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Lattice Boltzmann method coupled with the Oldroyd-B constitutive model for a viscoelastic fluid
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We developed a lattice Boltzmann method coupled with the Oldroyd-B constitutive equation to simulate a
viscoelastic fluid. In this work, the flow field of the solvent is solved using an incompressible lattice Boltzmann
Bhatnagar-Gross-Krook (BGK) model, while the advection operator of the polymer stress tensor is directly
calculated with the help of the particle distribution functions. Specifically, we present a numerical scheme for
the advection of the polymer stress tensor through the truncation of second-order Taylor expansion, which does
not need to introduce the extra distribution functions and has better numerical accuracy. We consider two types
of numerical tests to examine the performance of the presented method, including a two-dimensional (2D)
channel flow and the 4:1 contraction problem. Our numerical results for the 2D channel flow agree well with the
analytical results and some experimental results reported in the previous studies. Moreover, the numerical results
also indicate that the current method can capture some complex rheological behaviors of the 4:1 contraction flow.
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I. INTRODUCTION

Viscoelastic fluids have a wide range of applications in
science and engineering, such as plastics and pharmaceuticals.
Different from the Newtonian fluid, the stress of a viscoelastic
fluid depends on not only the stress impressed at present, but
also the one impressed during the previous deformation history
of the fluid. So viscoelastic fluids can exhibit quite different
flow behaviors from those of the Newtonian fluids in many
aspects, such as rod climbing, siphoning, and secondary flows.
In many engineering applications, the numerical simulation
has become an effective technique to predict the performance
of viscoelastic fluid. Among various numerical methods, the
lattice Boltzmann method (LBM) [1–3] is generally regarded
as a mecroscopic method that lies between microscopic
and macroscopic methods. Compared with the conventional
computational approach, the LBM is easy in programming
and parallelization because it is explicit and does not need to
solve the Poisson equation for pressure [3]. In addition, the
kinetic nature of LBM also has an advantage of simulating the
complex phenomena of viscoelastic fluid.

During the last two decades, great efforts have been made
in developing the LBM for viscoelastic fluid. In an earlier
study, Qian and Deng [4] imposed the elastic effect into
LBM by modifying the equilibrium distribution. Later, Giraud
et al. [5,6] and Lallemand et al. [7] proposed a scheme coupled
with the Jeffreys model, but they assumed that the stress tensor
was traceless and essentially linear without considering some
important elastic effect. Wagner et al. [8] extended the LBM
to simulate a cusped bubble rising in a viscoelastic fluid.
Ispolatov and Grant [9] considered the elastic effect by adding
a Maxwell-like (exponentially decaying) force into the lattice
Boltzmann equation, but they also did not pay attention to
the important elastic effect. Subsequently, Onishi [10] and
Ammar [11] combined the LBM with the polymer kinetic
theory which was described by the Fokker-Planck equation.
Their numerical results were only obtained for homogeneous
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shear flow and the viscoelastic effect was not allowed to be very
strong. For more details about the LBM of viscoelastic fluid,
one could refer to Ref. [12] where the full review was provided.

Recently, Malaspinasa et al. [13] have described a coupled
LBM to simulate the Oldroyd-B fluid flow using two types
of distribution functions, which was similar to the ideas
of Denniston et al. [14] and Spencer et al. [15] applied
in the liquid crystals. Later, Su et al. [16] presented an
improved scheme with double-type particle speeds to concern
the complex fluid like the high Weissenberg number problem
encountered in the lid-driven cavity. In these methodologies
mentioned above, two types of distribution functions were
defined, one was the scalar density for the momentum and the
other was the tensor density for the stress tensor. Although
some of these studies show the positive results, there are
still some issues. First, one needs to design suitable boundary
conditions for the tensor density of the stress tensor evolution.
Second, the numerical model requires the extra introduction of
distribution functions for the stress tensor, which leads to the
large computer memory to store all the distribution functions.

Different from the LBM of Refs. [13] and [14], Karpikov
[17] has proposed a lattice Boltzmann scheme coupled with
the FENE constitutive model by using a single distribution
function to study the turbulence of the non-Newtonian fluid.
Karpikov defined a scalar density distribution function for
the flow field in his method, and calculated the advection
operator of the stress tensor by taking advantage of the
scalar density distribution function. Unfortunately, although
Karpikov’s scheme could avoid bringing in some extra sets
of distribution functions, there remains some disadvantages
such as the serious numerical dissipation. To obtain a better
numerical accuracy, we present a numerical scheme for the
advection operator of the stress tensor evolution through
treating the system by Taylor series expansion in this paper,
which can ease the numerical dissipation of the simulation.
Moreover, since there is no extra memory requirement for
the stress distribution, the new numerical method allows us
to cope with the large system of complex fluids. To examine
the actual reliability evaluation of the presented method, we
consider two numerical tests including a 2D channel flow
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and the 4:1 contraction problem. It is well known that the
contraction flow can be recognized as an ideal benchmark
problem for both the experimental and numerical studies of
complex viscoelastic fluid, because it has the singularity points
near the corners. To our knowledge, there are few reports about
the LBM for the Oldroyd-B fluid in contraction geometry. So
we also try to simulate this stringent test by using the coupled
LBM presented in this paper.

