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Exact transparent boundary condition for the three-dimensional Schrödinger equation
in a rectangular cuboid computational domain
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We report an exact transparent boundary condition (TBC) on the surface of a rectangular cuboid for the
three-dimensional (3D) time-dependent Schrödinger equation. It is obtained as a generalization of the well-known
TBC for the 1D Schrödinger equation and of the exact TBC in the rectangular domain for the 3D parabolic wave
equation, which we reported earlier. Like all other TBCs, it is nonlocal in time domain and relates the boundary
transverse derivative of the wave function at any given time to the boundary values of the same wave function at
all preceding times. We develop a discretization of this boundary condition for the implicit Crank-Nicolson finite
difference scheme. Several numerical experiments demonstrate evolution of the wave function in free space as well
as propagation through a number of 3D spherically symmetrical and asymmetrical barriers, and, finally, scattering
off an asymmetrical 3D potential. The proposed boundary condition is simple and robust, and can be useful in com-
putational quantum mechanics when an accurate numerical solution of the 3D Schrödinger equation is required.
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I. INTRODUCTION

The time-dependent Schrödinger equation (TDSE) is a
basic law of quantum physics. It is used to study the evolution
of various atomic and molecular systems, including many
problems of solid state physics. Its numerical solution, in the
case of a time- and coordinate-dependent compact potential,
is usually based on finite difference (FD) schemes, such as
the frequently used Crank-Nicolson implicit scheme [1]. One
of the problems with any FD method is a need for suitable
boundary conditions. This is so because any numerical scheme
is necessarily confined to a finite computational domain,
while realistic physical problems are often posed in infinite
domains and therefore have spatially unbound solutions. Such
a boundary condition has to substitute for the infinite physical
domain with some quantitative relations between the wave
function values at the artificial boundary. This problem has
been intensively studied in computational optics [2] and
radiophysics for the Leontovich-Fock parabolic wave (Fresnel)
equation—an exact analog of TDSE [3].

A bold and physically clear concept is aimed at a fully
transparent (nonreflective) boundary condition (TBC), allow-
ing any wave that reaches a boundary from inside of the
computational domain to propagate outward and never return,
in other words, providing zero reflection from the domain’s
boundary. As the way to achieve this ambitious goal sometimes
is not straightforward, other types of boundary conditions such
as periodic, rigid-wall, and absorptive conditions [4], though
not exact and not quite satisfactory, still are widely used in
computational quantum mechanics. For the two-dimensional
(2D) parabolic wave equation in free space, equivalent to the
1D Schrödinger equation, such a TBC was formulated more
than 20 years ago and now is known in several forms, including
the Basakov-Popov-Papadakis (BPP) [3,5,6] and Schmidt-
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Deuflhard-Yevick (SDY) formulations [7]. The SDY condition
was specifically tailored for an implicit FD implementation
and is unconditionally stable [7]. These TBCs have been
extensively used for the 1D Schrödinger equation as well [8,9].
Transparent boundary conditions are generally not local and
sometimes rather complicated. They relate the transversal
boundary derivative of the wave function at the current spatial
point or time to the boundary values of the wave function at
all previous times or spatial points [3].

For TDSEs of higher dimensions, the results have been
much more limited so far. There exist known transparent
boundary conditions on the circular and spherical boundaries
in the 2D and 3D spaces, respectively [3,10,11]; see also [6].
There is also a TBC on a straight artificial boundary or plane,
which, however, is not suitable for practical calculations [3,9].
Unfortunately, in the 2D and 3D cases, no exact TBCs
have been known for a rectangular or rectangular cuboid
computational domain (RCCD) (and generally for hyper-
rectangular domains in d-dimensional space), respectively,
which are the most convenient domains in practice. The
most serious problem encountered in a general hyperrectan-
gular computational domain is the treatment of the corners
(vertices).

In our previous paper, we reported an exact transparent
boundary condition in the rectangular domain for the 3D
parabolic wave equation [12], which is equivalent to the 2D
TDSE. Here we report an exact 3D transparent boundary
condition for the 3D Schrödinger equation in the RCCD.
Like its 2D predecessor, it relates the boundary transversal
derivative of the wave function at any given time to the
boundary values of the wave function and the values of a
specially constructed auxiliary function at all previous times.
The validity and usefulness of the proposed condition is
demonstrated by a series of numerical experiments of a particle
propagating in free space as well as propagation through
various three-dimensional symmetrical and asymmetrical po-
tential barriers or scattering by compact 3D potentials.
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II. DERIVATION OF BOUNDARY CONDITION

A. One-dimensional case

It is useful for further understanding to derive the transpar-
ent boundary condition for the 1D Schrödinger equation [12]:

i
∂ψ

∂t
+ ∂2ψ

∂x2
= 0. (1)

Here, ψ is the wave function, t is time, and x is the spatial
coordinate. Let the computational domain be defined as
|x| < a. It is assumed that the wave function ψ satisfies Eq. (1)
outside the computational domain including its boundary. Let
it also satisfy an initial condition ψ(t = 0,x) = ψ0(x), where
ψ0(x) ≡ 0 for |x| � a. Generalization to the case when ψ0

is not zero is possible as well [6]. The transparent boundary
condition can be obtained in the following way. First, the
Laplace transform with respect to time is applied to (1):

ipF (p) + ∂2F (p)

∂x2
= 0. (2)

Here p is the Laplace conjugate variable. It was taken into
account that ψ0(x) = 0 when |x| � a. Equation (2) has two
linearly independent solutions; the first one corresponds to the
waves propagating from inside of the computational domain,
and the second one corresponds to the waves propagating
from outside. The latter solution should be neglected because
it is assumed that all sources of the initial and diffracted waves
are inside the computational domain. For the upper boundary,
at x = a, the required solution is proportional to exp(i

