MD simulation is usually the generation
of the neighbor lists. In a program that uses the linked cell
method the neighbor lists are naturally generated for all parti-
cles in a grid cell at once. For this reason it is straightforward
to apply the cell task method to the generation of the neighbor
lists. The only difference to the force calculation is the kind
of work performed by a cell task. During the neighbor list
construction a cell task constructs the neighbor lists of all
particles in the task’s cell.

An important difference between the force calculation and
the generation of neighbor lists is the fact that the neighbor list
generation never performs simultaneous particle updates. For
this reason, the tasks generating the neighbor lists could all be
scheduled simultaneously. On the other hand, the overhead of
the dependent schedule is very low as long as the system
is large enough to keep all processors busy. This is since
most of the overhead is incurred during the construction of
the schedule, which is done only when the cell grid changes.

While there are no simultaneous particle updates, simul-
taneous updates of the neighbor list data structure can be a
problem. One way to solve this is that each task maintains a
separate data structure for the neighbor lists of its particles.

Other typical parts of MD simulations like the integration
of the equation of motion are usually implemented with simple
loops over the particles that access only one particle at a
time. These loops can be parallelized using simple threading
techniques since there are no synchronization concerns.

B. Task scheduling: The wave method

A central problem of the proposed algorithm is the
generation and execution of a dependent task schedule that
guarantees that only nonoverlapping tasks run concurrently.
This section presents two algorithms for this problem named
the forward and the backward wave method.

The wave methods group the cell tasks into an ordered set
of so-called waves. A wave is a set of nonoverlapping tasks
that can be scheduled independently. There are many ways to
generate a set of waves that will cover all cells. In order to keep
the method efficient, each wave should include as many cells
as possible, and the number of dependencies between tasks
should be low. The algorithm used in this work is described in
the Appendix.

The grouping of the tasks into waves establishes a partial
ordering of the tasks. A simple scheduling method is to allow
tasks in the same wave to run concurrently but to require that
a wave must be completely finished before the next wave can
start. The problem of this algorithm is that it imposes a barrier
after each wave which reduces its efficiency. Note, however,
that this scheme can easily be implemented in an environment
that does not allow for dependent task scheduling.

The wave methods use the ordering imposed by the waves
to order the access to the grid cells by the tasks. Each grid cell
is accessed by at most 27 tasks (less for cells at the simulation
box boundary). The wave methods allow a task T to execute
as soon as all tasks from previous waves that access one of T ’s
cells are completed. A further simplification is possible since
the preceding tasks depend on each other. For each of its cells
T only has to wait for the last task that accesses this cell before
T (since the last task has already waited for all previous tasks
accessing this cell). The set of last tasks accessing any of T ’s
grid cells are called the direct predecessors of T . Similarly the
direct successors of T are those tasks which have T as a direct
predecessor.

The scheduling algorithm of both wave methods uses an
acyclic graph algorithm similar to the one described in the
documentation of Intel’s Threading Building Blocks Library
[19]. Each task has a data structure that stores its grid cell, the
number of its direct predecessors, a list of its direct successors,
and a reference counter. The reference counter is initially set
to the number of direct predecessors, and all tasks that have no
direct predecessors are added to the thread pool’s list of tasks
that are ready for execution. The execution of a a task involves
the following steps:

(1) The work associated with the task is carried out (force
calculation, neighbor list generation, etc.)

(2) The reference counter of all direct successors is decre-
mented atomically.

(3) Successor tasks whose reference counter becomes zero
are added to the ready list.

The purpose of the wave algorithms is to generate for
each task its number of direct predecessors and the list of
its successors. The forward wave method maintains a three-
dimensional array P [nx][ny][nz] that stores for each grid cell
the index of the last task that has accessed the cell. Initially this
array is initialized with a special marker (−1) that indicates
that the cell has not been accessed. The algorithm loops over
the waves in ascending order starting with the first wave. For
each task in a wave the following steps are performed:

(1) For all cells accessed by the task, copy the corresponding
element of P into a list.

(2) Eliminate duplicates and the special marker from the
list. The result is the task’s set of direct predecessors.

(3) Store the number of predecessors in the task structure.
(4) For each direct predecessor, add the task to its successor

list.
(5) Initialize an empty successor list.
(6) Overwrite elements of P used in step 1 with the task’s

index.
A drawback of the forward wave algorithm is the fact

that when a task is created by the algorithm, only the
predecessors are known. Since the tasks needs to store its list
of successors rather than its predecessors it would simplify the
task generation if the list of successors were known at the time
when a task is created. This is achieved by the backward wave
method. The backward method works like the forward method,
but it replaces the array P with an array S[nx][ny][nz] which
stores for each grid cell the index of the next task that accesses
the cell. The array is again initialized with the special marker,
which now means that no further task accesses the cell. The
backward algorithm then creates the waves in reverse order

053309-3



R. MEYER PHYSICAL REVIEW E 88, 053309 (2013)

from the last wave to the first. For each task in a wave the
method performs the following steps:

(1) For all cells accessed by the task, copy the corresponding
element of S into a list.