The outline of this paper is organized as follows. Section II
describes the mathematical models of viscoelastic fluid. In
Sec. III we give the coupled LBM with the Oldroyd-B
constitutive equation by using a single distribution function
for viscoelastic fluid. In Sec. IV we show the numerical results
of the viscoelastic fluid described by the Oldroyd-B model in a
2D channel flow and the 4:1 contraction flow. Finally, in Sec. V
we put forward the conclusions and suggestions on this paper.

II. THE MATHEMATICAL MODEL

In our simulations, to consider the important elastic ef-
fect, the viscoelastic behavior is modeled by the Oldroyd-
B constitutive equation, which can be derived from the
kinetic theory of the polymer dilute solution [18]. Here we
take the incompressible flow at low Reynolds number as a
solvent model. The governing equations of the incompressible
momentum conservation are

ρ0

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + ηs∇2u + ∇ · τ , (1)

the equations of the mass conservation are

∇ · u = 0, (2)

where p,u,τ are, respectively, the pressure, velocity, and
viscoelastic stress tensor, the latter accounts for the effects of
the polymers, and ρ0 is the density. The Oldroyd-B constitutive
equation is given as follows:

λp

Dτ

Dt
= λp[τ · ∇u + (∇u)T · τ ] − τ + 2ηpd, (3)

where Dτ
Dt

= ∂τ
∂t

+ (u · ∇)τ is the material derivative; the
superscript T denotes the transpose operation; ηs and ηp are

the solvent and polymer viscosities, λp is the relaxation time
of the polymer solute, and d= 1

2 (∇u + ∇uT ) is the rate of
strain tensor. To characterize the viscoelastic interaction, we
define three nondimensional numbers, namely, the Reynolds
number (Re), the Weissenberg (Wi) number, and the kinematic
viscosity ratio β. The parameter β=ηs/ηt is the ratio of the
solvent viscosity to the total, ηt = ηs + ηp. The Re number
and Wi number are, respectively, Re = ρUL/ηt and Wi =
λpU/L. U and L are, respectively, the characteristic velocity
and length of the flow.

III. THE NUMERICAL ALGORITHM

In this section we aim to describe the numerical imple-
mentations of the viscoelastic fluid. As mentioned in the
Introduction, there are two types of equations to be considered
which are closely coupled with each other. The flow field
of solvent is simulated using the 2D incompressible lattice
Boltzmann BGK model, whereas the constitutive equation is
decoupled as the advection and relaxation-stretching operators
with the explicit Euler scheme of time marching. In the
present method, the advection operator of the polymer stress
tensor can be direct calculated by taking advantage of the
particle distribution functions of flow. Specifically, we give
a new numerical scheme for the advection of the polymer
stress tensor, through treating the system by Taylor series
expansion. The present method not only avoids introducing
extra sets of distribution functions, but also can improve the
numerical accuracy of simulation. The effect of elastic force
is incorporated by adding the extra body force into the lattice
Boltzmann equation. The asynchronously coupled scheme is
used for time marching of the coupled system. We will describe
all these contents in detail as follows.

A. 2D incompressible LBGK model

First, let us describe how to integrate the Navier-Stokes
equations with the 2D incompressible lattice Boltzmann BGK
model (LBGK) [19]. We consider the two-dimensional nine
velocity (D2Q9) model, which is shown in Fig. 1. The particle
velocity eα may be written as

eα =

⎧⎪⎨
⎪⎩

(0,0), α = 0,

c
{
cos

[
(α − 1)π

2

]
, sin

[
(α − 1)π

2

]}
, α = 1,2,3,4,√

2c
{
cos

[
(2α − 1)π

4

]
, sin

[
(2α − 1)π

4

]}
, α = 5,6,7,8,

(4)

where c = δx
δt

is the particle velocity, δx is the lattice grid
spacing, and δt is the time step, respectively.

FIG. 1. D2Q9 lattice.

The lattice Boltzmann equation (LBE) reads

fα(x + eαδt,t + δt) − fα(x,t) = 
α(f (x,t)), (5)

where fα(x,t) is the distribution function at node x at time t ,

α(f (x,t)) is the BGK collision model


α(f (x,t)) = −1

λ

[
fα(x,t) − f (eq)

α (x,t)
]
, (6)

where λ=λ0/δt is the dimensionless relaxation time, λ0

is relaxation time, and f
(eq)
α is the equilibrium distribution
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function (EDF) defined as

f (eq)
α (x,t) ≡ Eα(u) =

{
ρ0

[
1 − (1 − ω0) p

ρ0c2
s
+ s0(u)

]
, α = 0,

ρ0
[
ωα

p

ρ0c2
s
+ sα(u)

]
, α = 1, . . . ,8,

(7)

where

sα(u) = ωα

[
eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]
, (8)

the weight coefficients are

ω0 = 4

9
, ω1, . . . ,ω4 = 1

9
, ω5, . . . ,ω8 = 1

36
, c2

s = c2

3
,

(9)

and cs = c/
√

3 is the speed of sound, p and u are the fluid
pressure and velocity, respectively. ρ0 is a constant. The
macroscopic velocity and pressure of flow are computed from
the distribution functions

ρ0 =
8∑

α=1

fα(x), ρ0u =
8∑

α=1

eαfα(x), (10)

p = ρ0c
2
s

1 − ω0

[
8∑

α=1

fα(x) + s0(u)

]
. (11)

Through the Chapman-Enskog expansion, the incompress-
ible Navier-Stokes equations can be recovered as

∇ · u = 0, (12)

∂u
∂t

+ u · ∇u = −∇P + ν∇2u, (13)

with the kinematic viscosity ν = c2
s (λ − 1/2)δt and P = p/ρ0.