√
ipx),

and for the lower boundary, at x = −a, it is proportional to
exp(−i

√
ipx). Using the inverse Laplace transform, one can

see that

ψ(t,x) = 1

2πi

∫ c+i∞

c−i∞
exp(pt)C±(p) exp(±i

√
ipx) dp, (3)

where C±(p) are some functions depending on the whole
field structure inside the computational domain. Now, taking
the derivative with respect to x of (3) and setting x = ±a, we
obtain

∂ψ

∂x
= ± i

√
i

2πi

∫ c+i∞

c−i∞
exp(pt)

√
pC±(p) exp(i

√
ipx)dp

= ± i
√

i

2πi

∂

∂t

∫ c+i∞

c−i∞
exp(pt)

1√
p

C±(p) exp(i
√

ipx)dp

= ∓
√

1

πi

∂

∂t

∫ t

0

ψ(ζ, ± a)√
t − ζ

dζ. (4)

In this derivation, the convolution property of the Laplace
transform has been used. The boundary condition (4) is known

as the Basakov-Popov-Papadakis TBC [7]. Note that the
functions C±(p) disappear, which means that condition (4)
holds for an arbitrary structure of the wave function, initial
value, and potential inside the computational domain.

B. 3D boundary condition on a plane border

As the next step, a 3D TBC for a planar artificial boundary
will be derived. The 3D TDSE that we are concerned with in
this paper can be written as

i
∂ψ

∂t
+ ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
− U (x,y,z)ψ = 0, (5)

where x, y, and z are coordinates and U is a potential. We will
generally assume that the potential has a compact support, i.e.,
that it falls to zero outside a compact computational domain
and on its boundary, although, if potential U has a noncompact
part that does not depend on spatial coordinates, it is possible
by an appropriate gauge transformation to reduce Eq. (5) to
one with a compact potential. So, for a compact potential,
Eq. (5) outside the computational domain and at its border is

i
∂ψ

∂t
+ ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= 0. (6)

Let us define a planar boundary as x = ±a, which will serve
as a boundary of the computational domain. The initial values
of ψ at t = 0 for |x| � a are equal to zero. In order to obtain
a TBC for this 3D problem, we apply Fresnel transform to the
wave function ψ in the half space defined by x � a or x � −a:

�(t,μ,ν,x,y,z) =
∫ +∞

−∞

∫ +∞

−∞
ψ(t,x,η,ζ )	(μ − t,y − η)

×	(ν − t,z − ζ ) dηdζ, (7)

where

	(s,p) =
√

i

4πs
exp

(
i
p2

4s

)
,

� is an auxiliary function of six variables, and 	 is the
propagator of the 1D TDSE, which itself satisfies the 1D
TDSE. By definition, function � satisfies Eq. (1) separately
for pairs of variables (μ,y) and (ν,z):

i
∂�

∂μ
+ ∂2�

∂y2
= 0, (8)

i
∂�

∂ν
+ ∂2�

∂z2
= 0. (9)

For the derivative ∂�/∂t , one can prove, using integration by
parts, definition (7), and Eqs. (6), (8), and (9), that

i
∂�

∂t
= i

∫ +∞

−∞

∫ +∞

−∞

∂ψ(t,x,η,ζ )

∂t
	(μ − t,y − η)	(ν − t,z − ζ )dηdζ

+ i

∫ +∞

−∞

∫ +∞

−∞
ψ(t,x,η,ζ )

∂	(μ − t,y − η)

∂t
	(ν − t,z − ζ )dηdζ

+ i

∫ +∞

−∞

∫ +∞

−∞
ψ(t,x,η,ζ )	(μ − t,y − η)

∂	(ν − t,z − ζ )

∂t
dηdζ
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= −i

∫ +∞

−∞
ψ(t,x,η,ζ )

∂	(μ − t,y − η)

∂μ
	(ν − t,z − ζ )dηdζ

− i

∫ +∞

−∞

∫ +∞

−∞
ψ(t,x,η,ζ )	(μ − t,y − η)

∂	(ν − t,z − ζ )

∂ν
dηdζ

−
∫ +∞

−∞

∂2ψ(μ,x,η,ζ )

∂x2
	(μ − t,y − η)	(ν − t,z − ζ )dηdζ

−
∫ +∞

−∞

∫ +∞

−∞

∂2ψ(μ,x,η,ζ )

∂η2
	(μ − t,y − η)	(ν − t,z − ζ )dηdζ

−
∫ +∞

−∞

∫ +∞

−∞

∂2ψ(μ,x,η,ζ )

∂ζ 2
	(μ − t,y − η)	(ν − t,z − ζ )dηdζ

= −i
∂�

∂μ
− i

∂�

∂ν
− ∂2�

∂x2
− ∂2�

∂y2
− ∂�

∂z2
= −∂2�

∂x2
. (10)

So, the function � also satisfies Schrödinger equation (1)
relative to pair (t,x):

i
∂�

∂t
+ ∂2�

∂x2
= 0. (11)

From definition (7), the limiting relation follows as well,

�(t,t,t,x,y,z) = ψ(t,x,y,z). (12)

In each of the Eqs. (8), (9), and (11), � is considered as
a function of two variables: t and x, μ and y, or ν and z,
respectively, depending only parametrically on the remaining
variables. This property makes the derivation of the TBC for
a planar boundary fairly straightforward. Using Eq. (1) and
condition (4), we can state that at x = ±a, function � satisfies
a similar TBC:

∂�

∂x
= ∓

√
1

πi

∂

∂t

∫ t

0

�(τ,μ,ν, ± a,y,z)√
t − τ

dτ. (13)