(2) Eliminate duplicates and the special marker from the
list. Store the result as the task’s direct successor list.

(3) For all direct successors: Increment the number of direct
predecessors by one.

(4) Initialize the task’s number of direct predecessors to
zero.

(5) Overwrite elements of S used in step 1 with the task’s
index.

C. Implementation

In order to be able to test the cell task algorithm in practice,
the method has been implemented in a general purpose parallel
MD code named mdntp [20]. This code has been developed
for large-scale simulations using many-body potentials of
the embedded-atom method type [21] or the similar Finnis-
Sinclair [22] and tight-binding second-moment potentials [23].
The code already supported parallelization through spatial
decomposition so that parallel speedups can be compared.

The implementation of the cell task method requires a
software environment supporting task-based programming.
The current implementation of the cell task method makes
use of Intel’s Threading Building Blocks library (TBB) for
the management of the thread pool and the tasks. TBB is a
C + + library that is available under an open-source license
for many platforms [19,24]. It should be noted, however, that
other task-based programming systems, for example, those
described in Refs. [15,17] or OpenMP, could probably be used
as well to implement the cell task method.

Since mdntp uses the linked-cell technique for the gener-
ation of the neighbor lists, the implementation of the wave
method required relatively little changes to the code since
most data structures were already in place and ready to use.
The majority of the code that had to be developed concerns
the task scheduling. This code is concentrated in one C + +
class named scheduler that provides member functions for the
creation of the dependent task schedule and for the execution
of the schedule.

The creation of the task schedule is performed during the
creation of the neighbor lists when the particles have been
binned into the cell grid. The scheduler then checks if the cell
grid has changed and runs the backward wave algorithm if
necessary. Since the schedule depends only on the cell grid,
there is no need to recreate it after every execution.

In order to execute the task schedule, a functor object is
passed to the scheduler. The scheduler then uses the execution
algorithm described in Sec. II B to submit tasks to the TBB for
execution. Whenever the TBB starts a task, the functor object is
invoked to perform the actual work of the task. The functor thus
acts as a delegate and makes it possible to perform different op-
erations like force calculation or neighbor list generation with
the same schedule. In contrast to a simple function pointer, the
functor can pass additional information to the task. For exam-
ple, in a replica style simulation where multiple copies of the
system are simulated simultaneously the functor might carry
the information on which system copy the task should operate.

If the program is run with a single thread, a special version
of the scheduler is created. This serial scheduler skips the
generation of the task schedule and does not use the TBB.

Other changes concern mainly the force-calculation and
neighbor-list generation. In the force calculation the loops over
all particles had to be changed so that they run only over the
particles in one grid cell. In addition to this the original C
code was moved to a C + + class so that the scheduler could
invoke it. Some care was required to create thread local storage
for accumulated quantities like the potential energy. Finally,
the code for the integration of the equations of motion was
modified to use a thread-based parallelization.

As mentioned in Sec. II A, a problem created by the parallel
generation of the neighbor lists is the simultaneous update of
the lists by multiple tasks. In order to avoid such conflicts, the
current implementation stores the neighbor lists of each task
separately. To this end, the data structure of each task contains
a C + + template std::vector<>. The usage of automatic
memory management might incur some overhead in terms
of both memory and speed. The experience with the code so
far indicates, however, that the impact is small.

D. Optimizations and refinements

1. Empty task skipping

For large systems with a substantial amount of empty
volumes a large number of grid cells may be empty. Instead
of scheduling a task for these cells, it makes sense to check
for empty tasks during the generation of the task schedule
and skip empty cells altogether. This may lead to a substantial
reduction of the data structures and the scheduling overhead.
The drawback of this optimization is that the task schedule
must be regenerated every time that the linked-cell algorithm
has run since particles might have moved into a previously
empty cell. Without empty-task skipping, the task schedule
needs only to be regenerated if the number of grid cells
changes. For systems that have a low number of empty cells
it is therefore more efficient not to skip the empty cells and to
save the overhead of the repeated schedule generation instead.

2. Cell task blocking

Another way to reduce the number of empty tasks and the
number of tasks to be scheduled is to group a small block of
bx × by × bz grid cells into a single cell task. This corresponds
to an enlargement of the grid cells by an integer factor for the
purpose of task scheduling (the grid cells are still generated
in the usual way so that the generation of neighbor lists is
unaffected by this optimization).

