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The density of states of continuous models is known to span many orders of magnitudes at different energies
due to the small volume of phase space near the ground state. Consequently, the traditional Wang-Landau
sampling which uses the same trial move for all energies faces difficulties sampling the low-entropic states. We
developed an adaptive variant of the Wang-Landau algorithm that very effectively samples the density of states of
continuous models across the entire energy range. By extending the acceptance ratio method of Bouzida, Kumar,
and Swendsen such that the step size of the trial move and acceptance rate are adapted in an energy-dependent
fashion, the random walker efficiently adapts its sampling according to the local phase space structure. The
Wang-Landau modification factor is also made energy dependent in accordance with the step size, enhancing
the accumulation of the density of states. Numerical simulations show that our proposed method performs much
better than the traditional Wang-Landau sampling.
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I. INTRODUCTION

It is well known that Wang-Landau sampling (WLS) [1]
faces difficulties for continuous systems such as atomic
clusters [2], polymers and proteins [2,3], liquid crystals [4],
and spin models [5–7]. In continuous systems, the volume
of phase space near the ordered (low-entropic) states is
infinitesimally small compared to that of the disordered (high
entropic) regions. Nevertheless, the traditional WLS uses the
same random trial moves for the whole range of energies,
even though the phase space volume between the ordered and
disordered states can differ by many orders of magnitude in
different energy domains. This makes it very hard for the
random walker of WLS to perform statistically significant
visits to the low-entropic states. An energy-independent ran-
dom trial move naturally favors diffusion into the voluminous
and disordered regions of phase space, whereas visits to the
ordered regions are “forced” upon the random walker solely
by the acceptance-rejection criterion. As a result, one needs to
perform long simulations to properly sample the rare ordered
states.

Such difficulties are indeed well documented in the liter-
ature. On the theoretical side, the classic paper by Zhou and
Bhatt [8] showed that the statistical error of WLS progresses
as

√
a ln f , where ln f is the modification factor used in WLS,

and is a is a constant. This constant was later shown by
Morozov and Lin [9] in a careful analysis of discrete systems
to be proportional to the rate of change of entropy with energy
∂S/∂E. If we apply their result to continuous systems where
the entropy gradient at the ground state diverges, it means that
the statistical error of WLS diverges. In numerical simulations,
such problems have been reported in many complex and
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challenging continuous systems such as protein molecules [2]
and liquid crystals [4]. Perhaps the most telling example is
that even for a simple and well-understood system such as the
ferromagnetic XY model, traditional WLS faces difficulties
sampling the ordered states [7].

There have been previous studies addressing the sampling
of low-entropic states in WLS. Xu and Ma [6] studied
the two-dimensional XY model where the density of states
(DOS) is known to change very steeply near the ground state
energy. They first analytically derived the low-temperature
approximation of the partition function and then made a
Laplace transform to obtain the approximate DOS near the
ground state energy. Using this as the initial approximation,
they performed WLS in a narrow region of low-energy space to
refine their DOS. However, their approach cannot be applied to
more general systems such as spin glasses where the ground
state is not known a priori [1,10]. Furthermore, restricting
the random walker to only a limited energy range makes
it nonergodic in frustrated systems. Zhou et al. proposed
updating and smoothing the DOS with a continuous kernel [5].
Although the effects of smoothing does indeed help in the
sampling of the DOS at low-entropic regions, this method
is heuristic, and the width of the kernel might affect the
outcome.

Actually, the difficulty of sampling the low-entropic regions
of phase space is not restricted just to WLS and has indeed been
studied previously within the general context of Monte Carlo
simulations by Bouzida, Kumar, and Swendsen [11]. The main
idea is to strike a balance between choosing a good step size for
the trial move and rapid exploration of the entire phase space.
Using smaller step sizes for the trial move can improve the
sampling of ordered states. This is because small moves allow
the system to make minor adjustments to fine-tune itself into
a highly specific ordered configuration. However, the problem
with making small steps is that it leads to slow exploration of
phase space. The acceptance ratio method of Bouzida et al. is
a systematic way of achieving high computational efficiency
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by balancing a good step size with fast exploration of phase
space. In this method, one updates the step size δ as

δnew ← δcurrent
ln(aPoptimum + b)

ln(aPcurrent + b)
, (1)

where Pcurrent and Poptimum are the current and optimum (i.e.,
desired) acceptance rate, δcurrent and δnew are the current and
new (i.e., improved) step sizes, and a,b are constants to protect
against singularities when Pcurrent = 0 or 1. Given Pcurrent,
Eq. (1) iteratively adjusts the step size to achieve Poptimum [12].
A systematic study by the original authors has found the best
Poptimum for systems in various dimensions [13].

In this paper we propose two ideas to circumvent the
difficulties faced by the WLS in sampling the low-entropic
regions. The first is to generalize the acceptance ratio method
by Bouzida et al.such that the step size δ and the acceptance
rate Pcurrent in Eq. (1) become energy dependent. More
precisely, we would like δ to be small in the ordered regions
of phase space, but large in the disordered regions. This
will enable the random walker to make small moves at the
low-entropic regions to sample rare states, but also make large
moves to quickly diffuse through the easily sampled disordered
ones. By making the acceptance rate Pcurrent energy dependent
as well, we can use Eq. (1) to adjust δ at a particular energy
based on the acceptance rate of that energy.