Now, taking into account (12), the following condition at x =
±a for the function ψ can be obtained:

∂ψ

∂x
= ∓

√
1

πi

∂

∂t

∫ t

0

�(τ,μ,ν, ± a,y,z)√
t − τ

dτ

∣∣∣∣∣
t=μ=ν

. (14)

The function �(τ,μ,ν,x,y,z) in the plane x = ±a at t = μ =
ν can be found by solving Eqs. (8) and (9) or an equivalent 2D
TDSE:

i
∂�(τ,t,t, ± a,y,z)

∂t
+ ∂2�(τ,t,t, ± a,y,z)

∂y2

+ ∂2�(τ,t,t, ± a,y,z)

∂z2
= 0. (15)

The identity (12) serves as the initial condition. The solution
of (15) can be done numerically with a FD scheme supple-
mented with a similar transparent 2D TBC (see [12]) at the
boundaries at y = ±b and z = ±c in the plane x = ±a.

C. 3D boundary condition in rectangular cuboid domain

Let us now consider a computational domain defined as

|x| < a, |y| < b, |z| < c. (16)

In the (x,y,z) space, the domain is a rectangular cuboid. Its
projections on the (x,y), (y,z), and (x,z) planes are rectangles.
On each of the six lateral facets of the cuboid, the boundary
condition of the (14) type is valid because all six facets are parts
of infinite planes. Evaluation of the function �(t,μ,ν,x,y,z)
on the facets using Eq. (15) involves TBCs at the edges
of the cuboid. It means that in order to impose a transpar-
ent boundary condition on the functions �(τ,t,t, ±a,y,z),
�(t,μ,t,x, ±b,z), or �(t,t,ν,x,y, ±c), one needs to know
the values of � at the cuboid’s 12 edges �(τ,μ,t, ±a, ±b,z),
�(t,μ,ν,x, ±b, ±c), or �(τ,t,ν, ±a,y, ±c), which, in turn,
can be found by solution of type (1) equations with transparent
boundary conditions formulated at the eight vertices of the
cuboid �(τ,μ,ν, ±a, ±b, ±c).

Below we describe a simple and efficient code implement-
ing this boundary condition.

III. NUMERICAL IMPLEMENTATION

A. Finite difference scheme

We look for a numerical solution of the 3D Schrödinger
equation (5) inside a finite computational domain. The poten-
tial energy U is supposed to vanish outside the computational
domain and at its boundary, where Eq. (5) reduces to (6). At
the initial time t = 0, the wave function takes a compact initial
value ψ = ψ0(x,y,z). To solve this boundary value problem,
we use the standard Crank-Nicolson scheme [1].

There exist, of course, different numerical schemes, which
can be used to solve parabolic type equations, such as the
alternating direction implicit method [13], a very efficient
Chebyshev expansion of the time evolution operator method
[14], and generalized Crank-Nicolson methods [15]. The first
of them—alternating direction implicit method—is actually
a perfect match to the boundary condition considered in the
present paper, as both involve splitting the initial multidimen-
sional equation into a number of one-dimensional equations.
Still we chose the Crank-Nicolson scheme but only as a
way to show that the multidimensional transparent boundary
condition is compatible with this standard and widely used FD
scheme. Other methods may be used in our future works.
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The computational grid is defined as follows. For
simplicity, we assume that a = b = c. A generalization
to the case when a �= b �= c is trivial. The computational
step along all spatial axes is h = 2a/N , where N + 1 is
the number of grid nodes in the x, y, and z direction.

The total number of spatial nodes is (N + 1)3 − 12(N −
1) − 8, as the eight vertices and 12 edges are excluded.
The time step length is τ . The number of t steps is Nτ .
The Crank-Nicolson approximation to (5) can be written
as

−i
ψn+1

m,s,p − ψn
m,s,p

τ
= −Un+1

m,s,pψn+1
m,s,p + Un

m,s,pψn
m,s,p

2
+ ψn+1

m+1,s,p − 2ψn+1
m,s,p + ψn+1

m−1,s,p

2h2
+ ψn

m+1,s,p − 2ψn
m,s,p + ψn

m−1,s,p

2h2

+ ψn+1
m,s+1,p − 2ψn+1

m,s,p + ψn+1
m,s−1,p

2h2
+ ψn

m,s+1,p − 2ψn
m,s,p + ψn

m,s−1,p

2h2
+ ψn+1

m,s,p+1 − 2ψn+1
m,s,p + ψn+1

m,s,p−1

2h2

+ ψn
m,s,p+1 − 2ψn

m,s,p + ψn
m,s,p−1

2h2
, (17)

where

ψn
m,s,p = ψ(τn,hm,hs,hp),

Un
m,s,p = U (τn,hm,hs,hp),

0 � n � Nτ , 1 � m,s,p � N − 1,

and n is the current marching step. There is a total of (N − 1)3 equations in Eq. (17). After a simplification, they become

−ψn+1
m+1,s,p − ψn+1

m,s+1,p − ψn+1
m,s,p+1 + Cn+1

m,s,pψn+1
m,s,p − ψn+1

m−1,s,p − ψn+1
m,s−1,p − ψn+1

m,s,p−1

= ψn
m+1,s,p + ψn

m,s+1,p + ψn
m,s,p+1 − C̃n

m,s,pψn
m,s,p + ψn

m−1,s,p + ψn
m,s−1,p + ψn

m,s,p−1, (18)

where

Cn
m,s,p = 6 + h2Un

m,s,p − 2ih2/τ, (19)

C̃n
m,s,p = 6 + h2Un

m,s,p + 2ih2/τ. (20)

The boundaries of the computational domain are located at m,s,p = N − 1 and m,s,p = 1. Transparent boundary conditions in
the form of (14) can be expressed in finite differences as