Cell task blocking is a double edged sword. On the one
hand, the reduction of the number of tasks through the blocking
can reduce the scheduling overhead. In addition to this cache
performance improves as long as all particles affected by a
task fit into the cache memory.

On the other hand, both advantages turn into disadvantages
for larger cell blocks. The thread scheduler requires a large
number of short tasks in order to obtain a good load balance,
and the cache performance will decrease if the amount of
memory used by the blocked task exceeds the size of the
cache. For these reasons task blocking should be used with

053309-4



EFFICIENT PARALLELIZATION OF SHORT-RANGE . . . PHYSICAL REVIEW E 88, 053309 (2013)

care. Benchmark tests are recommended in order to find the
optimal block size for a system.

3. Stricter definition of overlapping tasks

In many cases, the definition of overlapping tasks given in
Sec. II A is actually unnecessarily restrictive. If Newton’s third
law is exploited by a simulation program, neighbor lists are
usually constructed in such a way that pairs of particles are
accounted for only once. If particles j and k are within the
cutoff radius, j will appear in the neighbor list of k or k will be
in the neighbor list of j but not both. This is typically achieved
by limiting the search for neighbors of a particle to 14 out of
the 27 surrounding cells.

If the construction of neighbor lists excludes some of
the surrounding cells, these cells can also be excluded from
the definition of overlapping tasks as there is no risk of
simultaneous particle updates in these cells. A reduction of
the overlap area of the tasks could be exploited to place more
tasks in a wave, which increases the number of tasks that can
run simultaneously. While it is difficult to exploit the exact
arrangements of the 14 cells used for the neighbor lists, it is
easily possible to reduce the size of the overlap area from 27
to 3 × 3 × 2 = 18 cells. This would increase the number of
tasks in a wave by up to 50%.

The current implementation of the cell task method does not
employ a stricter definition of the task overlap area for two rea-
sons: First, there are actually potentials that access all 27 cells
that surround an atom even if Newton’s third law is applied. An
example for this are the forces generated by the screening fac-
tor in the modified embedded-atom method [25]. Second, this
optimizations requires a tighter coupling between the neighbor
list generation and the wave algorithm. The optimization will,
however, most likely be included in a future version of the code.

III. RESULTS

In order to test the efficiency of the proposed algorithm a se-
ries of benchmark tests involving four different configurations
were carried out. The configurations are a cubic block of fcc
bulk copper (1 000 188 atoms), a spherical copper nanoparticle
with a diameter of 30 nm (1 177 151 atoms), a porous system of
partially sintered copper nanoparticles (1 992 220 atoms), and
two sintered copper nanoparticles (57 482 atoms). These con-
figurations are very different in terms of there homogeneity and
the challenge they pose for the spatial decomposition method.

All simulations used the tight-binding second-moment
potential for copper by Cleri and Rosato [23]. The structure of
this potential is very similar to other many-body potentials of
the embedded-atom method [21] or Finnis-Sinclair [22] type.
Compared to other potentials the Cleri and Rosato potentials
use rather simple functions, and the calculation of the forces
with these potentials is therefore very fast. Due to the low
computational complexity, memory access speed can become
a limiting factor in simulations with these potentials.

Simulations of the three larger systems (the small system)
were run over a period of 100 (2500) simulation steps. All
simulations regenerated the neighbor lists at every 10th step.
Execution times were calculated as the average run time of five
independent simulations excluding the time for initialization of
the simulation and the loading or saving of the configuration.

The benchmark simulations were run on two different
computers. The first was a typical dual hex-core server with
Intel Xeon X5650 processors and 16 GB DDR3-1333 RAM.
On this multicore machine the original serial version of mdntp,
the MPI-based spatial decomposition version using 2 to 12
MPI ranks, and the new task-based version using 1 to 12
threads were tested. The second test system was a Xeon Phi
Coprocessor 5110P [4]. Only the task-based version of the
program was employed on this machine, running the code in
native mode with 1 to 240 threads.

The simulations with the task-based method used task
blocking with a block size of 2 × 2 × 2 for the three large
systems and a block size of 1 × 1 × 1 for the small system.
Empty task skipping was used except for the simulations
of bulk copper. Simulations with the MPI version employed
3d and 2d decompositions where possible in order to obtain
the most compact subvolumes. For the compact bulk system
the impact of the details of the decomposition is very small.
For the inhomogeneous systems the execution times certainly
depend on the decomposition. The general picture, however,
can be expected to remain the same. No attempt was therefore
made to optimize the decomposition of these systems.

No direct comparison of the execution times of the program
versions is attempted in the following. The execution times
ttask(p) of the task-based version running with p threads are
without exception lower than the corresponding times tmpi(p)
of the MPI version running with p ranks or the execution time
tref of the original serial program. However, the performance
gains of the cell task versions are partly due to code changes
when the force calculation was moved into a C + + class.
Comparisons of the execution times or calculation of the
speedup with respect to the fastest serial time [which is ttask(1)]
would therefore make little sense.

