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Integrable aspects and soliton interaction for a generalized inhomogeneous Gardner model
with external force in plasmas and fluids
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A generalized inhomogeneous Gardner model with an external force term is investigated which can govern
the soliton propagation and interaction in the vicinity of the negative ion critical density for certain plasmas or of
equal layer depths for stratified fluids. Integrable aspects including the Lax pair and the �-Riccati-type Bäcklund
transformation (�-R BT) are presented under the Painlevé conditions. By virtue of the �-R BT, analytic one-
or two-soliton-like solutions with the inhomogeneous coefficients, external force term, eigenvalue in the Lax
pair, and another parameter are obtained. Analytic analysis and graphic illustration imply that (1) the amplitude
of a soliton is influenced by the quadratic and cubic nonlinear coefficients, the linear-damping coefficient, and
the aforementioned eigenvalue; (2) the solitonic velocity is “controlled” by the inhomogeneous coefficients, the
external force term, and the aforementioned eigenvalue and parameter; (3) the solitonic background is affected by
the linear-damping coefficient, the external force term and the aforementioned parameter; and (4) the possibility
of solitonic infection is dominated by the difference between eigenvalues.
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I. INTRODUCTION

The Korteweg-de Vries (KdV) model can describe the
weakly nonlinear and weakly dispersive long waves in certain
plasmas and fluid systems [1–8]. Experimentally observed
solitons are slightly different from those via the KdV prediction
due to the effect of finite ion temperature and higher-order
nonlinearity [8–13]. At the critical density of the negative
ion or low-temperature isothermal ions, for example, the
higher-order nonlinear effect must be considered [9,12]. In
the vicinity of the critical density, neither the KdV model nor
the modified KdV (mKdV) model is sufficient for describing
the ion wave or ion-acoustic wave [9–13]. In the ocean and
atmosphere environments, nonlinearity is not so weak as to
be implied by the KdV model [14]. In the next order of
the perturbation, a higher-order KdV model can be obtained,
which in general includes the cubic nonlinearity, the fifth-order
linear dispersion, and the nonlinear dispersion [14–17]. For the
internal waves in a two-layer fluid, when the pycnocline lies
in the middle of fluid, the quadratic nonlinear term vanishes
and the cubic nonlinear term makes the higher-order KdV
model reduce to the mKdV model [14–23]. As a combination
of the KdV-typed model with a quadratic nonlinearity term
and the mKdV-typed model with a cubic nonlinear term, the
generalized inhomogeneous Gardner model [24–27] is also
called the combined KdV-mKdV [28–35] or extended KdV
model [36–43], as follows:

qt + a1(t)qqX + b1(t)q2qX + c1(t)qXXX

+ d1(t)qX + f1(t)q = 0, (1)

where q is a wave function of the scaled space coordinate
X and time coordinate t , the subscripts denote the partial
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derivatives, and the time-dependent analytic functions a1(t),
b1(t), c1(t), d1(t), and f1(t) represent the quadratic nonlinear,
cubic nonlinear, dispersive, dissipative, and linear-damping
coefficients, respectively. For model (1), damping of the
large-amplitude solitary waves with a small damping term has
been investigated with both the analytic adiabatic asymptotic
theory and numerical simulation [14], solitary-wave trans-
formation with an asymptotic method and direct numerical
simulation with a slowly varying cubic nonlinear coefficient
have been studied [16], an auto-Bäcklund transformation (BT)
and some kink-type solutions have been presented with the
homogeneous balance [31] or truncated Painlevé expansion
[38], respectively, and interaction between the breather and
soliton has been provided by means of the Hirota bilinear
method [41]. Model (1) with self-consistent sources and
negative cubic nonlinear term has been studied by means of
the generalized binary Darboux transformation [42]. Lax pair,
BT, and N-soliton-like solutions of model (1) have also been
presented [24]. Nontraveling solutions for model (1) with the
aid of two first-order nonlinear ordinary differential equations
have been obtained [25]. Based on the Hirota bilinear method,
analytic N-soliton-like solutions of model (1) have been
provided [26]. Transformations to convert model (1) to the
constant-coefficient ones have been given [27]. Model (1) with
the coefficients of time-dependent powers or nonlinear terms
of any order has been investigated with the Lie symmetries
and Painlevé analysis [44] or the bifurcation of dynamical
systems [43].