Our second contribution is to generalize the updating the
DOS. In the original WLS, the DOS is updated with the
same modification factor ln f for the entire energy range. We
propose multiplying ln f by an energy-dependent factor. As
discussed above, generalizing the acceptance ratio method will
provide us with an optimized trial move step size that reflects
the entropic structure of phase space at that energy. A large step
size means that at that energy, the phase space is large, whereas
a small step size will imply that the phase space at that energy is
small. Hence, we propose multiplying the modification factor
by the optimized trial move step size. Our physical motivation
is that the modification factor should be large at high entropic
states to quickly accumulate the estimated DOS, whereas for
small entropic states, the accumulation should be more gradual
to avoid sudden increments that usually leads to overestimation
of visits to these small regions of phase space. Ideally, we want
more frequent visits to the low-entropic region but a slower
and careful accumulation of DOS through the use of smaller
modification factors.

We shall refer to our proposed method as the Adaptive
Wang-Landau sampling (AdaWL). Actually, our proposed
strategy constitutes a significant departure from the original
WLS. It might be questioned if biasing the WLS in an
energy-dependent fashion might lead to an erroneous DOS.
We shall show numerically by comparing with benchmark
calculations that our generalization of WLS does lead to the
correct DOS, and indeed, it improves dramatically upon the
original WLS.

The rest of the paper is organized as follows. In Sec. II we
describe our algorithm in detail. Section III introduces our test
model, the two-dimensional square lattice XY model, as a test
bed for our method. Section IV presents results of numerical
simulations. In particular, we look at three different measures
to assess the performance of AdaWL compared to WLS: the
specific heat, the first visit time, and the saturation error of the

DOS. Details about these measures will be described in the
respective subsections. We discuss and conclude in Sec. V.

II. ADAPTIVE WANG-LANDAU (ADAWL) SAMPLING

Wang-Landau sampling performs a random walk in energy
space and seeks to provide an accurate estimate of the
microcanonical density of states. In the traditional WLS, a
trial move with a fixed step size is used to sample a new
configuration σ ′ from the current configuration σ , i.e.,

T [σ ′|σ ] = q0(x), (2)

where T [σ ′|σ ] is the probability of making the trial move from
σ to σ ′, the random variable x gives the change from σ to σ ′,
and q0(x) is a probability distribution for generating x using
a constant step size which remains fixed during simulation.
For instance, q0(x) can be a Gaussian distribution with the
standard deviation being the step size. Then x = r − r′ can be
how much to move the position of a particle, where r and r′
are the positions of the particle before and after the trial move.
Note that apart from having a fixed step size, q0(x) is also
independent of the configuration of the system. In other words,
q0(x) is the same for every point in the entire phase space. Trial
moves can in general depend on the system configuration,
an example being the Swendsen-Wang [14] and other cluster
algorithms [15–17] where the flipping of a cluster of spins
depends on the current existing spin clusters. The traditional
WLS, however, usually employs configuration-independent
trial moves. Using a trial move like Eq. (2), WLS accepts
the new state σ ′ with probability

P (σ ′|σ ) = min

(
1,

g(E)

g(E′)

)
, (3)

where E and E′ are, respectively, the energies of the current
and proposed configurations, and g(E) is the estimated DOS
at energy E. Note that as the trial move does not depend on
system configuration, q0(x) does not appear in Eq. (3). After
each move, WLS modifies the DOS as

ln g(E) ← ln g(E) + ln fk, (4)

by means of a modification factor ln fk . The subscript k

indicates the kth ln f stage of the Wang-Landau algorithm.
In their original formulation, Wang and Landau proposed
reducing this factor as ln fk+1 = 1

2 ln fk based on the flatness of
the accumulated histogram. However, detailed investigations
by various authors have found that histogram flatness is not
a satisfactory criterion [8,9,18–20]. Here we shall adopt a
different criterion based on the saturation of the DOS error,
which will be described in Sec. IV C. For continuous system,
the energies are discretized, and the estimated g(E) is a
piecewise constant function, i.e., g(E) = g(Ei) within each
energy bin Ei � E < Ei+1.

In AdaWL, to generate the proposed new configuration σ ′,
our trial moves will be more general and depend on the current
configuration σ . Let us first define the adjustable probability
distribution q(x; λ) whose width can be tuned using λ. The
actual form of q(x; λ) will depend on the system and the kinds
of moves one wishes to make. We can choose to make the
distribution narrow or wide using λ. In practice, λ will be
substituted by the step size of the trial move. In this paper, we
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use an energy-dependent step size δ(E) and set λ = δ(E). If
we consider just single-site update so that σ and σ ′ differ by
one site, our trial move is given by