In order to compare the cell task algorithm with spatial
decomposition, the speedup of these algorithms with respect
to the serial version that uses the same force calculation is
used. The speedups of the MPI and cell task version are thus
calculated as tref/tmpi(p) and ttask(1)/ttask(p), respectively. This
definition eliminates the differences of the force calculation
from the results and allows a fair comparison of the merits of
both parallelization methods.

A. Bulk copper

The crystalline bulk copper configuration is an example
for a perfectly homogeneous system for which the spatial
decomposition method works well. Figure 2 shows the
parallel speedups obtained by the cell task method and spatial
decomposition for this system on the multicore machine.
As expected, spatial decomposition yields excellent parallel
efficiencies (speedup per processor or thread) above 80% for
almost all numbers of processors. There are, however, dips in
the curve at 5, 10, and 11 processors. The reason for this
is that for these numbers the regular crystal lattice of the
system cannot be divided evenly among the processors. This
emphasizes another disadvantage of spatial decomposition:
The efficiency of the method depends on details of the system,
and not all numbers of processors work equally well.

The cell task method, on the other hand, delivers much
more consistent speedup factors that increase monotonously

053309-5



R. MEYER PHYSICAL REVIEW E 88, 053309 (2013)

0 4 8 12
Number of Processors or Threads p

0

4

8

12
S

pe
ed

up
 S

(p
)

Cell Task (TBB)
Spatial decomposition (MPI)

FIG. 2. (Color online) Parallel speedup factors in simulations of
bulk copper as a function of the number of threads or processors for
the cell task method (black circles) and spatial decomposition (green
squares). The dashed blue line represents the ideal speedup of one
per processor.

with the number of threads. With the exception of the cases of
5, 10, and 11 processors, which have already been discussed,
both methods obtain similar speedups. According to the figure
the cell task method might have a slight advantage, but this
should not be overemphasized as this might be a result of the
differences in the force calculation code.

For the bulk system, the cell task method obtains a parallel
efficiency of 83.6% when using 12 threads. One might ask
whether for a system with more than one million atoms this
value should not be higher since for a system of this size the
fraction of time spent in serial code can be expected to be
negligible. While some overhead is certainly caused by the
dynamic scheduling of the tasks the principal factor limiting
parallel efficiency is memory access speed. A short test on
a system with a lower clock frequency but faster memory re-
sulted in a higher parallel efficiency of 90.2% for 12 threads. In
addition to this, the fact that the spatial decomposition program
achieves similar speedups indicates that the parallel efficiency
is limited by hardware constraints rather than the algorithms.

B. Copper nanoparticle

The spherical nanoparticle system is inhomogeneous in
the sense that the particle fills only a part of the volume of
the simulation box leaving the rest empty. For the spatial
decomposition method this configuration is challenging since
there is no simple way to divide the simulation box into an
arbitrary number of domains with equal shapes so that each
domain contains a similar number of particles. Exceptions
are the cases of two, four, and eight processors where equal
partitions can be obtained by cutting the sphere repeatedly
into halves. This is confirmed by the speedup factors obtained
on the multicore machine for this system (see Fig. 3). Spatial
decomposition in this system is efficient only for two, four,
and eight processors. In all other cases the parallel efficiency
is significantly lower in the range of 50%–60%. In contrast
to this, the cell task method yields efficiencies above 80% for

0 4 8 12
Number of Processors or Threads p

0

4

8

12

S
pe

ed
up

 S
(p

)

Cell Task (TBB)
Spatial decomposition (MPI)

FIG. 3. (Color online) Parallel speedup factors in simulations of a
spherical copper nanoparticle as a function of the number of threads
or processors for the cell task method (black circles) and spatial
decomposition (green squares). The dashed blue line represents the
ideal speedup of one per processor.

all numbers of threads. The parallel efficiency of the cell task
method for this system is 82.8% when using 12 threads, very
similar to the value obtained for the bulk system.

C. Partially sintered nanocrystalline copper

The partially sintered nanocrystalline copper system is the
most complex and inhomogenous of the three benchmark
systems (see Fig. 4). The configuration is an intermediate
result from a simulation of the coalescence of an ensemble
of copper nanoparticles. As can be seen from Fig. 4 the system
is very inhomogeneous with an irregular distribution of the
atoms and a large amount of empty space. The work presented
in this article was motivated by systems like this.

Figure 5 shows the speedup factors obtained for the
nanocrystalline configuration on the multicore machine. It is
clear from this figure that spatial decomposition is not very
effective for this kind of system. While the speedup factors

FIG. 4. Configuration of the partially sintered nanocrystalline
copper system containing 1 992 220 atoms.