ψn+1
N,s,p − ψn+1

N−2,s,p

2h
+ 2σ

(
ψn+1

N−1,s,p −
n∑

l=1

γl�
n+1−l,n+1,n+1
N−1,s,p

)
= 0, x = a, (21)

ψn+1
2,s,p − ψn+1

0,s,p

2h
− 2σ

(
ψn+1

1,s,p −
n∑

l=1

γl�
n+1−l,n+1,n+1
1,s,p

)
= 0, x = −a, (22)

ψn+1
m,N,p − ψn+1

m,N−2,p

2h
+ 2σ

(
ψn+1

m,N−1,p −
n∑

l=1

γl�
n+1,n+1−l,n+1
m,N−1,p

)
= 0, y = a, (23)

ψn+1
m,2,p − ψn+1

m,0,p

2h
− 2σ

(
ψn+1

m,1,p −
n∑

l=1

γl�
n+1,n+1−l,n+1
m,1,p

)
= 0, y = −a, (24)

ψn+1
m,s,N − ψn+1

m,s,N−2

2h
+ 2σ

(
ψn+1

m,s,N−1 −
n∑

l=1

γl�
n+1,n+1,n+1−l
m,s,N−1

)
= 0, z = a, (25)

ψn+1
m,s,2 − ψn+1

m,s,0

2h
− 2σ

(
ψn+1

m,s,1 −
n∑

l=1

γl�
n+1,n+1,n+1−l
m,s,1

)
= 0, z = −a, (26)

where [5]

γl = 2

(
√

l + 1 + √
l)(

√
l + √

l − 1)(
√

l + 1 + √
l − 1)

,

σ = 1√
iπτ

,

�n,q,r
m,s,p = �(τn,τq,τr,hm,hs,hp), ψn

m,s,p = �n,n,n
m,s,p.

The normal derivatives at the boundaries are calculated in the second order approximation as differences between the values of
wave function at m,s,p = 2 and m,s,p = 0 or m,s,p = N and m,s,p = N − 2, respectively. Conditions (21) and (22) hold for
the facets at x = ±a, while conditions (23)–(26) are for those at y = ±a and z = ±a, respectively. The discretized boundary
conditions shown above, as well as conditions (37)–(39) and (41)–(43) below, were obtained using the trapezoidal quadrature
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rule for the integral in Eq. (14) with subsequent numerical differentiation (see [5] and Eq. (3.7) in Ref. [3]). The function ψ

appears in the sum in parentheses due to (12). There is a total of 6(N − 1)2 equations in Eqs. (21)–(26). Together with Eq. (17),
there are a total of (N − 1)3 + 6(N − 1)2 = (N + 1)3 − 12(N − 1) − 8 equations, which is equal to the number of grid nodes in
Eq. (17). It is worth mentioning that in the 1D case, the discretization (21)–(26) has been found to be unconditionally stable [3].

The auxiliary function � on the facets is governed by differential equation (15), which also can be approximated by a
Crank-Nicolson FD scheme. For instance, on the facet at x = a (m = N − 1), the FD equations are

−�
q,n+1,n+1
N−1,s+1,p − �

q,n+1,n+1
N−1,s,p+1 + D�

q,n+1,n+1
N−1,s,p − �

q,n+1,n+1
N−1,s−1,p − �

q,n+1,n+1
N−1,s,p−1

= �
q,n,n

N−1,s+1,p + �
q,n,n

N−1,s,p+1 − D̃�
q,n,n

N−1,s,p + �
q,n,n

N−1,s−1,p + �
q,n,n

N−1,s,p−1, (27)

where

D = 4 − 2ih2/τ, D̃ = 4 + 2ih2/τ, 0 � q � n.

Equations similar to (27) can be written for the remaining five facets. They express the function �
q,n+1,n+1
N−1,s,p for each q in terms

of function �
q,n,n

N−1,s,p from the previous computational step n. So, there are a total of six 3D arrays N2 × n corresponding to the
six facets that need to be stored for use at the n + 1 computational step.

Equations (27) should be solved with the following transparent boundary conditions at the four edges at y = ±a and z = ±a,
which are fully analogous to (21)–(26):

�
q,n+1,n+1
N−1,N,p − �

q,n+1,n+1
N−1,N−2,p

2h
+ 2σ

(
�

q,n+1,n+1
N−1,N−1,p −

n∑
l=1

γl�
q,n+1−l,n+1
N−1,N−1,p

)
= 0, y = a, (28)

�
q,n+1,n+1
N−1,2,p − �

q,n+1,n+1
N−1,0,p

2h
− 2σ

(
�

q,n+1,n+1
N−1,1,p −

n∑
l=1

γl�
n+1,n+1−l,n+1
N−1,1,p

)
= 0, y = −a, (29)

�
q,n+1,n+1
N−1,s,N − �

q,n+1,n+1
N−1,s,N−2

2h
+ 2σ

(
�

q,n+1,n+1
N−1,s,N−1 −

n∑
l=1

γl�
n+1,n+1,n+1−l
N−1,s,N−1

)
= 0, z = a, (30)

�
q,n+1,n+1
N−1,s,2 − �

q,n+1,n+1
N−1,s,0

2h
− 2σ

(
�

q,n+1,n+1
N−1,s,1 −

n∑
l=1

γl�
n+1,n+1,n+1−l
N−1,s,1

)
= 0, z = −a. (31)

The � function on the facet’s edges from (28)–(31) can be found, in turn, by solving Eqs. (8) or (9) with the following FD
schemes:

−�
q,r,n+1
N−1,N−1,p+1 + B�

q,r,n+1
N−1,N−1,p − �

q,r,n+1
N−1,N−1,p−1 = �

q,r,n

N−1,N−1,p+1 − B̃�
q,r,n

N−1,N−1,p + �
q,r,n

N−1,N−1,p−1, (32)