T [σ ′|σ ; δ(E)] = 1

N
q(x; δ(E)), (5)

where T [σ ′|σ ; δ(E)] is the probability of making the trial move
from σ to σ ′ with step size δ(E). The step size δ(E) is the size
of the move at the energy E. Note that since the energy in δ(E)
is a function of the configuration σ , the trial move Eq. (5) is
now dependent on system configuration, unlike Eq. (2), which
is not. The factor 1/N is to account for the probability of
selecting one site out of N (e.g., the total number of spins).
In numerical calculation, δ(E) is represented as a piecewise
constant function of energy, i.e., δ(E) = δ(Ei) for Ei � E <

Ei+1.
The challenge now is to optimize the step sizes δ(Ei) for

the most efficient simulation. We extend the acceptance ratio
method of Bouzida et al. [11] and update δ(Ei) at the energy
bin Ei according to

δ(Ei) ← δ(Ei)
ln(aPopt + b)

ln[aP (Ei) + b]
, (6)

where Popt is the optimal acceptance rate, and a, b are constants
to protect against singularities. The choice of Popt depends on
the dimension of the system, and we shall use the value rec-
ommended by Bouzida et al. The parameters Popt, a, and b we
used in this paper for our simulations are given in the caption
of Table I.

During simulations, we first initialize δ(Ei) to a constant
value for all energy bins. In addition to the usual histogram,
we also accumulate the counts of accepted and rejected moves
at bin Ei , A(Ei), and R(Ei). After a certain number of Monte
Carlo moves, we compute the acceptance rate at Ei as

P (Ei) = A(Ei)

A(Ei) + R(Ei)
(7)

and use Eq. (6) to update the step sizes.
We now describe the transition probability from the old

configuration σ to the new one σ ′. Unlike Eq. (3) for the
WLS, our trial moves depend on the system configuration.
Hence, the transition probability has to be modified to obtain
an unbiased sampling:

P (σ ′|σ ) = min

(
1,

δ(E)

δ(E′)
· T [σ |σ ′; δ(E′)]
T [σ ′|σ ; δ(E)]

· g̃(E)

g̃(E′)

)
, (8)

where T [σ ′|σ ; δ(E)] is the probability of making the forward
move, T [σ |σ ′; δ(E′)] that of making the backward one, and
both are given by Eq. (5). g̃(E) is a linearly interpolated
estimate of the DOS. The ratio δ(E)/δ(E′) is used to account
for the energy-dependent accumulation of the DOS, which we
will now describe. As mentioned in the Introduction, AdaWL
adopts an energy-dependent modification factor,

ln[f̃k(E)] = ln fk δ(E), (9)

where ln fk is as defined in WLS, and ln (f̃k(E)) is our new
modification factor. To accommodate the possibility of using
nonuniform intervals between energy levels, the updating of
ln g(E) and histogram H (E) at each step has to take into
account the actual size of the bins,

ln g(Ei) ← ln g(Ei) + ln[f̃k(Ei)]

w(Ei)
, Ei � E < Ei+1,

(10)

H (Ei) ← H (Ei) + δ(Ei)

w(Ei)
, Ei � E < Ei+1,

where

w(Ei) = Ei+1 − Ei (11)

is the size of the bin width at Ei [22].
This completes the description of AdaWL. A summary of

the algorithm is given in Appendix A.

III. TWO-DIMENSIONAL SQUARE LATTICE XY MODEL

To test our new algorithm, we consider the two-dimensional
L × L square lattice XY model,

H = −
∑
〈i,j〉

cos(θi − θj ), (12)

where σ is now a vector of N spins (θ1, . . . ,θN ), θi ∈ (−π,π ),
〈i,j 〉 denotes summation over nearest-neighbor pairs, and pe-
riodic boundary condition is used for both lattice dimensions.
N = L2 is the total number of spins. The XY model, although
simple, has been shown to contain the essential difficulties
encountered in many continuous systems, and hence is a good
test bed for our method [6,7].

We first specify the adjustable distribution q(x; λ):

q(x; λ) =
{(

1
2 − α

λ

) |x| + α for |x| � λ,

λ
2(1−λ) (1 − |x|) for λ < |x| < 1.

(13)

TABLE I. Summary of parameters used in AdaWL, WLS, and Metropolis simulations. δ0: Constant step size used for WLS [λ in Eq. (13)].
ln fk̄: Smallest (i.e., final) modification factor used in simulation. Nk̄: Number of single site updates per spin used for ln fk̄ (the final stage).
NMC: Number of single site updates per spin used for Metropolis simulation. Parameter values for Eq. (6): Popt = 0.5, a = 0.82988, and
b = 0.014625 [21].