In this work we will investigate the extension of model (1)
with external forcing term H (t) [45], i.e.,

ut + a(t)uux + b(t)u2ux + c(t)uxxx + d(t)ux + f (t)u

= H (t), (2)

where u is a normalized wave function, and the time-dependent
analytic functions a(t), b(t), c(t), d(t), and f (t) represent the
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quadratic nonlinear, cubic nonlinear, dispersive, dissipative,
and linear-damping coefficients, respectively. Model (2) has
been converted to the special case of model (1) with a1(t) =
a(t) + 2b(t)

∫
H (t) dt and d1(t) = f1(t) = 0 by virtue of a

Galilean-type transformation u = ∫
H (t) dt + q, X(x,t)=

x − ∫ {d(t) + a(t)
∫

H (t) dt + b(t)[
∫

H (t)dt]2} dt and T =
t , with the multisoliton solutions in possession of the Gaussian
shape H (t) obtained via the Hirota bilinear method [45].
The special case of model (2) with d(t)=f (t) = 0 has been
converted to the special case of model (1) with a1(t) = a(t) +
2b(t)

∫
H (t) dt , d1(t)=a(t)

∫
H (t) dt + 2b(t)[

∫
H (t) dt]2 and

f1(t) = 0 with the aid of u = ∫
H (t) dt + q, with only one-

soliton solution obtained via the solitary wave ansätz of the
form A sechp[k(x − v(t)t)] [46]. From the bilinear form of the
special case of model (2) with b(t) = 0, solitonic propagation
and interaction for the special case of model (2) with b(t) = 0
have been provided [47].

The integrability plays a role in searching for the analytic
solutions of nonlinear evolution equations (NLEEs) [1,12,24].
To our knowledge, integrability aspects of model (2), such as
the Painlevé property, Lax pair, and BT, have not been studied.
Our main aims in this paper will be to investigate those aspects
of model (2). In Sec. II Painlevé-integrable conditions and the
Lax pair will be provided. In Sec. III two kinds of the BTs
and soliton-like solutions will be obtained. Discussions will
be presented in Sec. IV. Conclusions will be given in Sec. V.

II. PAINLEVÉ-INTEGRABLE CONDITIONS
AND LAX PAIR

Painlevé analysis is an approach to find the integrable
conditions of a given NLEE. In this section, to carry out
the Painlevé-integrable conditions, in line with the Weiss-
Tabor-Carnevale (WTC) procedure and Kruskal’s simplified
ansatz [48], we will perform the Painlevé analysis of model (2).

According to the WTC procedure, the generalized Laurent
series expansion of u is

u =
∞∑

j=0

uj (x,t)φ(x,t)j−α, (3)

where α is a positive integer, and uj (x,t) are the analytic
expansion coefficients in the neighborhood of a movable
noncharacteristic singularity manifold φ(x,t) simplified by
φ(x,t) = x + ψ(t) with ψ(t) as an arbitrary analytic function
of t .

For the leading-order analysis, substituting u ≈ u0φ
−α into

model (2), and balancing the dominant terms, we obtain α = 1
and u0 = ±i[6c(t)/b(t)]1/2φx . By virtue of symbolic compu-
tation, the resonances can be determined as j = −1, 3, 4, of
which j = −1 corresponds to the arbitrariness of the singular
manifold φ(x,t) or ψ(t). We proceed further to find that the
compatibility conditions at j = 3 and 4 are satisfied identically
if and only if the coefficients a(t) and b(t) obey the following
constraints:

a(t) = c(t)e
∫

f (t) dt

[
m1 − 2m2

∫
e
∫

f (t)dtH (t) dt

]
,

b(t) = m2c(t)e2
∫

f (t) dt , (4)