B. Implementation of the Oldroyd-B constitutive
model with LBM

As described in Sec. II, the viscoelastic behavior is modeled
by the Oldroyd-B constitutive equation (3). For convenience,
the constitutive equation could be written as

∂τ

∂t
+ Aadv(τ ,t) = Arel−str(τ ,t), (14)

where the advection and relaxation-stretching operators ap-
plied to the polymer stress tensor τ are respectively given as

Aadv(τ ,t) = (u · ∇)τ , (15)

Arel−str(τ ,t) = [τ · ∇u + (∇u)T · τ ] + 1

λp

(2ηpd − τ ). (16)

Here we define the variables of the constitutive equation
on the same grid points as the flow. To exchange the
information of polymer stress tensors with all neighboring
fluid cells, the advection operator needs to be computed by
subtracting the outgoing distribution functions of the flow field
from the incoming. In the previous study [17], Karpikov has
given a simple discretization of the advection operator with
the help of the particle distribution functions, which depended
on the LBM proposed by Qian et al. [12]. Using the same
deviating process of Karpikov’s method, a numerical scheme
of the advection operator based on the incompressible lattice

Boltzmann BGK by Guo et al. [19] is given as

δtAadv(τ ,t) =
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t)

−
m∑

α=1

τ (x,t)fα(x,t), (17)

which is also referred to as Karpikov’s scheme in this paper.
Through the numerical test, scheme (17) was found to be able
to get stable solutions. However, the scheme of Eq. (17) is
of lower-order accuracy and larger numerical dissipation. To
overcome those shortcomings, we introduce a new numerical
scheme for the advection operator. In this new scheme, the
advection operator of polymer stress is calculated by

δtAadv(τ ,t) = 2
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t)

− 0.5
m∑

α=1

τ (x − 2eαδt,t)fα(x − 2eαδt,t)

− 1.5
m∑

α=1

τ (x,t)fα(x,t). (18)

Comparing Eq. (18) with Eq. (17), we find that our new
scheme differs from Karpikov’s model by adding the term

0.5
m∑

α=1

τ (x,t)fα(x,t) −
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t)

+ 0.5
m∑

α=1

τ (x − 2eαδt,t)fα(x − 2eαδt,t). (19)

This added term is a significant feature of the new scheme
(18), which can ease the numerical dissipation. In addition,
the new scheme of the advection operator has fairly good
numerical stability, because fα(x,t) is used to handle the
convection part along the direction of the particle velocity
(namely characteristic direction). The present scheme (18)
can be acquired by truncating appropriately the Taylor series
expansion of the system. The derivation of the new scheme
for the advection operator is shown in the Appendix. We will
make some comparisons between Karpikov’s scheme and the
present scheme for some certain cases in Sec. IV.

For the relaxation-stretching operator Arel−str(τ ,t), the
polymers are stretched by the velocity gradient tensor. The
velocity field is computed by constructing the local equilibrium
distribution function in each cell, and the derivatives of the
velocity are calculated as

∂uα

∂xβ

= 1

2δx

8∑
i=0

uα(x + ei ,t)(ei)β. (20)

Substituting either of the advection and relaxation-
stretching operators into the constitutive equation (3), one can
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obtain a semidiscrete form which may be compactly written as
∂τ

∂t
≡ L(τ ), (21)

where the right-hand side of L(τ ) contains all the discrete
advection and relaxation-stretching operators of the polymer
stress tensor. In this work, the time stepping employs the
explicit Euler method, namely

∂

∂t
τ (x,t) = τ (x,t + t) − τ (x,t)

t
=L(τ ). (22)

Note that t may be different from δt for the LBGK
model of flow, and the velocity field is frozen during the time
marching of the constitutive equation from n to n + 1 time
steps. Thus, according to Eqs. (18) and (22), the temporal
evolution of the stress tensor is given by

τ (x,t + t)

= τ (x,t) + t

δt

[
2

8∑
α=1

τ (x − eαδt,t)fα(x − eαδt,t)

−1.5
8∑

α=1

τ (x,t)fα(x,t)

− 0.5
8∑

α=1

τ (x − 2eαδt,t)fα(x − 2eαδt,t)

]

+tArel−str(τ ,t). (23)

C. The coupled LBGK model of extra force

The extra force must be treated appropriately to design the
coupled LBM for the hydrodynamic of viscoelastic fluid. Here
we apply the forced lattice Boltzmann BGK scheme [20] to
treat the elastic force, as the same idea used in Ref. [21].
The effect of the elastic force is incorporated by adding
the extra force F = ∇ · τ into the momentum equation. The
coupling way between the momentum equation and extra force
is established by adding the following term Fα to the right-hand
side of the evolution equation (5)