System AdaWL and WLS

Energy binning AdaWL only WLS only (δ0 = 0.05) Metropolis

L w(E0) wc c ln fk̄ Nk̄ (107) ln fk̄ Nk̄ (107) Ntraj NMC (107) Ntraj

4 0.01 0.5 10 2−17 6 2−17 6 1000 5 10
8 0.05 5.0 10 2−17 6 2−17 6 1000 1 10
16 0.05 5.0 10 2−17 75 2−17 60 200 1 10
32 0.10 5.0 10 2−13 15 2−12 10 100 1 10
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FIG. 1. Graphs of q(x; λ) for several values of λ. The function ap-
proximates the delta function as λ → 0, and the uniform distribution
as λ → 1. The plot for λ = 1 is shown as a dashed line.

q is symmetric and piecewise linear in x. λ ∈ (0,1) is the
adjustable width. From the normalization condition, we get
the height of the distribution α = 1

λ
− 1

2 . Figure 1 shows plots
of q(x; λ) for some values of λ. For the trial move, first pick
at random a lattice site i, then draw a random variable x from
the distribution q(x; λ), and then update the spin as

θ ′
i = θi + πx. (14)

The width of the distribution λ is specified by the step size δ(E).
When step size is small, i.e., δ(E) 	 1, q(x; δ(E)) is a delta
function sharply centered at x = 0, and the new configuration
θ ′
i is close to the current one θi . When the step size is large, i.e.,

δ(E) ≈ 1, q(x; δ(E)) approximates the uniform distribution,
and the new configuration is uncorrelated with the current one.
q(x; λ) satisfies our requirements for an adjustable distribution
and is simple enough to allow us to sample x efficiently [23].

We also bin the energy levels nonuniformly. The top panel
of Fig. 2 shows the DOS of the XY model for L = 8. The
DOS is symmetric, is relatively flat around E = 0, and drops
abruptly near the minimum and maximum energies Emin and
Emax. Hence, in both our WLS and AdaWL simulations, we
assign smaller energy bins near Emin and Emax in order to
represent the DOS near the edges more accurately. This is
accomplished by using the following formula to assign the
negative energies,

Ei+1 = Ei + wc exp(−γ |Ei |c) for Ei+1 < 0. (15)

The initial energy level is given by E0 = Emin. The Gaussian-
like exponential term in Eq. (15) is to make neighboring
energies close near Emin where the DOS drops abruptly, but
far apart near E = 0. The constants c, wc, and width of the
initial bin w(E0) = E1 − E0 are set manually. c is a positive
even integer that controls the rate of increase of the exponential
term. wc is the width at E = 0. γ is determined once c, wc,
and w(E0) have been specified. The binning parameters we
used are listed in Table I. The negative energies are reflected
about E = 0 to obtain the positive energies. The bottom graph
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FIG. 2. The relationships between the density of states (top
panel), acceptance rate (middle panel), and step sizes (bottom panel)
for the XY model (L = 8) obtained using AdaWL. Step sizes are
adjusted to keep an optimum acceptance ratio of 0.5. Between
energies −50 to 50, step sizes saturate to a maximum value of λ = 1.
Some representative error bars are shown for the acceptance rate.

in Fig. 3 shows the bin widths we used for L = 16 in the
simulations of this paper.

IV. NUMERICAL CALCULATIONS

The procedure for our numerical simulation of WLS and
AdaWL is as follows. The binning of energies are set using
Eq. (15). At the start of the simulation, ln f0 = 1. The
modification factor is reduced in stages as ln fk+1 = 1

2 ln fk ,
where in the final stage k̄ we have ln fk̄ . For each stage, we
perform simulation until the error of the DOS saturates for that
stage before reducing the modification factor. The error of the
DOS will be discussed in detail in Sec. IV C. For each system
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FIG. 3. Graphs of bin width versus energy used for the XY model
for L = 16. The widths are larger near E = 0 and smaller near E =
Emin = Emax. The lower graph (fine bins) is the binning scheme given
in Table I and used throughout this paper (for L = 16). The upper
graph (coarse bins) is discussed in the text.
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FIG. 4. Graphs of the average first visit time versus ln fk for
AdaWL and WLS (constant step size 0.05). Error bar when not shown
is smaller than the size of the symbol. Insert: First visit times of WLS
for different step sizes. The most efficient step size for WLS is 0.05,
with the smallest first visit time. Symbols for insert are as follows.
For L = 4: ∗ for step size = 0.01, ◦ for 0.05, × for 0.1, and � for
0.5. For L = 8: � for step size = 0.01, � for 0.05, + for 0.1, and �
for 0.5.

size L, we computed a total of Ntraj independent trajectories
where each trajectory is started using a different random seed.
The details of the simulation parameters are summarized in
Table I.

For WLS, our trial moves are also given by Eq. (13) with
λ being a constant δ0. We have experimented with several
constant step sizes and found δ0 = 0.05 to perform the best.
The numerical results supporting this claim are presented in
Secs. IV B and IV C and the insets of Figs. 4 and 5. In the rest
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FIG. 5. Graphs of average of saturation value of 〈
Hk〉 versus
ln fk for AdaWL and WLS (constant step size = 0.05). Insert: For
WLS with different step sizes. Symbols have the same meaning as
Fig. 4. The most efficient step size for WLS is 0.05, which has the
lowest saturation values.

of the paper, unless otherwise stated, we shall be comparing
AdaWL with WLS of step size 0.05.