where m1 and m2 are two arbitrary constants. Therefore,
model (2) admits the Painlevé property under conditions (4),
namely, the conditions under which the solutions of model (2)
are free from the movable singular critical manifold [48].
Constraint conditions (4) under the external force H (t) = 0
agree with the conditions for model (1) to pass the Painlevé
test [24]. For a damped KdV model, which is a special
case of model (2) with b(t) = 0, d(t) = 0, and H (t) = 0,
Constraints (4) degenerate into a(t) = m1c(t)e

∫
f (t) dt with

m2 = 0 corresponding the b(t) = 0. With a(t) = 6 and c(t) =
1, and then m1 = 6 and f (t) = 0, the constant-coefficient KdV
model come out [1], so that the constant-coefficient damped
KdV model does not pass the Painlevé test.

The Lax pair helps people to ensure the complete integra-
bility of a NLEE [49]. To construct a Lax pair of model (2),
we introduce the functions E(x,t), W (t), and G(x,t) in the
AKNS system [24,49,50], and the Lax pair of model (2) can
be expressed as [24,50]

�x = U� =
(

λ E(x,t)[u + W (t)]

G(x,t)Q(x,t) −λ

)
�, (5)

�t = V � =
(

A(x,t,λ) B(x,t,λ)

F (x,t,λ) −A(x,t,λ)

)
�, (6)

where the wave function � = (�1,�2)T , �1 and �2 are both
scalar functions, the superscript T denotes the transpose of
the matrix, U and V are two 2×2 null-trace matrices, the
eigenvalue λ is a parameter independent of x and t , and
Q(x,t), A(x,t,λ), B(x,t,λ), and F (x,t,λ) are the functions of
x and t . With respect to λ, expanding A(x,t,λ), B(x,t,λ), and
F (x,t,λ) as

A(x,t,λ) = a0(x,t) + a1(x,t)λ + a2(x,t)λ2 + a3(x,t)λ3, (7)

B(x,t,λ) = b0(x,t) + b1(x,t)λ + b2(x,t)λ2, (8)

F (x,t,λ) = f0(x,t) + f1(x,t)λ + f2(x,t)λ2, (9)

substituting them into the compatibility condition
Ut − Vx + UV − V U = 0, and equating the like powers of
λ, we can obtain 12 equations. The first 10 equations give the
expansion coefficients of A(x,t,λ), B(x,t,λ), and F (x,t,λ),
and the last two equations give model (2), constraints (4)
with m2 = 6Q2 and m1 = 6Q1 − 12Q2C1, as well as E(x,t),
W (t), G(x,t), and Q(x,t) as

E(x,t) = egx+∫
f (t) dt ,W (t) = −e− ∫

f (t) dt (Hf + C1),

Hf =
∫

e
∫

f (t) dtH (t) dt, (10)

G(x,t) = e−gx+∫
f (t) dt ,

Q(x,t) = −Q1e
− ∫

f (t) dt − Q2u − Q2W (t), (11)

A(x,t,λ) = −d(t)λ − 3g2c(t)λ − 2c(t)e2
∫

f (t) dt

× [3Q2W (t)u + 2Q(x,t)W (t) − Q(x,t)u]λ

+ 6gc(t)λ2 − 4c(t)λ3 + 1
2gd(t) + 1

2g3c(t)

+ c(t)e2
∫

f (t) dt × {Q(x,t) [2gW (t) − gu + ux]

+Q2 [3gW (t)u + W (t)ux + uux]}, (12)
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B(x,t,λ) = −4c(t)E(x,t) [u + W (t)] λ2+ 2c(t)E(x,t) [2gW (t) + 2gu − ux] λ

− d(t)E(x,t)[u + W (t)] + 2c(t)E(x,t)Q(x,t)e2
∫

f (t) dt [u + W (t)]2 + c(t)E(x,t)