053309-6



EFFICIENT PARALLELIZATION OF SHORT-RANGE . . . PHYSICAL REVIEW E 88, 053309 (2013)

0 4 8 12
Number of Processors or Threads p

0

4

8

12
S

pe
ed

up
 S

(p
)

Cell Task (TBB)
Spatial decomposition (MPI)

FIG. 5. (Color online) Parallel speedup factors in simulations of
partially sintered nanocrystalline copper as a function of the number
of threads or processors for the cell task method (black circles)
and spatial decomposition (green squares). The dashed blue line
represents the ideal speedup of one per processor.

increase more or less monotonously, they are far below the
ideal value of one per processor. The reason for this is clear
from Fig. 4. Only by great chance could a regular subdivision
of the system into domains result in a balanced workload.

The cell task method, on the other hand, has no particular
problems with the porous nature of this system. The speedups
shown in Fig. 5 for the cell task method are very similar
to those obtained for the two previous benchmark systems.
With 80.9% the parallel efficiency of the cell task method
for this system when using 12 threads is slightly lower than
for the previous two systems. This can probably be explained
by the large surface of the configuration, which reduces the
average number of neighbors per particle significantly. The
lower number of neighbors in turn affects the memory access
pattern and might reduce cache efficiency.

D. Pair of sintered copper nanoparticles

In order to test the efficiency of the cell task method for
smaller configurations, a system consisting of two sintered
copper nanoparticles with only 57 482 atoms was used.
Figure 6 shows the dumbbell-like shape of the system, which
constitutes a similar challenge to spatial decomposition as the
spherical nanoparticle.

FIG. 6. Configuration of two sintered copper nanoparticles
(57 482 atoms).

0 5 10
Number of Processors or Threads p

0

5

10

S
pe

ed
up

 S
(p

)

Cell Task (TBB)
Spatial decomposition (MPI)

FIG. 7. (Color online) Parallel speedup factors in simulations of
two sintered copper nanoparticles as a function of the number of
threads or processors for the cell task method (black circles) and
spatial decomposition (green squares).The dashed blue line represents
the ideal speedup of one per processor.

On the multicore machine, the behavior of the speedup
factor in this benchmark is similar to the nanoparticle system
(see Fig. 7). The speedup of the cell task method increases
continuously with the number of threads. The speedups for the
spatial decomposition method are generally inferior to those
obtained by the cell task method except for p = 2, 4, and 8
where the symmetry of the configuration allows an efficient
decomposition.

The main difference between the speedups of the cell task
method shown in Fig. 7 and the other benchmark systems is
a slight overall reduction of the cell task method’s parallel
efficiency. When using 12 threads, the efficiency obtained for
this system is only 77.3%. The reason for this reduction is
most likely the growing impact of serial code.

E. Simulations on Xeon Phi coprocessor

The benchmark results presented in the preceding sections
demonstrate the efficiency of the cell task method on typical
multicore machines. In this section the efficiency of the method
on a many-core system is studied.

The Intel Xeon Phi coprocessors 5110P integrates 60
compute cores on a single chip and provides a large memory
bandwidth. Each core supports four hardware threads and has
512-bit vector registers that allow the simultaneous execution
of eight double-precision floating-point operations. Under
normal conditions, optimal performance can be achieved only
if at least two threads are running on each core. For a detailed
discussion of these devices the reader is referred to Ref. [4].

Figure 8 shows the parallel speedups obtained with the
four benchmark systems used in this work on the Xeon Phi
coprocessor using up to 240 threads. Interestingly, the behavior
of all four systems is different.

Until p = 60 threads, the speedups for the three large
systems stay close to the line of ideal speedup. At p = 60,
the speedup of the three systems range from 50.0 to 54.5 (cf.
Table I), corresponding to parallel efficiencies between 83.4%

053309-7



R. MEYER PHYSICAL REVIEW E 88, 053309 (2013)

0 60 120 180 240
Number of Threads p

0

20

40

60

80

100
S

pe
ed

up
 S

(p
)

FIG. 8. (Color online) Parallel speedup of the cell task method
on a Xeon Phi coprocessor. Benchmark systems are bulk Cu
(black circles), Cu nanoparticle (green diamonds), partially sintered
nanocrystalline copper (red squares), and a pair of Cu nanoparticles
(purple triangles). The dashed blue line indicates the ideal speedup
of one per thread.

and 90.8%. At this point, the three curves exhibit a sharp bend,
but the speedup continues to rise at a lower rate until p = 120.
This is due to the fact that now more than one thread is running
per core. Although the Xeon Phi microarchitecture requires
more than one thread per core for optimal performance, it
is not guaranteed that the performance will be doubled by a
second thread. The threads share after all some of the physical
units of the core like level 1 and 2 caches. A likely reason
for the slower increase of the speedup for p in the range from
60 to 120 is an increased amount of cache misses.