For AdaWL, the step sizes are δ(Ei) = 1 for all Ei at the
start of the simulation. During simulation, we also accumulate
A(E) and R(E). Once every ≈105 single site updates per spin,
we use Eqs. (6) and (7) to update the step sizes. A(E) and
R(E) are then reset to zero, and their accumulation restarted
for the next iteration of step size update. During simulations,
the curves for P (E) and δ(E) converged very quickly [i.e.,
after a few iterations of Eqs. (6) and (7)]. Fig. 2 shows the
DOS, P (E), and δ(E) of our AdaWL simulation for L = 8.
As can be seen, Eq. (6) adjusts the step sizes such that the
acceptance rate is 0.5. In the high DOS energy range between
−50 and 50, the acceptance rate did not reach 0.5 because
the step size has already saturated to the maximum of 1 and
the acceptance rate cannot be further optimized. The DOS is
updated quickly with the maximal modification factor in this
energy range. Near the edges of the DOS, the step size and
modification factors are both small, and the DOS is updated
gradually.

In the following, we compare the performance between
WLS and AdaWL using three different measures: (1) the
specific heat capacity, (2) the first visit time, and (3) the
saturation of DOS error.

A. Specific heat capacity

We first demonstrate that AdaWL computes the correct
DOS, and that it is more accurate than WLS . To do that, we
compute the specific heat capacity. We first divide Ntraj into
four equal portions. For each portion, we compute the mean
of the DOS (i.e. we average over the final DOS’s of the Ntraj/4
trajectories). This average DOS is used to compute the specific
heat capacity per spin cv at temperature T using

cv = 〈E2〉 − 〈E〉2

T 2L2
, (16)

where the thermal average of f (E) is given by

〈f (E)〉 =
∫ Emax

Emin

f (E)g(E)e−E/T dE. (17)

The cv is then further averaged over the four portions. We
denote this specific heat averaged over the four portions as
〈cv〉. Figure 6 shows the results of 〈cv〉 for L = 16 and 32.
The left (right) panels are for AdaWL (WLS). 〈cv〉 is given
by the solid curve. The standard error at some temperatures
is also indicated using error bars. The size of the error bars
show that the precision of the specific heat calculated by
AdaWL is better than that of WLS. For L = 32, it is apparent
that WLS produces a grossly incorrect curve for 〈cv〉. To
check the accuracy of the AdaWL results, we performed
Metropolis simulations to generate accurate specific heat
capacity values at selected temperatures, and these are also
plotted for comparison in Fig. 6 using solid circles. The
〈cv〉 curves from AdaWL agree very well with the results of
Metropolis calculations. The actual 〈cv〉 values from all three
methods are also listed in Tables II (L = 16) and III (L = 32).
We see that AdaWL is consistently closer to the benchmarked
Metropolis numbers compared to WLS.
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FIG. 6. Graphs of average specific heat capacities 〈cv〉 calculated
using AdaWL (left) and WLS (right) for L = 16 (top) and 32
(bottom). Solid circles indicate values obtained using Metropolis
algorithm.

The simulation parameters of our Metropolis calculations
are listed in Table I.

B. Ergodicity of the random walker: first visit time

One way to measure the performance of a random sampler is
its ergodicity. The more ergodic the sampler, the more efficient
it is in exploring representative parts of phase space. For the
Wang-Landau algorithm, some authors have used the so-called
tunneling time as a measure of ergodicity [2]. This is the time
it takes for the random walker to go from one energy minimum
configuration to another. The shorter the tunneling time, the
more ergordic is the random walker.

Here, we adopt a related measure of ergodicity which is
much easier to compute, the first visit time. At the start of
each ln f stage of the WLS or AdaWL simulation when the

TABLE II. Values of average specific heat capacity, 〈cv〉, com-
puted using Metropolis, AdaWL, and WLS. The 〈cv〉 values for
Metropolis are computed by averaging over Ntraj trajectories (cf.
Table I, under Metropolis). Values of 〈cv〉 for AdaWL and WLS are
listed in terms of their deviation from the 〈cv〉 of Metropolis (measured
in units of σ , the standard deviation of Metropolis calculations).

L = 16

Metropolis Deviation (units of σ )

T 〈cv〉 σ (10−4) 〈cv〉 AdaWL 〈cv〉 WLS

0.1 0.5112 8 0.3 5
0.2 0.5266 8 0.3 4
0.3 0.5446 6 −1 0.2
0.4 0.5664 5 0.8 5
0.5 0.5948 7 0.03 −5
0.75 0.7358 7 −1 −0.7
1.0 1.2200 20 0.05 3
1.075 1.4467 20 2 −8
1.1 1.4796 30 1 −6
1.13 1.4690 10 3 −11
1.75 0.4483 4 0.5 −8

TABLE III. Similar to Table II, but for L = 32.