×{−g2[u + W (t)] + gux − uxx − 6W (t)e2
∫
f (t) dt [u + W (t)][Q2u + Q(x,t)]}, (13)

F (x,t,λ) = −4c(t)G(x,t)Q(x,t)λ2+ 2c(t)G(x,t) [2gQ(x,t) − Q2ux] λ − d(t)G(x,t)Q(x,t)

+ 2c(t)G(x,t)Q(x,t)2e2
∫

f (t)dt [u − 2W (t)] + c(t)G(x,t)

× [−g2Q(x,t) − 6Q2W (t)e2
∫

f (t)dtQ(x,t)u + Q2(gux + uxx)], (14)

where g, C1, Q1, and Q2 are the arbitrary parameters, of which Q1 and Q2 correspond with the quadratic and cubic nonlinear
coefficients under Painlevé conditions (4) with m2 = 6Q2 and m1 = 6Q1 − 12Q2C1. Direct calculation shows that model (2)
can be obtained from the compatibility condition Ut − Vx + [U,V ] = 0 of Lax pair (5) and (6) with Eqs. (10)–(14). Under
g = W (t) = 0 and Q(x,t) = −Q2u, Eq. (5) is the spatial part of the Lax pair of the mKdV model [23]. Equations (5) and (6)
with g = W (t) = 0 are the Lax pair for model (1) and agree with the corresponding results in Ref. [24].

III. BT AND SOLITON-LIKE SOLUTIONS

BT, originating in the study of differential geometry, is a method for constructing the solutions of NLEEs [8,24,51]. From
a seed solution of a NLEE, one can construct other solutions of the NLEE, which can give a transformation between the
(N -1)-soliton solutions and the N -soliton solutions [8,24,51].

To construct a BT of model (2), we will use the method in Refs. [8,12,24,50] and introduce a function � = �1
�2

. Then, Lax
pair (5) and (6) about the wave function � of model (2) will be reduced to the following equivalent �-Riccati system (or �

system):

�x = egx+∫
f (t) dt [u + W (t)] + 2λ� − e−gx+∫

f (t) dt
[−Q1e

− ∫
f (t)dt − Q2u − Q2W (t)

]
�2,

�t = B(x,t,λ) + 2A(x,t,λ)� − F (x,t,λ)�2. (15)

The �-Riccati-type (�-R) BT of model (2) is defined as follows [12,24]:

�′ = �′[λ,X(x,t),�], u′ = u + U [λ,X(x,t),�], (16)

where �′ and � are two different solutions of �-Riccati system (15), u′ and u are two distinct solutions of model (2), and X(x,t)
is an as-yet-undetermined function.

Under the forms invariant of �-Riccati system (15), the transformations can be gained as

�′ = −2egxλ − Q1�

Q1 − 2Q2e−gxλ�
, (17)

u′ = u − 2e−∫
f (t) dt

[
gQ1e

2gxλ − 4gQ2e
gxλ2� − gQ1Q2λ�2(

Q2
1 + 4Q2λ2

)
(e2gx + Q2�2)

− egx�x

e2gx + Q2�2

]
, (18)

Eq. (17) and (18) constitute a �-R BT of model (2), in which the primed quantities refer to the N -soliton solutions and the
unprimed quantities refer to the (N−1)-soliton solutions.

Furthermore, with the condition g = 0, in line with this procedure and iterating �-R BT (18) n times, we can present the
following nth-iterated transformation between the old solution u and a new solution un of model (2):

un = u − 2e−∫
f (t)dt �n(λj )x

1 + Q2�n(λj )2
, (19)

where �n(λj ) is a solution of �-Riccati system (15) corresponding to λj (j = 1,2,3, . . . ,n) for the solution un−1 (n =
1,2,3, . . . ,u0 = u). Expression (19) with �-Riccati system (15) provides us with a procedure to generate the multisoliton-like
solutions un from a seed solution u of model (2).