Beyond p = 120 the speedup curves of the three large
benchmark systems show a more or less pronounced dip
(hardly noticeable for the porous nanocrystalline system and
most visible in case of the nanoparticle) after which the
speedup continues to rise. The reason for this dip is not yet
understood. The bulk system and the porous nanocrystalline
system reach their maximum speedup at p = 180 after which
the speedup decreases for both systems. In contrast to this, the
nanoparticle simulation increases its speedup until p = 240.

Compared to the larger benchmark systems, simulations of
the sintered nanoparticles achieve significantly lower speedups
on the Xeon Phi. The speedup curve for this system deviates

TABLE I. Speedup of benchmark systems on the Xeon Phi
coprocessor: Number of threads pmax for which the maximum
speedup was obtained together with the corresponding speedup
S(pmax), and the speedup for 60 threads S(60) and maximum speedup
Sref (pmax) with respect to the 12-core test machine.

System pmax S(pmax) S(60) Sref (pmax)

Bulk 180 91.9 54.5 11.8
Nanoparticle 240 92.8 50.0 13.4
Porous nanocrystalline 180 74.5 51.9 9.8
Sintered nanoparticles 115 50.1 40.1 7.3

early on from the ideal behavior, and it reaches a plateau around
p = 100. For larger values of p the curve decreases with clear
steps at p = 120 and p = 180. The lower performance of the
Xeon Phi in this benchmark can be explained by the system
size. The small volume of the configuration does not allow for
more than about 100 tasks to be run simultaneously. Adding
more threads can therefore not accelerate the computations.
The decrease of the efficiency for larger values of p is probably
caused by increased management overhead when the internal
task queues run empty. A similar effect might be the reason
for the efficiency decrease in case of the bulk system beyond
p = 180.

Table I summarizes the maximum speedups obtained for
the four benchmark systems on the Xeon Phi coprocessor. The
best speedups above 90 are achieved by the bulk system and
the nanoparticle. The porous nanocrystalline system reaches
a maximum speedup of 75, whereas the small system of two
sintered nanoparticles is limited to S(pmax) = 51.

The table also gives the speedup of the systems on the
coprocessor with respect to single-thread execution on the
12-core machine. These values are not overly impressive. One
has to keep in mind, however, that the individual cores of
the coprocessor are considerably less powerful than a modern
general purpose CPU. As pointed out in Ref. [4], the key to
a strong performance of the Xeon Phi coprocessor is a highly
parallel algorithm combined with vectorization. In this work
only the first part has been addressed.

IV. SUMMARY AND CONCLUSIONS

This article describes the design of a parallel algorithm for
MD simulations with short-ranged forces on single node multi-
and many-core systems. The aim of the cell task algorithm
is to provide an efficient parallelization method for systems
where spatial decomposition is not effective. Examples for
such problematic cases are large inhomogeneous systems like
nanostructured materials or nanodevices.

The cell task method makes use of the linked-cell technique
to subdivide the force calculation into small tasks. The tasks
are then executed by a team of threads according to a dependent
task schedule. This schedule is an important part of the
algorithm. It avoids the situation that a particle is accessed
by two threads simultaneously. This effectively eliminates the
need for synchronization constructs in the force calculation,
which makes the algorithm very efficient.

Benchmark simulations on a 12-core system show clearly
that for inhomogeneous configurations like nanoparticles or
porous systems the cell task method performs significantly bet-
ter than spatial decomposition. For a homogeneous crystalline
bulk system both methods achieve comparable speedups. An
added advantage of the cell task method is its consistent
performance. The speedup factor of this method increases
continuously with the number of threads in a very similar
manner for all types of systems. It relieves the user from
technical considerations like which spatial decomposition
strategy works best for a given system.

The benchmarks on the multicore system reveal two factors
that limit the parallel efficiency of the cell task method:
memory access speed and small system size. Neither of these
factors is specific to the cell task method. No parallelization

053309-8



EFFICIENT PARALLELIZATION OF SHORT-RANGE . . . PHYSICAL REVIEW E 88, 053309 (2013)

strategy will work if the memory system cannot deliver the data
fast enough, and every MD program contains inevitably some
serial code that limits the parallel efficiency. Note, however,
that in the current implementation of the cell task method the
construction of the task schedule increases the fraction of time
spent in serial code slightly as the wave algorithm has not been
parallelized yet.