L = 32

Metropolis Deviation (units of σ )

T 〈cv〉 σ (10−4) 〈cv〉 AdaWL 〈cv〉 WLS

0.1 0.5132 9 10 −20
0.2 0.5283 6 10 −30
0.3 0.5459 5 −4 −100
0.4 0.5683 7 5 10
0.5 0.5966 7 −8 20
0.8 0.7966 5 −10 20
1.0 1.336 30 −2 20
1.025 1.448 30 −7 −10
1.05 1.519 30 −8 −90
1.075 1.521 20 −1 −200
1.1 1.465 30 4 −100
1.15 1.314 10 6 −70
1.2 1.182 20 3 30
1.8 0.4174 2 2 −30

modification factor has just been decreased, the histogram is
zero for all energy bins. The first visit time is defined as the time
it takes for all the bins of the histogram to be visited at least
once by the random walker. For each trajectory, we compute
one first visit time for each ln f stage of the simulation. We
then average over Ntraj trajectories. Figure 4 shows the results.
The average first visit times is plotted against ln fk for AdaWL
and WLS for various system size. Generally, AdaWL (filled
symbols) visits all energy levels much faster than WLS (empty
symbols) at all stages and for all system sizes, implying better
ergodicity. The insert is a similar plot comparing the results
for WLS with different constant step sizes; a constant step size
of 0.05 performs the best for WLS. The first visit time at small
ln f for L = 16 is similar for AdaWL and WLS. We attribute
this to binning effects, which will be discussed in Sec. IV D.

In their study of the XY model, Sinha and Roy [7] reported
that the random walker of WLS frequently does not visit energy
bins near Emin and Emax. Here we mention that our bins near
the edges are much smaller and also nearer to Emin and Emax

compared to what Sinha and Roy had used. That AdaWL
has no difficulty sampling all energy bins is indicative that it
performs better than WLS.

C. Saturation of DOS error

We now consider the error in the DOS. In Wang and
Landau’s original formulation, the “flatness of histogram”
criterion was used as a measure of convergence of the
WLS. Each stage of the sampling was performed until the
accumulated histogram becomes sufficiently flat before the
modification factor is reduced. However, it is now known that
this is not a good measure of convergence because the height of
the histogram increases linearly with time and will ultimately
reach flatness regardless of whether the simulation for that
stage has converged or not. Detailed studies by various authors
on the DOS error of WLS have revealed that the error is related
to the modification factor instead of histogram flatness [8].
Also, the use of arbitrary histogram flatness as a criterion has
been shown to lead to nonconvergence of WLS by [19,20].
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The correct convergence of WLS has also been proposed by
Morozov and Lin [9].

In a separate investigation, Lee et al. [18] formulated a more
precise measure of the convergence of WLS, which is shown to
agree with the

√
ln f analysis by Zhou and Bhatt. Details will

be presented in Appendix B. Here we shall present the main
idea. Denote the histogram for the kth stage of the simulation
as Hk(E). We define a new histogram H̃k(E) obtained by
subtracting away the minimum value of Hk(E), i.e.,

H̃k(E) = Hk(E) − min
E

{Hk(E)}. (18)

Hence, H̃k(E) is not plagued by the problem of linear growth.
The area under H̃k(E),


Hk =
∑
E

w(E)H̃k(E), (19)

is conjectured by Lee, Okabe, and Landau to be a measure
of the error in the DOS [18]. [The w(E) in Eq. (19) is to
account for the non-uniform energy bin widths.] During each
stage of the simulation, 
Hk first increases and then saturates
to around some mean value. This means that further sampling
will not help to reduce the error in the DOS, and therefore the
modification factor should be reduced. Note that an increasing

Hk does not mean increasing error in the DOS, because
the actual error has to take into account the smallness of
the modification factor [cf. Eq. (B4)]. The key observation
is the saturation of 
Hk during each stage of the simulation.
Lee et al. [18] applied 
Hk to study the DOS error of WLS
in the two-dimension Ising model where the exact numerical
solution for the DOS is available and found that it is a good
measure of the DOS convergence. It has also been applied by
Sinha and Roy to study WLS of the XY model [7].

Figure 7 shows an example of the saturation of 
Hk for the
XY model. It compares the saturation curves for AdaWL and
WLS at the modification factor ln f = (1/2)14 for L = 8. Each
curve 〈
Hk〉 is obtained by averaging over Ntraj trajectories. It
can be seen that both WLS and AdaWL curves saturate to some
constant value after a certain number of Monte Carlo steps.
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k 〉

WLS

AdaWL

FIG. 7. Saturation curves of 〈
Hk〉 for AdaWL and WLS at
ln f = (1/2)14 for L = 8.

However, the saturation value of AdaWL is much smaller than
WLS, implying a smaller error for AdaWL.

For the simulations in this paper, we ran the simulation at
each stage long enough to obtain accurate saturation values of
〈
Hk〉. Although in practice ln fk should be decreased as soon
as saturation is reached, as our purpose here is to compare the
performance of AdaWL and WLS, we ran each stage much
longer than is necessary to obtain reliable measurements of

Hk .

We now describe how we compare the DOS saturation
error of AdaWL and WLS. The Ntraj trajectories are first
divided into four equal portions. For each portion, at each
stage k, we compute 〈
Hk〉 curves similar to that of Fig. 7 by
averaging 
Hk over Ntraj/4 trajectories. Using this averaged
curve 〈
Hk〉, we estimate its saturation value by averaging
over the time steps in the flat part (e.g., last 10%) of the
curve. This gives us the saturation value of 〈
Hk〉 of that
stage for that one portion. We then average the saturation
value over all four portions. The results are shown in Fig. 5.
The average saturation value of 〈
Hk〉 is plotted against ln fk

for AdaWL and WLS for various system size. AdaWL (filled
symbols) has significantly smaller saturation values than WLS
(empty symbols), implying a smaller error in the DOS. The
insert is a similar plot comparing the results for WLS with
different constant step sizes; a constant step size of 0.05 gives
the smallest saturation value for WLS.