Based on symbolic computation, with the condition g = 0, solving �-R BT (18) for the function �, we find the following
�-u relation:

� = 1√
Q2

tan

[
−1

2

√
Q2e

∫
f (t),dt

∫
(u′ − u) dx +

√
Q2C�(t)

]
, (20)

where C�(t) is an analytic function. Substituting �-u relation (20) with u′ = −w′
x and u = −wx ( w′ and w are the functions

of x and t) into �-Riccati system (15), we can obtain the following spatial part of the Wahlquist-Estabrook-type Bäcklund
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transformation (WE-BT) [52]:

w′
x + wx = e− ∫

f (t) dt

(
2λ√
Q2

sin� − Q1

Q2
cos� + Q1

Q2
− 2C1 − 2Hf

)
, (21)

with

� =
√

Q2

[
e
∫

f (t) dt (w′ − w) + 2C�(t)
]
. (22)

With the same procedure, from the time evolution part of �-Riccati system (15), the time part of the WE-BT of model (2) can
be obtained as

w′
t + wt = 4λc(t)√

Q2

[
Q1

2λ
wxx − Q2e

∫
f (t) dtw2

x + R2wx − R1

2c(t)
e− ∫

f (t) dt

]
sin�

+ 2Q1c(t)

Q2

[
2Q2λ

Q1
wxx + Q2e

∫
f (t) dtw2

x − R2wx + R1

2c(t)
e− ∫

f (t) dt

]
cos�

+ 2c(t)

Q2

(
Q2

1 + 4Q2λ
2
)
wx − [2xH (t) + f (t)(w′ + w) + 2C�(t)′e− ∫

f (t) dt ] − 1

Q2
e− ∫

f (t)dtR1R2, (23)

with

R1 = d(t) + 4c(t)[C1(Q1 − C1Q2) + (Q1 − 2C1Q2)Hf − Q2H
2
f + λ2], (24)

R2 = (Q1 − 2C1Q2 − 2Q2Hf ). (25)

Equations (21) and (23) with Eqs. (22), (24), and (25) constitute a WE-BT of model (2), degenerating into the corresponding
results in Ref. [24] for model (1) with C1 = C�(t) = 0.

Analytic multisoliton solutions help people to explain the nonlinear wave phenomena [1,7–9,12]. We hereby present the one-
or two-soliton-like solutions of model (2) as follows:

With u = e− ∫
f (t) dt [

∫
e
∫

f (t) dtH (t)dt + C1] as a seed solution, from the spatial part of �-Riccati system (15), the function
�1 is obtained as

�1 = (g − 2λ1)egx

Q1 + (g − 2λ1)ex(g−2λ1)C�1(t)
. (26)

Solving the time part of �-Riccati system (15) with (26) for C�1(t), and then substituting �1 into �-R-BT (18) or (19) with
n = 1 and g = 0, we get the one-soliton-like solutions of model (2),

u1 = e− ∫
f (t) dt

[∫
e
∫

f (t) dtH (t) dt + C1 − 16λ3
1C�1e

ξ1

4λ2
1C

2
�1 − 4Q1λ1C�1eξ1 + (

Q2
1 + 4Q2λ

2
1

)
e2ξ1

]
, (27)

with

ξ1 = 2λ1x + ω1(t) + ξ01, (28)

ω1(t) = −2λ1

∫ [
d(t) + c(t)

(
4λ2

1 + 6C1(Q1 − Q2C1) + 6(Q1 − 2Q2C1)Hf − 6Q2H
2
f

)]
dt, (29)

where λ1, C�1, and ξ01 are the real constants. One-soliton-like solutions (27) under Painlevé conditions (4) with m2 = 6Q2 and
m1 = 6Q1 − 12Q2C1 satisfy model (2).