−�
q,r,n+1
N−1,1,p+1 + B�

q,r,n+1
N−1,1,p − �

q,r,n+1
N−1,1,p−1 = �

q,r,n

N−1,1,p+1 − B̃�
q,r,n

N−1,1,p + �
q,r,n

N−1,1,p−1, (33)

−�
q,n+1,r

N−1,s+1,N−1 + B�
q,n+1,r

N−1,s,N−1 − �
q,n+1,r

N−1,s−1,N−1 = �
q,n,r

N−1,s+1,N−1 − B̃�
q,n,r

N−1,s,N−1 + �
q,n,r

N−1,s−1,N−1, (34)

−�
q,n+1,r

N−1,s+1,1 + B�
q,n+1,r

N−1,s,1 − �
q,n+1,r

N−1,s−1,1 = �
q,n,r

N−1,s+1,1 − B̃�
q,n,r

N−1,s,1 + �
q,n,r

N−1,s−1,1, (35)

where

B = 2 − 2ih2/τ, B̃ = 2 + 2ih2/τ, 0 � q, r � n.

Similar to the 2D equations above, formulas (32)–(35) express functions �
q,r,n+1
N−1,N−1,p, �q,r,n+1

N−1,1,p, �q,n+1,r

N−1,s,N−1, and �
q,n+1,r

N−1,s,1 for
each q,r via the functions �

q,r,n

N−1,N−1,p, �q,r,n

N−1,1,p, �q,n,r

N−1,s,N−1, and �
q,n,r

N−1,s,1 from the previous computational step n, respectively.
So, there are a total of 12 3D “edge” arrays N × n2 that need to be stored for use at the n + 1 computational step.

The TBCs for Eqs. (32) and (33) are as follows:

�
q,r,n+1
N−1,N−1,N − �

q,r,n+1
N−1,N−1,N−2

2h
+ 2σ

(
�

q,r,n+1
N−1,N−1,N−1 −

n∑
l=1

γl�
q,r,n+1−l

N−1,N−1,N−1

)
= 0, y = a, z = a, (36)

�
q,r,n+1
N−1,N−1,2 − �

q,r,n+1
N−1,N−1,0

2h
− 2σ

(
�

q,r,n+1
N−1,N−1,1 −

n∑
l=1

γl�
q,r,n+1−l

N−1,N−1,1

)
= 0, y = a, z = −a, (37)

�
q,r,n+1
N−1,1,N − �

q,r,n+1
N−1,1,N−2

2h
+ 2σ

(
�

q,r,n+1
N−1,1,N−1 −

n∑
l=1

γl�
q,r,n+1−l

N−1,1,N−1

)
= 0, y = −a, z = a, (38)

�
q,r,n+1
N−1,1,2 − �

q,r,n+1
N−1,1,0

2h
− 2σ

(
�

q,r,n+1
N−1,1,1 −

n∑
l=1

γl�
q,r,n+1−l

N−1,1,1

)
= 0, y = −a, z = −a. (39)
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Similarly, for Eqs. (34) and (35), the boundary conditions are

�
q,n+1,r

N−1,N,N−1 − �
q,n+1,r

N−1,N−2,N−1

2h
+ 2σ

(
�

q,n+1,r

N−1,N−1,N−1 −
n∑

l=1

γl�
q,n+1−l,r

N−1,N−1,N−1

)
= 0, y = a, z = a, (40)

�
q,n+1,r

N−1,2,N−1 − �
q,n+1,r

N−1,0,N−1

2h
− 2σ

(
�

q,n+1,r

N−1,1,N−1 −
n∑

l=1

γl�
q,n+1−l,r

N−1,1,N−1

)
= 0, y = −a, z = a, (41)

�
q,n+1,r

N−1,N,1 − �
q,n+1,r

N−1,N−2,1

2h
+ 2σ

(
�

q,n+1,r

N−1,N−1,1 −
n∑

l=1

γl�
q,n+1−l,r

N−1,N−1,1

)
= 0, y = a, z = −a, (42)

�
q,n+1,r

N−1,2,1 − �
q,n+1,r

N−1,0,1

2h
− 2σ

(
�

q,n+1,r

N−1,1,1 −
n∑

l=1

γl�
q,n+1−l,r

N−1,1,1

)
= 0, y = −a, z = −a. (43)

There are a total of eight 3D “vertex” n3 arrays in the boundary
conditions (36)–(43) that need to be stored for use at the n + 1
computational step.

All equations (18), (21)–(43) and similar equations on the
other five facets and eight edges should be solved together in
the following order:

(1) At the first stage, Eqs. (32)–(35) and similar equations
on the other eight edges are used to evaluate the auxiliary
function � on each edge of the computational domain and for
each q and r from step n to step n + 1 using the stored values
from the previous computational step and the stored boundary
values at the vertices �

q,r,v

N−1,N−1,N−1, �q,r,v

N−1,N−1,1, �q,r,v

N−1,1,N−1,
and �

q,r,v

N−1,1,1 in TBCs (36)–(43).
(2) At the next stage, Eqs. (27) and similar equations on the

other five facets are used to propagate the auxiliary function
� on each facet of the computational domain and for each
q from step n to step n + 1 using the stored values from the
previous computational step and the boundary values at the
edges �

q,r,n+1
N−1,N−1,p, �q,r,n+1

N−1,1,p, �q,r,n+1
N−1,s,N−1, and �

q,r,n+1
N−1,s,1 (found

at stage 1) in TBCs (28)–(31).
(3) At the third stage, the obtained values of the auxiliary

function � at the boundary of the computational domain are
used in the boundary conditions (21)–(24). Now the equation
sets (17), (21)–(24) can be solved, thus propagating the wave
function ψ from the n to n + 1 step.