Execution of the benchmark simulations on a 60-core Intel
Xeon Phi coprocessor shows that the cell task method scales
to large numbers of threads. For large configurations the
speedup increases linearly and close to the ideal line until
p = 60. Beyond 60 threads, the speedups increase at a lower
rate since the number of threads per core is now greater
than one. Running more than one thread per core is almost
always beneficial on the Xeon Phi since it hides latencies
of the microarchitecture [4]. Table I shows that the three
larger benchmark systems reach their maximum speedups
on the Xeon Phi at three or four threads per core. These
maximum speedups S(pmax) range from 75 to 93, and they
are 44% to 86% higher than the speedups S(60) obtained at
one thread per core.

The smallest benchmark system does not perform optimally
on the Xeon Phi coprocessor. The reason for this is that the
configuration is not large enough to keep two or more threads
per core busy. The dependent task schedule limits the number
of tasks that can run simultaneously to at most 1/27 of the
total number of tasks. In order to keep all threads running, the
number of tasks must therefore be at least 27 times the number
of threads. In practice optimal performance might require an
even substantially larger number of tasks per thread. More
work will be necessary to study the performance limits of the
algorithm for smaller systems.

All benchmarks shown in this work used the copper
potential by Cleri and Rosato [23]. This choice might have
limited the parallel efficiency due to the low computational
complexity of the potential, which emphasizes memory access
issues. It would be interesting to see the performance of the
cell task algorithm with a computationally more demanding
potential like, for example, one of the EAM potentials in
Ref. [26]. With such a potential higher parallel efficiencies
closer to the ideal limit can be expected since the influence
of memory access speed and serial code execution would be
diminished.

Work is currently in progress to let the program take ad-
vantage of the vector capabilities of the Xeon Phi architecture.
In addition to this it is planned to extend the method into a
hybrid scheme for distributed systems that combines the cell
task algorithm for the parallelization on the compute nodes
with spatial decomposition to share the work between multiple
nodes.

ACKNOWLEDGMENTS

This work has been supported financially by Laurentian
University and the Natural Sciences and Engineering Research
Council of Canada (NSERC). Generous allocation of computer
time on the facilities of the Shared Hierarchical Academic
Research Network (SHARCNET) [27] and Compute/Calcul
Canada is gratefully acknowledged.

APPENDIX: GENERATION OF TASK WAVES

The wave algorithm generates the dependent task schedule
for the cell task method from a series of sets of nonoverlapping
tasks (waves). This appendix gives details about the construc-
tion of the waves.

The indices of the cells belonging to one wave are generated
from the Cartesian product of three sets of integers (one for
each dimension). To give a two-dimensional example, the wave
shown in Fig. 1 could be constructed from the product {2,5} ×
{2,5} [we assume here and in the following that the cell in the
lower left corner has the indices (1,1)]. The product {3,6} ×
{2,5} would generate a similar wave with the tasks shifted one
cell to the right. Note that not all index sets can be used to
generate a wave. In order to obtain nonoverlapping task, the
differences between all indices in a set must be at least three
(subject to the boundary condition of that dimension; for a
dimension with D cells and periodic boundary conditions, the
difference between index 1 and D is 1). The product {2,4} ×
{2,5}, for example, does not give a valid wave.

The number of index sets necessary to cover all cells in one
dimension depends on two factors. If the number of cells D in
that dimension is a multiple of three or if periodic boundary
conditions do not apply in that direction, three index sets are
enough. These three sets start with the numbers 1, 2, and 3,
respectively, and advance in steps of three to the end of the
system. For example, all cells of a nonperiodic system with
D = 14 are covered by the following three sets: {1,4,7,10,13},
{2,5,8,11,14}, and {3,6,9,12}. This coverage of the cells in one
dimension is shown by the following figure where the numbers
indicate to which wave the cell belongs:

1 2 3 1 2 3 1 2 3 1 2 3 1 2

It is easy to see that the cells belonging to the same wave are
separated by at least two cells not belonging to that wave.

Things are more complicated for directions where periodic
boundary conditions apply and where D is not a multiple of
three. In this case a fourth index set is required. The index sets
for such a case can be obtained by advancing continuously
in steps of three, wrapping around at the boundary D. For a
periodic system with D = 14, the first set is then {1,4,7,10}.
Unlike the nonperiodic case, 13 cannot be included in this set
as that cell overlaps with the first. By advancing in steps of
three we obtain the second set {13,2,5,8}. Advancing further in
steps of three we obtain for the third and fourth sets {11,14,3,6}
and {9,12}. The coverage of the cells in this case is thus

1 2 3 1 2 3 1 2 4 1 3 4 2 3

A complete set of waves in more than one dimension can
be generated by nested loops where each loop generates the
index sets for one dimension. In order to keep the number of
dependencies between tasks low, it is best if from one wave to
the next, the task pattern is shifted only in one direction. This
is achieved if the inner loops are not reset when one of the
outer loops advances. Instead, the inner loops repeat their last
pattern, possibly filling it to the maximum number of cells.
This is explained by the next figure, which shows the first six