Fα = ωα

[
eα · M

c2
s

+ L :
(
eαeα − c2

s I
)

2c4
s

]
, (24)

where

M =
(

1 − 1

2λ

)
F, L =

(
1 − 1

2λ

)
(ũF + Fũ). (25)

With this additional term, the incompressible LBGK Eq. (5)
becomes

fα(x + eαδt,t + δt) − fα(x,t)

= −1

λ

[
fα(x,t) − f̃ (eq)

α

] + δtFα, (26)

where the equilibrium distribution f
(eq)
α is updated by

f̃ (eq)
α (x,t) = Eα(ũ) =

{
ρ0

[
1 − (1 − ω0) p

ρ0c2
s
+ s0(ũ)

]
, α = 0,

ρ0
[
ωα

p

ρ0c2
s
+ sα(ũ)

]
, α = 1, . . . ,8,

(27)

with

ũ(r,t) =
8∑

α=1

eαfα(x) + δtF
2ρ0

. (28)

Finally, the flow velocity is updated as an average value
between the fore and after collision

u(r,t) =
8∑

α=1

eαfα(x) + δtF
2ρ0

. (29)

Finally, Eqs. (23) and (26) constitute a coupled system of
the viscoelastic fluid described by the Oldroyd-B model.

D. The procedure and time marching of the coupled system

We will use the following procedure to simulate the velocity
and viscoelastic stress fields. First, run Eq. (23) to solve the
constitutive equation, and the results are used to determine
the elastic force; next, the velocity fields are computed by
using Eq. (26) and the results are used to compute the
velocity gradient tensor. Sequentially, the viscoelastic stress
and velocity fields are updated at each time step iteratively.

The lattice units are usually used in the traditional LBM.
But one should note that the lattice units are not used in
our method. We just intend to clarify the connections of
two different scaling systems. At low Re number there is a
large difference in the time scales between the momentum
and stress tensor evolution to arrive at their steady states,
which must be handled with care when modeling the real
device.

We apply the asynchronously coupled method presented
by E et al. [22] for the time marching of the coupled system.
To distinguish the time scales and improve the computational
stability, there are two time steps being used in the coupled
LBM. The mesoscale model uses its own appropriate time
step. The macro model runs at a slower pace than that required
by the accuracy and stability consideration for the macroscale
dynamic, in order for the mecro model to relax. The exchange
of the data at every time step means that the mesoscale and
macro models are asynchronously coupled. The computational
savings come from the time scale separation. The mesoscale
solver runs on a fictitious time scale, even though it has a
small time step. The error introduced by the scale-separated
condition is acceptable when the macro time step is chosen
properly.
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TABLE I. Comparison of memory requirements.

Method Number of distribution functions to store

2DQ9 model 3DQ15 model

Distributions Stress tensor Distributions Stress tensor

LBM with a single distribution 1 × 9 3 1 × 15 5
LBM with double distributions 1 × 9 + 3 × 9 3 1 × 15 + 5 × 15 5

The general algorithm for the single time step is presented
as follows:

Require:fα(x,tn),τ (x,t̃n),δt,t

Do

fα(x,tn + δt) −→ fα(x,tn) − 1

λ

[
fα(x,tn) − f̃ (eq)

α (x,tn)
]

+ δtFα;

Fα = ψ(τ (x,t̃n));

fα(x,tn+1) −→ fα(x,tn + δt);

τ (x,t̃n + t) −→ τ (x,t̃n) + tL(τ (x,t̃n),fα(x,tn + δt));

τ (x,t̃n+1) −→ τ (x,t̃n + t);

n −→ n + 1;

While n = Tn.

E. Boundary conditions for the set of equations

Boundary conditions play an important role in LBM. For
the wall or fully developed entry, we use the nonequilibrium
extrapolation scheme proposed by Guo et al. [23] to treat the
velocity boundary condition, which has the better numerical
stability.

There is no boundary condition for the viscoelastic stress
tensor to impose on the walls because of the domain as justified
by the strong hyperbolic character of the constitutive equation,
whereas the fully developed boundary condition is set for the
entry. However, the performance of the scheme (23) is closely
related to two points around them, so the issue of treatment
near the boundary point is given as

τ (x̃,t + t)

= τ (x̃,t) + t

δt

[
8∑

α=1

τ (x̃ − eαδt,t)fα(x̃ − eαδt,t)

−
8∑

α=1

τ (x̃,t)fα(x̃,t)

]
+tArel−str(τ ,t). (30)

F. Remarks on the advantages of the present method

The primary advantage of the present method is that it
involves smaller memory requirement compared with the LBM
including two types of distribution functions [13,16]. Table I
shows the comparison of memory requirements between the
present method and LBM with two type distributions. From
Table I we find that one has to store 6 sets of 15 distribution
functions at each lattice point (for the 3DQ15 model), while the
present approach just needs one set of distribution functions

plus five independent components of the stress tensor. So
the present method will allow us to simulate larger systems.
Second, the particle distribution functions are directly used
to treat the advection of the stress tensor, so it does not
need to design special boundary conditions like Refs. [13]
and [16]. Moreover, the new scheme of the constitutive
equation presented in this paper can also improve the numerical
accuracy. In addition, the time stepping for the coupled systems
is more flexible, which could also keep some important
advantages of LBM.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We first validate the coupled LBM with the Oldroyd-B
model by a planar channel flow, whose analytical solution
can be easily obtained. Second, to test the capability of our
numerical scheme for complex fluid, we consider the 4:1
contraction flow in Sec. IV B.