(4) The new values of the function � at the artificial
boundary are stored. As said above, six N2 × n arrays contain
the auxiliary function � on the facets. Twelve additional
N × n2 arrays store the function � at the edges of the
computational domain. Finally, eight n3 arrays store the
function � at the vertices. It is clear that at each marching
step, the new values from one facet or edge will be used in the
boundary conditions for the auxiliary function in the adjacent
facets or edges. Through this mechanism, the ψ fields on
different facets and edges influence each other.

The maximum total number of � function values which
need to be stored is 6N2Nτ + 12NNτ

2 + 8Nτ
3.

B. Computational costs and complexity

Let us consider the numerical complexity of the FD scheme
at the computational step n. The FD equation set (17) is a sparse
linear system. Its solution with a direct sparse solver imposes
computational costs proportional to N6, although in practice
a faster iterative solver can be used. The TBCs (21)–(26)

entail (for a direct solver) computational costs of the order of
6N2 × n. The solution of n 2D equations of (27) type requires
about 6N4 × n operations. Implementation of the boundary
conditions (28)–(31) takes about 24N × n2 operations. The
computation costs associated with (32)–(35) and boundary
conditions (36)–(43) are 12N × n2 and 24n3, respectively. So,
the full complexity (FC) at each step is about

FC ≈ P × N6 + Q × N × n2 + R × N4 × n

+ S × N × n2 + T × n3, (44)

where P , Q, R, S, and T are some coefficients. The whole
computational burden can be estimated by multiplying this
expression by n. It is clear that the first and last terms
in the above expression are the main contributors to the
computational costs. If n is much smaller than N2, then the
performance of the FD scheme is determined by the sparse
solver used. In the opposite case, the boundary condition will
dominate. For instance, if N = 100 (as in some examples
below), the threshold n is about 10 000.

This markedly differs from the 1D case where the compu-
tational costs per each step are about P × N + Q × n. In this
case, the threshold n, where the boundary condition begins to
dominate, is proportional to N . In the 3D (as well as in the
2D) case, the TBC contributes significantly less to the total
computational costs per step relative to the 1D case. So, if
the number of the grid nodes N in spatial directions is large,
the contribution of the boundary condition will be entirely
negligible. We emphasize here that in realistic problems, the
computational costs will be determined mainly by the number
of inner nodes, not by the discretized boundary condition.
Therefore, in the sense of performance, the proposed exact
nonlocal TBC does not differ much from the commonly used
approximate local boundary conditions, such as absorptive
boundary conditions. In terms of the required computer
memory, the TBC is obviously more burdensome than local
boundary conditions, but, as the popular saying goes, “memory
is cheap.”

One can also note that at each computational step,
implementation of the proposed TBC involves solving 6n

independent 2D equation sets of the (27) type and 12n2 systems
of the (28)–(31) type, which can be easily parallelized, thus
significantly speeding up calculation. Moreover, the numerical
costs can be further reduced using well-known speed-up
strategies for 1D computations, which form the basis of the
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proposed transparent boundary condition, as discussed, for
instance, in Ref. [3]. For example, the array of the past
boundary values needed to be stored can be truncated because
only the values closest to the current step actually influence
the solution. So, the above calculations actually overestimate
the true computational burden of the proposed TBC.

IV. NUMERICAL EXPERIMENTS

In order to quantitatively assess the accuracy of the
proposed TBC, we carried out a number of simple numerical
experiments. Some model spherically symmetrical or asym-
metrical potentials and initial conditions were considered.

A. Free space evolution

The first numerical experiment simulates evolution of a
linear superposition of Gaussian wavelets, which are, in our
case, exact solutions of the 3D TDSE in free space. We can
compare the analytic representation with the numerical results
obtained using the Crank-Nicolson FD scheme with our TBC,
as outlined above. The sum of Gaussian wavelets used here
has the following form:

ψg(x,y,z,t) =
3∑

l=1

ψl
g(x,y,z,t), (45)

where

ψl
g(x,y,z,t) = w3

l(
w2

l + 4it
)3/2 exp{iξl[(x − tξl cos αl) cos αl + (y − tξl cos βl) cos βl + (z − tξl cos γl) cos γl]}

× exp
{−[(x − 2tξl cos αl)

2 + (y − 2tξl cos βl)
2 + (z − 2tξl cos γl)

2]
/(

w2
l + 4it

)}
. (46)

Here, cos αl , cos βl , and cos γl are the directional cosines. The wl is the waist radius. The ξl is a parameter. All parameters, which
were chosen arbitrarily, are listed in Table I.

The size of the computational domain was 200 × 200 × 200 (in arbitrary units) with the spatial grid step equal to 4, 3, or 2
in different experiments. The time step was 50, 25, or 20 units, with the number of time steps varying from 80 to 200. In each
numerical experiment, the relative differences V and Y between the exact solution (45) and (46) and the FD approximation with
the same initial value [ψ0(x,y,z) = ψg(x,y,z,0)] were calculated and plotted as functions of t = nτ . The functions V and Y

were defined as

V (τn) =
N∑

m,s,p=0

∣∣ψn
m,s,p − ψg(τn,hm,hs,hp)

∣∣2
/ N∑

m,s,p=0

|ψg(τn,hm,hs,hp)|2, (47)

Y (τn) =
N∑

m,s,p=0

[∣∣ψn
m,s,p

∣∣2 − |ψg(τn,hm,hs,hp)|2]/ N∑
m,s,p=0

|ψg(τn,hm,hs,hp)|2. (48)

The function Y estimates the difference between the exact and
approximate total probabilities that the particle is still inside
the computational domain. As compared to V , it is independent
of phase errors and is quite sensitive to the spurious reflections
from the artificial boundary. The function Y is not always
positive, whereas V is.