Solutions (27) can be rewritten in the hyperbolic function form as follows:

u1 = e− ∫
f (t) dt

[∫
e
∫

f (t) dtH (t) dt + C1

]
+ 4λ2

1e
− ∫

f (t) dt

Q1 +
√

Q2
1 + 4Q2λ

2
1cosh

(
e
ξ1+log −

√
Q2

1+4Q2λ2
1

2C�1λ1

) . (30)

According to the similar process, from �-Riccati system (15) for �2, the two-soliton-like solutions of model (2) are expressed
as follows:

u2 = e− ∫
f (t) dt

[
Hf + C1 + 8(a1e

ξ1 + a2e
ξ2 + a3e

2ξ1+ξ2 + a4e
ξ1+2ξ2 + a5e

ξ1+ξ2 )

(1 + b1eξ1 + b2eξ2 + b3eξ1+ξ2 )(1 + d1eξ1 + d2eξ2 + d3eξ1+ξ2 )

]
, (31)

with

ξ2 = 2λ2x + ω2(t) + ξ02, (32)
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ω2(t) = −2λ2

∫ [
d(t) + c(t)

(
4λ2

2 + 6C1(Q1 − Q2C1) + 6(Q1 − 2Q2C1)Hf − 6Q2H
2
f

)]
dt, (33)

Pj = Q1 − 2λj

√
Q2, Sj = Q1 − i2λj

√
Q2, Vj = Q1 + i2λj

√
Q2, j = 1,2, (34)

a1 = λ2
1

P1
, a2 = λ2

2

P2
, a3 = (λ1 − λ2)2λ2

2S1V1

(λ1 + λ2)2P 2
1 P2

, a4 = (λ1 − λ2)2λ2
1S2V2

(λ1 + λ2)2P1P
2
2

, a5 = 2Q1
(λ1 − λ2)2

P1P2
, (35)

b1 = S1

P1
, b2 = S2

P2
, b3 = (λ1 − λ2)2λ2

2S1S2

(λ1 + λ2)2P1P2
, d1 = V1

P1
, d2 = V2

P2
d3 = (λ1 − λ2)2λ2

1V1V2

(λ1 + λ2)2P1P2
, (36)

where λ2 and ξ02 are the real constants. Two-soliton-like solu-
tions (31) with Eqs. (28), (29), and (32)–(36) under Painlevé
conditions (4) with m2 = 6Q2 and m1 = 6Q1 − 12Q2C1

satisfy model (2). Similarly, the N-soliton-like solutions can
also be constructed.

IV. DISCUSSION

From the integrable aspects, we have investigated model (2)
in plasmas and fluids with the inhomogeneities of media and
nonuniformities of boundaries, and presented the soliton-like
solutions, based on which the effects of the inhomogeneous
coefficients, external force term, eigenvalue, and certain
parameters on the solitonic propagation and interaction will
be discussed.

For the ion-acoustic wave in the vicinity of the negative-ion
critical density, inhomogeneous coefficients of model (2) can
be expressed as [9]

a(t) = 1

2

(
3
nα0

V 4
− 3

nβ0

Q2V 4
− 1

)
,

b(t) = 1

4

(
15

nα0

V 6
+ 15

nβ0

Q3V 6
− 1

)
, (37)

c(t) = 1

2
, d(t) = 0, f (t) = 0,

V =
√

nα0 + nβ0

Q2
, Q = mβ

mα

, (38)

where nα0 and nβ0 denote the positive and negative ion
densities normalized by the electron density, respectively,

10 25
x

5

8
q1 2

25 10
x

8

5
q1 2

25 10
x

8

5
q1 2

(a) (b) (c)

FIG. 1. Soliton-like solutions via expression (30) with the parameters c(t) = λj = Q1 = 1, d(t) = f (t) = C1 = 0, (a) Q2 < 0, B =
0.9/0.6/0.1/0.005 (dashed), H (t) = t , t = 0 (thin), H (t) = 1.2t , t = 1 (middle), H (t) = 3t , t = 1 (thick); (b) Q2 > 0, B = 1.5/2/3 (small
amplification), H (t) = t , t = 0 (thin), H (t) = 1.2t , t = 1 (middle), H (t) = 3t , t = 1 (thick); (c) Q2 > 0, B = −1.5/ − 2/ − 3, H (t) = t ,
t = 0 (thin), H (t) = 1.2t , t = 1 (middle), H (t) = 3t , t = 1 (thick), superposed on (b).

and mα and mβ are the positive and negative ion masses,
respectively.