A. 2D channel flows

We consider a two-dimensional channel formed by two
parallel plates at a distance h, and the length of the plate is L =
10h (see Fig. 2). No-slip boundary conditions are assumed on
the solid wall for the velocity. For the wall boundary conditions
paralleling the x axis, the velocity conditions are as follows:

ux = 0, uy = 0,
∂uy

∂x
= 0,

∂uy

∂y
= 0,

∂ux

∂x
= 0. (31)

Then, the stress boundary conditions for the wall can be
solved using those velocity equations of Eqs. (31). At the exit,
the Neumann boundary conditions are imposed for the flow
variables

∂ux

∂x
= 0,

∂uy

∂x
= 0,

∂τxx

∂x
= 0,

∂τxy

∂x
= 0,

∂τyy

∂x
= 0.

(32)

The fully developed conditions are used in the entry.
Initially, the viscoelastic stress tensor is taken equal to zero

FIG. 2. Channel flow set up parameters.
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FIG. 3. The numerical solutions of the extra-stress component τxy (left) and normal-stress component τxx (right) at different time step:
t = 1.0 × 10−4, 1.0 × 10−3, 1.0 × 10−2 for Wi = 0.5.

everywhere, and the velocity field is imposed by

ux(0,y) = 0.4y(1 − y), (33)

uy = 0. (34)

Under the steady state condition of the velocity field, there
exist the analytical solutions for the Oldroyd-B constitutive
equation which are given by

τxy = (1 − β)

(
∂ux

∂y

)
, (35)

τxx − τyy = 2Wi(1 − β)

(
∂ux

∂y

)2

. (36)

To validate the numerical scheme for the constitutive
equation presented in this paper, we will compare our results
with the analytical solutions. The analytical steady state
solutions for the stress components have been given by
Eqs. (35) and (36). As discussed in Sec. III D, the flow
solver communicates with the stress solver at each time step.
Namely, the constraint (i.e., the velocity gradient) on the

constitutive equation changes at each step of stress solver
while the instantaneous stress at each step is used to compute
the flow field. To control the statistical error, we first discussed
the choice of time step for the asynchronous coupling using
a mesh of 300 × 30 with Wi = 0.5. Our option is to
run the stress solver with different macro time steps (t =
1.0 × 10−4, 1.0 × 10−3, 1.0 × 10−2) while keeping the time
step δt fixed (δt = 1.0 × 10−5). Figure 3 shows the numerical
results compared with the analytical solution. From Fig. 3
we see that the computational solution with t = 1.0 × 10−2

agrees very well with the analytical solution. We also see
that the solution obtained using the smaller macro time
steps (t = 1.0 × 10−4, 1.0 × 10−3) has less affection, but
this certainly increases the computational cost. Besides, if
this diffusivity parameter is bigger than t = 1.0 × 10−2,
the system has a very bad numerical accuracy. To find a
compromise between computational cost and accuracy, we
think that t = 1.0 × 10−2 is good enough for the simulation.
In short, the coupled LBM with the asynchronous time
marching could get a good result in our simulation when the
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FIG. 4. Comparison of the presented scheme, Karpikov’s scheme, and analytical solution of the profiles of the extra-stress component τxy

with respect to the y at position x = 5 for Wi = 1.0 (left), Wi = 10.0 (right) with β = 0.5 and Re = 1.0, respectively.
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FIG. 5. Comparison of the presented scheme, Karpikov’s scheme, and analytical solution of the profiles of the extra-stress component τxx

with respect to the y at position x = 5 for Wi = 1.0 (left), Wi = 10.0 (right) with β = 0.5 and Re = 1.0, respectively.

macro time step is chosen properly. Second, we compare our
results with those obtained by Karpikov’s scheme to show
the numerical accuracy of the presented method. As discussed
above, we set δt = 1.0 × 10−5 and t = 1.0 × 10−2 for the
following simulations using a mesh of 300 × 30. Figures 4
and 5 display the profiles of the extra-stress and normal-stress
components with respect to the y axis at a position of x = 5 with
β = 0.5, Re = 1.0, and Wi = 1.0, Wi = 10.0, respectively. As
can be seen in Figs. 4 and 5, the numerical results of extra-stress
and normal-stress components solved by the presented scheme
agree well with the analytical solutions. But from Fig. 4 we
find that the numerical results of the normal-stress component
obtained by Karpikov’s scheme deviate seriously from the
analytical solution. In other words, there is considerable
numerical dissipation for Karpikov’s scheme when it is used
to solve the normal-stress component.