The results for a number of combinations of h, τ and
the time range Nτ × τ = 4000 are plotted in Figs. 1 and 2
for V and Y , respectively. The peak near t = 400 observed
in all curves in Fig. 1 (as well as in Fig. 2) is caused by
the discretization error of the FD scheme, which gradually
increases from zero value at the initial time step. A smaller

TABLE I. The parameters of Gaussian wavelets used in Eq. (45).
The ξl parameters were chosen to be on average 0.05, so that the wave
packet reaches a vertex at about t = 1700.

w

cos α cos β cos γ ξ (arb. units)

1/
√

3 1/
√

3 1/
√

3 0.05 18
1/

√
2 1/

√
2 0 0.1 18

1 0 0 0.02 18

second peak near t = 1500, of the order of V = 10−3–10−2, is
caused by spurious reflections from the artificial boundary
due to the TBC discretization error. After that, all curves

FIG. 1. Evolution of a superposition of Gaussian wavelets (see
Table I) in free space. The curves show the difference V [see (47)]
between the numerical and exact solutions for a number of values of
parameters τ , h.

053308-7



R. M. FESHCHENKO AND A. V. POPOV PHYSICAL REVIEW E 88, 053308 (2013)

FIG. 2. Evolution of a superposition of Gaussian wavelets (see
Table I) in free space. The curves show the difference |Y | [see (48)]
between the numerical and exact solutions for a number of values of
parameters τ , h.

monotonically go to zero without any obvious instability. In
Fig. 2, the total relative power in spurious reflections from
the artificial boundary generally does not exceed 1% and
is decreasing with time, which means that the FD scheme
together with the TBC is computationally stable.

B. Spherically symmetrical problem

The second numerical experiment simulates a more compli-
cated situation: evolution of a spherically symmetric Gaussian
wavelet in a spherically symmetrical potential U and with
spherically symmetrical initial conditions. It is well known
that in this case, the 3D Schrödinger equation (6), if written in
the spherical coordinates, can be reduced to a 1D Schrödinger
equation by substitution ψ = ϕ/r , where r is the modulus of
radius vector,

i
∂ϕ

∂t
+ ∂2ϕ

∂r2
− U (r)ϕ = 0. (49)

The 1D equation (49) for ϕ(r,t) can be solved numerically like
any other 1D parabolic type equation. The required boundary
conditions are a zero boundary condition at r = 0 and an exact
1D transparent boundary condition (4) at the outer border. This
numerical solution, which can be done using a very dense
spatial and temporal grid providing a very high precision,
plays the role of an exact solution. On the other hand, the
problem can be solved with the proposed fully 3D method
being tested. The two solutions, i.e., an “exact” one (ψ1D) and
an approximate one, were then compared to each other by
calculating their difference V as defined in Eq. (47).

The potential used here was a simple, spherically sym-
metrical, shell-like barrier with U = 0 for r < r0 or r > r1,
and U = 0.01 for r0 < r < r1. The size of the computational
domain was chosen to be 200 × 200 × 200 units, as before. At
the initial moment t = 0 and for r < r0, the wave function was
assumed to be a Gaussian wavelet (46) with the waist radius of
w = 14 and ξ = 0. For r > r0, the initial wave function was
assumed to be zero.

The results of this numerical experiment for various values
of h and τ in 3D calculations are plotted in Fig. 3. Like in

FIG. 3. Propagation of a particle through a spherical barrier with
r0 = 70 and r1 = 80. The curves show the difference V between the
full 3D simulation and “exact” quasi-1D solution for different h, τ

and fixed time range Nτ × τ = 2000. In 1D calculations, the grid
steps h and τ were a hundred times smaller then those used in the 3D
simulation.

the previous numerical experiment, the peak in Fig. 3 near
t = 300 is caused by the discretization error of the FD scheme.
Smaller second peaks near t = 800 and t = 1800 are caused
by spurious reflections from the artificial boundary due to
the TBC discretization error. After that, all curves except one
monotonically go to zero without any obvious instability.

Cross sections of the double logarithm of |ψ/ψ1D|2 in
the (x,z) plane for y = 0 and four time values are shown in
Fig. 4, whereas Fig. 5 shows the same quantity along a space
diagonal to the computational domain as a function of time.
For the model considered in this section, it is expected that a
number of divergent spherical waves will propagate from the
central region enclosed by the potential barrier through the
artificial boundary of the computational domain. Figures 4
and 5 demonstrate exactly this: the circular and inclined
bands, respectively, seen in them are remnants of these leaking
divergent waves that are visible because of residual numerical
errors of the FD scheme. It can be observed that the waves
remain undisturbed, showing no apparent reflections from the
artificial boundary. In the dark colored “wings” in Fig. 5 (when
t < 400), which are also visible in the corners in Fig. 4(a),
the relative difference between the numerical and reference
solution is large but the ψ field itself is very small. Thus, this
large difference is due to numerical noise. Outside these wings,
the relative difference is generally quite small: ∼10−2.

C. Nonspherical potentials

We further demonstrate the validity of the derived trans-
parent boundary condition for the TDSE by two toy models.
One of them is quantum particle propagating through a
nonspherical potential barrier in 3D space, and the second one
is backscattering by a nonspherically symmetrical potential.
In these simulations, the size of the computational domain
was again 200 × 200 × 200 units, whereas other parameters
were h = 1.66, τ = 20 and Nτ ∗ τ = 2000. The initial ψ
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FIG. 4. (Color online) Propagation of a particle through a spherical barrier with r0 = 70 and r1 = 80. Distributions of log10 | log10(|ψ/ψ1D|2)|
in the (x,z) plane at y = 0 are plotted at four different times: (a) −320, (b) −640, (c) −1280, and (d) −1920 arb. units. The parameters of
simulation were τ = 20, h = 1.66 and Nτ ∗ τ = 2000. The choice of this particular metrics was motivated by our desire to better emphasize
the differences between the reference and approximate solutions.

distribution at t = 0 was a Gaussian wavelet (46) with the
waist radius of w = 14 and ξ = 0.