D. Nonuniform binning of energy levels

Lastly, we briefly comment on the use of nonuniform
energy bin widths. When using nonuniform bin widths in
Wang-Landau simulations, there is the freedom to choose
large energy spacings at certain energies. However, to compute
thermodynamic quantities such as the specific heat capacity
accurately, the spacings between energy levels has to be small
enough to enable a good representation of the distribution
g(E)e−E/T at the temperatures of interests. Hence, it is
recommended that one first check by making a rough plot
of g(E)e−E/T to ensure that it is represented with a sufficient
number of energy levels at the temperatures concerned. This
is especially important for large system size because the
appearances of singularities or cusps usually require finer
energy spacings to resolve. Of course, the spacings also cannot
be too small otherwise each bin will not accumulate enough
visits by the random walker.

In this paper we have used Eq. (15) to set our energy
levels. It might be tempting to choose c and wc to be
quite large, thereby greatly reducing the number of energy
levels used, especially near E = 0. However, we found that
this will lead to an insufficient number of energy levels
representing g(E)e−E/T at lower temperatures. Our choice
of binning parameters in Table I ensures a good representation
of g(E)e−E/T .

We have also studied the effects of different bin widths
on AdaWL and WLS, and found that there might be rare
instances where WLS appears to give similar performances
as AdaWL. But these rare cases are usually due to effects of
bin widths. If one uses coarse bins, WLS can reach all bins
easily, whereas if a finer set of bin widths near the ground state
is used, WLS will have difficulty visiting those small bins.
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FIG. 8. Plots showing the effects of bin widths. AdaWL is robust
against changes in bin widths. WLS becomes less efficient for the
fine bins, this is due to WLS’s inefficiency in sampling the fine bins
very near the ground state.

AdaWL, however, will not show such dependence because
its step size is designed to be adaptively adjusted according
to the energies. In Fig. 4 WLS shows signs of smaller first
visit time than AdaWL towards the smaller ln f for L = 16.
We have found that using even finer bin widths will increase
the first visit time for WLS, but not for AdaWL. However,
since we have already obtained a more accurate specific heat
capacity for AdaWL at that bin width, we did not pursue to
further accentuate the performance between the two methods.
As another example, Fig. 8 compares the saturated DOS error
of AdaWL and WLS for the coarse and fine bin widths shown
in Fig. 3. AdaWL gives the same results for both sets of bin
widths, whereas the error for WLS increases for the fine bin
widths.

V. DISCUSSION AND CONCLUSION

To summarize, we proposed an adaptive variant of the
Wang-Landau sampling, which is effective for sampling DOS
that ranges many orders of magnitude. The main contributing
factors to this increase in efficiency are adaptive step sizes and
adaptive modification factors. Adaptive step sizes sample the
configuration space well, while adaptive modification factors
accumulate the DOS effectively and accurately. We have tested
the effectiveness of AdaWL for system sizes up to L = 32.
For larger sizes, we may break into several energy regions [1],
where the method to avoid “boundary effect” should be taken
into account [24]. In such a case, the present adaptive method
is still effective for treating DOS that has many orders of
magnitude. For future work, AdaWL should be tested on
different continuous systems, especially frustrated ones.

In Fig. 2 we see that AdaWL is not yet fully optimized
because the acceptance rate in the middle energy range has
not been adjusted to 0.5 due to the saturation of δ(E) to the
maximum value of 1. At larger lattice sizes, where the energy
range is larger, one might consider going beyond single site
updates (e.g., global moves) to enable even larger step sizes to

be used. This might make the sampling of AdaWL even more
efficient.

Recently there have been many works on improving WLS
both for discrete [8,24–31] and continuous [2–5,32] systems.
To obtain better convergence, the 1/t algorithm [26] was
proposed. Moreover, tomographic entropic sampling scheme
[33] was proposed as an algorithm to calculate DOS. The
convergence of WLS was discussed with paying attention to
the difference of density of states by Komura and Okabe [34].
It will be interesting to combine the present work with the
recent progress. Finally, we make a note that our idea of using
an adaptive modification factor could potentially be used for
simulating discrete systems as well as continuous systems.
This will also be part of our future work.
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APPENDIX A: SUMMARY OF ADAWL ALGORITHM

Our AdaWL algorithm is as follows:
(1) Initialize the bin sizes w(Ei) according to Eq. (15).

Initialize the system configuration σ , the DOS ln g(Ei) = 0,
the histogram H (Ei) = 0, modification factor ln f0, and step
sizes δ(Ei)=constant.

(2) Sample a new configuration σ ′ from T (σ ′|σ ; δ(E)) and
accept the move as given by Eq. (8).

(3) Update the DOS and histogram according to Eq. (10).
Update the acceptance and rejection counts A(Ei) and R(Ei).

(4) Repeat steps (2) and (3) for some predefined number
of Monte Carlo steps and update the step size according to
Eq. (6). Set A(Ei) = R(Ei) = 0.