For a further explanation of all the points made above, we
then discuss the numerical accuracy of the stress tensor in
the following. We define E(τxy) and E(τxx) as the relative

L2-norm errors for the numerical solutions of the stress
components, which are calculated by using the following
formulas:

E(τxy) =

√√√√√√√√
M∑

k=1

[
τ exact
xy (xk) − τ numerical

xy (xk)
]2

M∑
k=1

τ exact
xy (xk)2

, (37)

E(τxx) =

√√√√√√√√
M∑

k=1

[
τ exact
xx (xk) − τ numerical

xx (xk)
]2

M∑
k=1

τ exact
xx (xk)2

, (38)

where M is the total number of lattice cells; τ numerical
xy and

τ numerical
xx are the numerical solutions that have converged to

the steady state; and τ exact
xy and τ exact

xx are the exact steady
state solutions. Figures 6 and 7 show the relative L2-norm
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FIG. 6. Comparison of the relative L2 error of the extra-stress component τxy between the presented scheme and Karpikov’s scheme with
respect to the time t for Wi = 1.0 (left), Wi = 10.0 (right) with β = 0.5 and Re = 1.0, respectively.
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FIG. 7. Comparison of the relative L2 error of the extra-stress component τxx between the presented scheme and Karpikov’s scheme with
respect to the time t for Wi = 1.0 (left), Wi = 10.0 (right) with β = 0.5 and Re = 1.0, respectively.

errors of the extra-stress component τxy and the normal-stress
component τxx with respect to time t with β = 0.5 and
Re = 1.0 for Wi = 1.0, Wi = 10.0, respectively. From Fig. 6
we can see that the relative L2-norm error of τxy is extremely
small for both Karpikov’s scheme and the present scheme
for Wi = 1.0. Figure 7 shows that the relative L2-norm
error of τxx is less than 0.1% at t = 2.5 for our present
scheme for Wi = 1.0, whereas the relative L2-norm error of
Karpikov’s scheme is more than 2.0%. Particularly, as the Wi
number increased from 1.0 to 10.0, the relative L2-norm error
obtained by Karpikov’s scheme is clearly to exceed more than
100.0%. Overall, through the analysis of the relative L2-norm
error mentioned above, we find that the present scheme for
the constitutive equation has a low numerical dissipation. So
there is a significant improvement of the numerical accuracy
of the normal-stress component, in particular at high Wi.

Figure 8 plots the numerical results of the evolution for
ux at the central point (5, 0.5) with respect to time t at
β = 0.5 and Re = 1.0 for Wi = 1.0 and 10.0, respectively.

From Fig. 8 it is of interest to note that with increasing
time ux overshoot the terminal velocity before eventually
tending to the end state, because of the effect on the flow
through a channel including the elasticity. More importantly,
at a higher Wi = 10.0, the numerical results solved by our
proposed scheme show the velocity overshoot before tending
to that terminal velocity for a sufficiently long time. However,
we also find that the effect on the velocity including the
elasticity obtained by Karpikov’s scheme is much weaker
than that of the scheme presented in this paper, perhaps this
is due to its numerical dissipation. The overshoot behavior
of viscoelastic liquid in the unsteady flow has been noted
before, theoretically by Fielder and Thomas [24], Hermes and
Fredrickson [25], and Water and King [26]. The numerical
results obtained by our new scheme are found to be in
good agreement with those previous studies. As expected,
the viscoelastic fluid exhibits the more complex rheology
behavior, which is different from that of the Newtonian
fluid.

FIG. 8. The evolution of the velocity component ux at a central point (5, 0.5) with respect to the time t for Wi = 1.0 (left), Wi = 10.0
(right) with β = 0.5 and Re = 1.0, respectively.
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FIG. 9. Schematic of half the planar 4:1 contraction flow.

B. Flow through the 4:1 planar contraction

The flow through the contraction geometry has some key
complex features, which is involved in the polymer processing
such as the combination of the shear and extensional defor-
mations. Therefore, it is recognized as an ideal benchmark
problem for both the experimental and numerical studies of
complex viscoelastic fluid. In this section we try to simulate
the Oldroyd-B fluid in contraction geometry using the method
presented in this paper. The flow domain is shown in Fig. 9.
The line y = 0 is a mirror plane in the system so we only model
the top half. The ratio of the half height of downstream and
upstream channel is set to 4, which generates the complex
flow exhibiting strong shearing near the walls and planar
extension along the centerline. We choose the dimensionless
units U = 1 and L = 1, then Wi = λp.At inflow, a fully
developed parabolic Poiseuille flow is imposed by

ux = 3

128
(16 − y2), uy = 0, (39)

while the Neumann boundary conditions are given at the
outlet under the assumption of the fully developed conditions.
No-slip boundary conditions are imposed along the stationary
walls. Symmetry boundary conditions are imposed along the
centerline. We take the dimensionless parameter β as 1/9, and
Re number as 1.0. To compare the results with the reference
data published in the literature, we define the distance between
the points, where the separation line meets the bottom of the
channel and the salient corner, as salient vortex length XR .
As discussed in the channel flow, we also need to be cautious
with the choice of time step for the asynchronous coupling.
We note that the solution obtained by using small macro time
step (t < 5.0 × 10−4) has less affection for Wi < 2.5 in the
simulation. For the compromise between the computational

Δx

X R

0.01 0.02 0.03 0.04 0.05
1

1.2

1.4

1.6

1.8

2

2.2

FIG. 11. Convergence of predicted XR with mesh refinement at
Wi = 0.5.

cost and accuracy, we set δt = 1.0 × 10−5 for Re = 1.0, and
t = 5.0 × 10−4 in this section.