Figure 6 shows successive quantum state densities |ψ |2 in
the (x,z) plane for a semispherical shell-like potential with
U = 0 if r < r0 or r > r1 or x < 0, and U = 0.01 if r0 <

r < r1 and x > 0 (a half of that used in the previous section).
Figure 7 shows |ψ |2 in the (x,z) plane for a semispherical
well-like potential with U = 0 when r > r0 or x < 0, and
U = −0.01 if r < r0 and x > 0.

In the first example, the semishell acts like a concave
mirror, reflecting and focusing a fraction of the ψ field in
the negative x direction. This can be clearly seen in Fig. 6(b)

FIG. 5. (Color online) Distribution of log10 | log10(|ψ/ψ1D|2)|
along a space diagonal to the computational domain is plotted as
a function of time. The parameters of the simulation are the same as
in Fig. 4.

where a convergent spherical wave reflected from the said
mirror formed a focal spot in the center of the image. In
the second example, the ψ field is leaking [see Fig. 7(a)]
from the well. After that, the remaining part of it becomes
a superposition of the bound states of the well, which are
excited by the initial Gaussian wavelet. As can be seen in
Figs. 7(b)–7(d), these bound states interfere with each other as
the wave function evolves over time, forming some oscillating
pattern. In both Figs. 6 and 7, there are no apparent reflections
from the artificial boundary.

V. CONCLUSION

An exact transparent boundary condition for the 3D time-
dependent Schrödinger equation in a rectangular cuboid com-
putational domain has been obtained. It can be easily accom-
modated in any existing FD scheme, providing an efficient way
to describe the wave function freely evolving outwards from
the computational domain. This 3D TBC is based on a similar
2D TBC, which was reported earlier [12]. The obtained bound-
ary condition relates the boundary wave function values at the
current computational step to (i) boundary values of the wave
function at all previous steps and (ii) values of an auxiliary
function at the edges and vertices of the computational domain
at all previous steps. An interesting feature of the proposed
boundary condition is that it involves 2D and 1D evolution
of an auxiliary function in the bounding lateral facets and
edges of the RCCD, satisfying Schrödinger equations of lower
dimensions. Accounting for the edge and vertex contribution
is exact in this approach. The validity of the derived boundary
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FIG. 6. (Color online) Reflection of a particle off a semispherical barrier with r0 = 70 and r1 = 80. Distributions of log10 |ψ |2 in the (x,z)
plane at y = 0 are plotted at four different times: (a) −320, (b) −640, (c) −1280, and (d) −1920 arb. units.

condition is demonstrated by numerical experiments with a
superposition of Gaussian wavelets evolving in free space as
well as by solving some reference quantum potential barrier
propagation and scattering problems in 3D space.

There remain some unanswered questions: (i) The nu-
merical stability of the FD scheme utilizing the proposed
TBC is to be formally proved, although we have not noticed
any numerical instabilities in various numerical experiments

FIG. 7. (Color online) Evolution of wave function in a semispherical potential well with r0 = 70. Distributions of log10 |ψ |2 in the (x,z)
plane at y = 0 are plotted at four different times: (a) −320, (b) −640, (c) −1280, and (d) −1920 arb. units.
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(including those reported in this paper). If it is not uncon-
ditionally stable, an unconditionally stable implementation
similar to the SDY will be highly desirable. (ii) It is interesting
whether the proposed analytical approach involving evolution
of an auxiliary function on the boundary of the computational
domain can be modified to apply to 3D computational domains
other than a RCCD, with one example being a spherical
domain. For this to happen, a substitute of Fresnel transform (7)
is to be devised.

The TBC proposed in the present paper, as well as one
reported in Ref. [12], can be generalized to the Schrödinger
equation in a hyperrectangular computational domain in an
arbitrary d-dimensional (dD) space. The boundary condition
will generally look like that in Eq. (14) but should be
formulated on the 2d(d − 1)-dimensional hyperfacets of the
hyperrectangle. The auxiliary function � of 2d variables
will be marching from the nth to (n + 1)th step on each
hyperfacet using TBCs formulated on their 2d(d − 1) edges.
This procedure will involve solution of the free space (d − 1)D
Schrödinger equation. The procedure will need to be repeated
recurrently d − 1 times on the hyperfacets of lower dimension
until boundary elements of the dimension 0 (vertices) are
reached. At each step, concerning s-dimensional elements,
solution of the s-dimensional free space Schrödinger equation
will be required in order to extend the auxiliary function �

from n to n + 1. The total number of s-dimensional boundary

elements is Eds = 2d−sd!/s!/(d − s)!. Each of them will have
an associated d-dimensional array with Ns × nd−s elements
that will need to be stored for use in the next computational
step. The total number of stored complex numbers at each
computational step will be (N + 2n)d − Nd . As a result,
the memory requirements may be quite significant. The
computational complexity of the whole procedure outlined
above will be proportional to P × N2d + T × nd . The critical
point where the boundary condition starts to dominate will be
again n ∼ N2, like in the 3D case.

The generalization to higher dimensions may be useful for
the problems involving multiple noninteracting particles in an
external compact potential. In such a case, the particles will
be entangled and the evolution of their multiparticle wave
function may be of considerable interest.
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