053309-9



R. MEYER PHYSICAL REVIEW E 88, 053309 (2013)

waves in a periodic system with 14 × 6 cells:

5 6 5 6 5 6 5 6

1 2 3 1 2 3 1 2 4 1 3 4 2 3

5 6 5 6 5 6 5 6

1 2 3 1 2 3 1 2 4 1 3 4 2 3

The first four waves use the same index set {1,4} for the
y direction and thus essentially repeat the one-dimensional
example given above. When going from the fourth to the fifth
wave, the index set for the x direction does not return to the
set of the first wave. Instead the set reuses the indices from
the fourth wave {9,12} and completes the set by advancing in
steps of three, which leads to leads to the set {9,12,1,4}. The
sixth set is then generated by further advances in steps of three
as described above.

Since each dimension is covered by three or four sets
of indices, the total number of waves for a system with d

dimensions is given by a product of d factors where each
factor is 3 or 4 depending on the dimensions of the cell grid
and the boundary conditions. In three dimensions the total
number of waves is thus 27, 36, 48, or 64.

[1] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids
(Clarendon, Oxford, 1987).

[2] D. Frenkel and B. Smit, Understanding Molecular Simulation
(Academic Press, San Diego, 2002).

[3] D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd
ed. (Cambridge University Press, Cambridge, 2004).

[4] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High
Performance Programming (Morgan Kaufman, New York,
2013).

[5] J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput. Phys.
227, 5342 (2008).

[6] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen,
Comput. Phys. Commun. 91, 43 (1995).

[7] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[8] http://www.openmp.org/.
[9] B. Chapman, G. Jost, and R. Van der Pas, Using OpenMP (MIT

Press, Cambridge, MA, 2008).
[10] M. Snir, Theor. Comp. Sys. 37, 295 (2004).
[11] D. E. Shaw, J. Comput. Chem. 26, 1318 (2005).
[12] K. J. Bowers, R. O. Dror, and D. E. Shaw, J. Phys. Conf. Series

16, 300 (2005).
[13] K. J. Bowers, R. O. Dror, and D. E. Shaw, J. Chem. Phys. 124,

184109 (2006).

[14] M. Korch and T. Rauber, Concurrency Comput. Pract. Exper.
16, 1 (2004).

[15] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, Int. J. High
Perform. C 23, 284 (2009).

[16] H. Vandierendonck, P. Pratikakis, and D. Nikolopoulos, in
Online Proceedings of the 3rd USENIX Workshop on Hot Topics
in Parallelism (USENIX, Berkeley, CA, 2011).

[17] T. Rauber and G. Rünger, Concurrent Eng. Res. A. 20, 161
(2012).

[18] D. C. Rapaport, Comput. Phys. Commun. 62, 198 (1991).
[19] http://threadingbuildingblocks.org/.
[20] R. Meyer, Ph.D. thesis, Gerhard-Mercator-Universität,

Duisburg, Germany, 1998.
[21] M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
[22] M. W. Finnis and J. E. Sinclair, Phil. Mag. A 50, 45 (1984).
[23] F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
[24] J. Reinders, Intel Threading Building Blocks: Outfitting C++

For Multi-Core Processor Parallelism (O’Reilly Media, Se-
bastopol, CA, 2007).

[25] M. I. Baskes, Phys. Rev. B 46, 2727 (1992).
[26] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y.

Sun, and M. Asta, Phil. Mag. 83, 3977 (2003).
[27] http://www.sharcnet.ca/.

053309-10

http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://dx.doi.org/10.1006/jcph.1995.1039
http://www.openmp.org/
http://dx.doi.org/10.1002/jcc.20267
http://dx.doi.org/10.1088/1742-6596/16/1/041
http://dx.doi.org/10.1088/1742-6596/16/1/041
http://dx.doi.org/10.1063/1.2191489
http://dx.doi.org/10.1063/1.2191489
http://dx.doi.org/10.1002/cpe.745
http://dx.doi.org/10.1002/cpe.745
http://dx.doi.org/10.1177/1094342009106195
http://dx.doi.org/10.1177/1094342009106195
http://dx.doi.org/10.1177/1063293X12446664
http://dx.doi.org/10.1177/1063293X12446664
http://dx.doi.org/10.1016/0010-4655(91)90095-3
http://threadingbuildingblocks.org/
http://dx.doi.org/10.1103/PhysRevB.29.6443
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1103/PhysRevB.48.22
http://dx.doi.org/10.1103/PhysRevB.46.2727
http://dx.doi.org/10.1080/14786430310001613264
http://www.sharcnet.ca/