We perform the numerical calculations on a series of meshes
to ensure that the simulated solutions are independent of
mesh. The characteristics of the four meshes are shown in
Table II. Figure 10 shows the effect of the mesh refinement
on the streamline patterns at Wi = 0.5. The strength of the lip
vortex decreases as the mesh is refined, which suggests that
the lip vortex is sensitive to the mesh refinement. The result
of Matallah et al. [27] also suggested that the lip vortex was
sensitive to mesh size. Figure 11 demonstrates the convergence
of XR with mesh refinement at Wi = 0.5. It could be observed
that the range of variation for XR is to be minimal with the
mesh M4. So, we use the mesh M4 in the following calculations
to find a compromise between the computational cost and
accuracy.

Figure 12 displays the streamline patterns with four
different Wi numbers. It is noted that the lip vortex emerges
and grows up as Wi is increased; the lip vortex first appears
about at Wi = 1.0, but cannot be clearly observed without
zooming until Wi � 2.0. In the result of [27], a weak lip vortex
was also detected for Wi � 2.0. In the experimental works,
the lip vortex enhancement was observed for shear-thinning
fluid in planar 4:1 contraction flow [28]. Though Nigen and

(M1) (M2)

(M3) (M4)

FIG. 10. Mesh dependence of streamlines at Wi = 0.5 using a mesh of M1, M2, M3, and M4.
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TABLE II. Mesh characteristics used in this study.

Mesh Total cell x

M1 120 000 0.05
M2 128 000 0.025
M3 392 000 0.0142
M4 512 000 0.0125

Walters [29] did not observe the steady lip vortex, they reported
the temporal existence of the lip vortex just before the flow
instability occurred.

Figure 13 displays the value of the salient vortex length with
different Wi numbers using the finer mesh M4, compared with
those data in the literature [27,30]. It appears that the salient
vortex length predicted by the present method decreases as
Wi increases for Wi � 2.0. As can be seen from Fig. 13, the
salient vortex length given by the present coupled method
agrees well with the reference solutions reported by Matallah
et al. [27] using the finite element method. On the other hand,
although the present results are slightly higher than those using
a semi-Lagrangian finite volume scheme [30], they show the
same decreased trend of vortex size as Wi increased. Again, the
values of the salient vortex length exhibit the similar behaviors
to those obtained for Re = 0.0 in Ref. [31]. However, we
notice that the value of XR obtained by Karpikov’s scheme is
significantly different from the other results, perhaps because
of its numerical dissipation.

Figure 14 depicts the three components of the stress tensor
at the steady state for Wi = 1.0. The results calculated by the
present coupled LBM show that there is a buildup of stress
boundary layers near downstream of the re-entrant corner,
while the contours are smooth around the corner singularity.
Moreover, a region of high stress concentration is observed
beyond the re-entrant corner on the downstream channel wall
for both τxy and τxx . These structural features of the stress
tensor are qualitatively similar to those of Aboubacar et al.
in [32]. Finally, Fig. 15 shows the numerical solutions of the
velocity component through the horizontal centerline of the
planar contraction for Wi = 0.0, 2.0, respectively. It can be
seen clearly that the velocity overshoot is so apparent with
increasing elasticity (Wi = 2.0). Since the elongational flow
is dominant along the centerline, the accelerating velocity can
be attributed to the sharp gradient of the longitudinal normal

Wi

X R

0 0.5 1 1.5 2
0.6

0.9

1.2

1.5

1.8

2.1

2.4
Present scheme
Karpikov’s scheme
Phillips et al.[30]
Matallah et al.[27]

FIG. 13. The values of the salient vortex lengths with different
Wi numbers comparing with those data taken from the literature.

stress. This feature agrees qualitatively with that of [33], which
observed the similar behavior of the creeping flow at Wi = 2.5.

V. CONCLUSIONS

In summary, we have developed a lattice Boltzmann method
coupled with the Oldroyd-B constitutive equation to simulate
the viscoelastic fluid in the context of a single distribution
function. In our method, the flow field of the solvent is solved
by using a 2D incompressible lattice Boltzmann BGK model,
whereas the advection operator of the polymer stress tensor is
directly calculated with the help of the particle distribution
functions. Specifically, to improve the numerical accuracy
of the simulation, we presented a numerical scheme for the
advection of stress tensor through the truncation of second-
order Taylor expansion. We have found that our method could
greatly ease the numerical dissipation of the simulation for the
stress tensor. The numerical results of 2D channel flow agree
well with the analytical and some experiment results reported
in the previous studies. Furthermore, we have also shown that
our method could capture some complex rheological behaviors
of the 4:1 contraction flow.