(5) Reduce ln fk (e.g., ln fk ← ln fk/2, after the DOS error
saturates) and set H (Ei) = 0; else, repeat steps (2) to (4).

(6) Repeat steps (2) to (5) until the modification factor ln fk

is smaller than some tolerance threshold.

APPENDIX B: DETAILED PRESENTATION OF THE
MEASURE �Hk

The contents of this appendix was first given in Lee
et al. [18]. The reader is referred there for a more complete
presentation. Here, for completeness, we outline the main
idea presented there, and also update the analysis to take into
account the use of nonuniform energy bin widths.

The DOS ln gn(E) accumulated after the nth stage can be
written as

ln gn(E) =
n∑

k=1

Hk(E) ln(fk) (B1)

where Hk(E) is the accumulated histogram and ln fk is
the modification factor for the kth stage of simulation.
Equation (B1) holds for both WLS and AdaWL. Calculation
of thermodynamics quantities are not affected if we subtract
a constant from Hk(E), hence we subtract the minimum of
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Hk(E),

H̃k(E) = Hk(E) − min
E

{Hk(E)}, (B2)

and define a new but equally valid density of states,

ln g̃n(E) =
n∑

k=1

H̃k(E) ln(fk). (B3)

To introduce our histogram measure, we observe that it is
reasonable to estimate the error between the computed density
of states g̃n(E) and the true one g̃∞(E) as∑

E

w(E)[ln g̃∞(E) − ln g̃n(E)]

=
∑
E

∞∑
k=n+1

w(E)H̃k(E) ln(fk). (B4)

An intuitive view of Eq. (B4) is that if an infinite number of
stages were performed (i.e., n → ∞), then the exact DOS will
be obtained. This statement was made formal by the conjecture
of Leeet al. [18]. If just n stages were done instead, the error

of g̃n(E) will be the sum of all the rest of the stages that were
not carried out explicitly. We denote the fluctuation of H̃k(E)
as


Hk =
∑
E

w(E)H̃k(E). (B5)

Note that the summation over E in Eq. (B5) includes the
bin width w(E). This is a slight modification from the original
formulation. Swapping the order of summation, the right-hand
side of Eq. (B4) becomes

∞∑
k=n+1


Hk ln(fk). (B6)

Hence, the error depends only on 
Hk and the sequence of
modification factors ln fk . If ln fk are predetermined, then

Hk becomes the only determining factor of the error. Hence,
when we see that it saturates (for a certain k), it is an indication
that enough statistics has been accumulated for this ln fk value
and simulation for the next value ln fk+1 should begin. Finally,
it is important to note that smaller 
Hk values indicates that
the accumulated histogram is flatter.
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J. Chem. Phys. 135, 125102 (2011).

[4] D. Jayasri, V. S. S. Sastry, and K. P. N. Murthy, Phys. Rev. E 72,
036702 (2005).

[5] C. Zhou, T. C. Schulthess, S. Torbrugge, and D. P. Landau, Phys.
Rev. Lett. 96, 120201 (2006).

[6] J. Xu and H.-R. Ma, Phys. Rev. E 75, 041115 (2007).
[7] S. Sinha and S. K. Roy, Phys. Lett. A 373, 308 (2009).
[8] C. Zhou and R. N. Bhatt, Phys. Rev. E 72, 025701(R) (2005).
[9] A. N. Morozov and S. H. Lin, Phys. Rev. E 76, 026701 (2007).

[10] P. E. Theodorakis and N. G. Fytas, Eur. Phys. J. B 81, 245 (2011).
[11] D. Bouzida, S. Kumar, and R. H. Swendsen, Phys. Rev. A 45,

8894 (1992).
[12] It is easy to see that the step size δ increases (decreases) at each

iteration when Pcurrent < Popt (Pcurrent > Popt) until it reaches a
fixed point at Pcurrent ≈ Poptimum.

[13] In their original paper, Bouzida et al. recommended Popt ≈0.5
for one, ≈0.42 for two, and ≈0.3 for three-dimensional trial
moves.

[14] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).
[15] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[16] J. Liu and E. Luijten, Phys. Rev. Lett. 92, 035504 (2004).
[17] H. K. Lee and R. H. Swendsen, Phys. Rev. B 64, 214102 (2001).
[18] H. K. Lee, Y. Okabe, and D. P. Landau, Comput. Phys. Commun.

175, 36 (2006).
[19] Q. Yan and J. J. de Pablo, Phys. Rev. Lett. 90, 035701 (2003).

[20] A. N. Morozov and S. H. Lin, J. Chem. Phys. 130, 074903
(2009).

[21] For derivations of the values of a and b, please refer to Bouzida
et al. [11].

[22] In our calculations for the XY model below, we used non-
uniform binnings for both WLS and AdaWL. Hence, the division
by bin width w(Ei) applies to WLS as well.

[23] We choose Eq. (13) for the trial move transition probability
because its cumulative and inverse cumulative distributions
can easily be derived analytically, facilitating the numerical
calculation of the random variable x.

[24] B. J. Schulz, K. Binder, M. Müller, and D. P. Landau, Phys. Rev.
E 67, 067102 (2003).
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