Unlike the LBM including two types of distribution
functions, the coupled LBM presented in this paper has
the advantage of smaller memory requirements. So the new

Wi=0.5 Wi=1.0

Wi=2.0 Wi=2.5

FIG. 12. The streamlines for different Wi numbers: Wi = 0.5, 1.0, 2.0, and 2.5.
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FIG. 14. The stress contours of τxx , τxy , and τyy for Wi = 1.0.

method may allow us to simulate large systems. Moreover, our
algorithm automatically maintains the traditional advantages
of LBM without extra enforcement, and could also be easily
implemented. Nevertheless, some important issues, such as
the investigations of other more sophisticated constitutive
equations and elastic instability behaviors, are needed to study
further, which would contain the more physical ingredients.
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APPENDIX: THE DERIVATION OF THE NUMERICAL
SCHEME FOR ADVECTION OPERATOR

In this Appendix we show the derivation of the new scheme
for the advection operator of a polymer stress tensor. The
idea is to calculate the advection operator appropriately by

FIG. 15. Velocity overshoots along symmetric line.

truncating the Taylor series expansion. We will derive that

δtAadv(τ ,t) ≈ 2
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t)

− 1.5
m∑

α=1

τ (x,t)fα(x,t)

− 0.5
m∑

α=1

τ (x − 2eαδt,t)fα(x − 2eαδt,t),

(A1)

where Aadv(τ ,t) = (u · ∇)τ is the advection operator applied
to polymer stress tensor τ ; andfα(x,t) is the distribution
function at node x at a time t .

According to the two-dimensional nine velocity (D2Q9)
model, the macroscopic flow velocity is computed from the
distribution functions as follows:

ui(x,t) =
8∑

α=1

(eα)ifα(x), (A2)

δtAadv(τ ,t) = δt
∂

∂xi

[τ (x,t)ui(x,t)] . (A3)

Substituting Eq. (A2) into Eq. (A3) we get

δtAadv(τ ,t) = δt
∂

∂xi

[τ (x,t)ui(x,t)]

= δt
∂

∂xi

τ (x,t)
8∑

α=1

fα(x,t)(eα)i

= ∂

∂xi

8∑
α=1

τ (x,t)fα(x,t)(eα)iδt. (A4)

Now, the Taylor expansion of the function
∑m

α=1
τ (x − eαδt,t)fα(x − eαδt,t), about x, may be approximated,

m∑
α=1

τ (x − eαδt,t)fα(x − eαδt,t)

=
m∑

α=1

τ (x,t)fα(x,t) − ∂

∂xi

m∑
α=1

τ (x,t)fα(x,t)(eα)iδt

+ 0.5
∂2

∂xi∂xj

m∑
α=1

τ (x,t)fα(x,t)(eα)i(eα)j (δt)2 + o(δt)2.

(A5)
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Then, the Taylor expansion of the function∑m
α=1 τ (x − 2eαδt,t)fα(x − 2eαδt,t), about x, may be

also approximated,
m∑

α=1

τ (x − 2eαδt,t)fα(x − 2eαδt,t)

=
m∑

α=1

τ (x,t)fα(r,t) − ∂

∂xi

m∑
α=1

τ (x,t)fα(x,t)(eα)i(2δt)

+ 0.5
∂2

∂xi∂xj

m∑
α=1

τ (x,t)fα(x,t)(eα)i(eα)j (2δt)2 + o(δt)2.

(A6)

Equation (A5) is multiplied by factor 2, and then substitutes
Eq. (A5) × 2 into Eq. (A6), we can rewrite Eq. (A6) as

0.5
∂2

∂xi∂xj

m∑
α=1

τ (x,t)fα(x,t)(eα)i(eα)j (δt)2

=
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t) − 0.5
m∑

α=1

τ (x,t)fα(x,t)

− 0.5
m∑

α=1

τ (x − 2eαδt,t)fα(x − 2eαδt,t)+o(δt)2. (A7)

Using (A3)–(A7) we have

−δt
∂

∂xi

[τ (x,t)ui(x,t)]

=
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t) −
m∑

α=1

τ (x,t)fα(x,t)

− 0.5
∂2

∂xi∂xj

m∑
α=1

τ (x,t)fα(x,t)(eα)i(eα)j (δt)2 + o(δt)2

=
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t) −
m∑

α=1

τ (x,t)fα(x,t)

+
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t)

− 0.5
m∑

α=1

τ (x,t)fα(x,t)

− 0.5
m∑

α=1

τ (x − 2eαδt,t)fα(x − 2eαδt,t) + o(δt)2.

(A8)

Using the continuity equation and incompressibility of the
fluid

∂

∂xi

ui(x,t) = 0. (A9)

We get

∂

∂xi

[τ (x,t)ui(x,t)] = ui(x,t)
∂

∂xi

τ (x,t) + τ (x,t)
∂

∂xi

ui(x,t)

= ui(x,t)
∂

∂xi

τ (x,t). (A10)

Combining Eqs. (A8) and (A10) and casting out the term
of truncation error o(δt)2, we get

δtAadv(τ ,t) = δt
∂

∂xi

[τ (x,t)ui(x,t)]

≈ 2
m∑

α=1

τ (x − eαδt,t)fα(x − eαδt,t)

− 1.5
m∑

α=1

τ (x,t)fα(x,t)

− 0.5
m∑

α=1

τ (x − 2eαδt,t)fα(x − 2eαδt,t).

(A11)
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