For a two-layer system in the Boussinesq approximation,
inhomogeneous coefficients of model (2) can be expressed
as [22]

a(t) = 3d(t)
h1 − h2

2h1h2
, b(t) = − 3d(t)

8h2
1h

2
2

(
h2

1 + h2
2 + 6h1h2

)
,

c(t) = d(t)h1h2

6
, (39)

d(t) =
√

gσ
h1h2

h1 + h2
, f (t) = k, σ = 2(ρ2 − ρ1)

ρ2 + ρ1
, (40)

where g is the gravitational acceleration, k is an arbitrary
constant, h1 and h2 denote the mean upper and lower layer
depths, respectively, and ρ1 and ρ2 are the densities of the
upper and lower layers, respectively.

In line with Refs. [14,16,20,21], the amplitude Aj (peak
value) of each solitary wave can be

Aj = 4λ2
j

Q1(1 + B)
e− ∫

f (t) dt , B2 = 1 + 4Q2

Q2
1

λ2
j ,

or Q2 = (B2 − 1)Q2
1

4λ2
j

. (41)

By the aid of the characteristic-line method [45,47], the
velocity vj of each solitary wave can be expressed as

vj (t) = d(t) + c(t)
(
4λ2

j + m1C1 +m2C
2
1 + m1Hf −m2H

2
f

)
,

Hf =
∫

e
∫

f (t) dtH (t) dt. (42)
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FIG. 2. Soliton-like solutions via expression (30) with the parameters c(t) = λj = Q1 = 1, d(t) = C1 = 0, H (t) = 2, (a) Q2 < 0, B =
0.9/0.6/0.1/0.005 (dashed), f (t) = t , t = 0 (thin), f (t) = 1.2t , t = 1 (middle), f (t) = 3t , t = 1 (thick); (b) Q2 > 0, B = 1.5/2/3 (small
amplification), f (t) = t , t = 0 (thin), f (t) = 1.2t , t = 1 (middle), f (t) = 3t , t = 1 (thick); (c) Q2 > 0, B = −1.5/ − 2/ − 3, f (t) = t , t = 0
(thin), f (t) = 1.2t , t = 1 (middle), f (t) = 3t , t = 1 (thick), superposed on (b).

It can be noticed that the dispersive coefficient c(t),
dissipative coefficient d(t), linear-damping coefficient f (t),
and external force H (t) can all influence the propagation
velocity of the solitons, and parameters Q1, Q2, C1 and
eigenvalue λj can also influence the propagation properties
of the soliton-like solutions. On the other hand, Q1, B(Q2),
λj , and f (t) can affect the peak value Aj . By means of taking
the different choices of Q2 and B(Q2) in Eqs. (41) and (42),
the influence will be illustrated in Figs. 1–3.

(1) When Q2 < 0 and 0 < B(Q2) < 1: The soliton-like
shape and propagation are shown in Figs. 1(a), 2(a), and 3(a).
B → 1 (namely, Q2 → 0) corresponds to a small wave
amplitude, and the soliton-like solutions of model (2) reduce
to the solitary waves of the KdV model corresponding to
the results in Ref. [47]. B → 0 represents the critical value
Amax = Q1

|Q2|e
− ∫

f (t) dt at which the widths of the soliton-like
solutions increase to infinity. It can be seen that the external
force H (t) affects the wave velocity and wave background in
Fig. 1(a) (C1 has the similar effect with a different ratio), that
the linear-damping coefficient f (t) influences the initial center
position, velocity, and background of solitons in Fig. 2(a), and
that the dispersive coefficient c(t) works only on the wave
velocity with the H (t) = 2 affecting the wave background
in Fig. 3(a) [the dissipative coefficient d(t) has the similar
influence].

(2) When Q2 > 0 and 1 < B(Q2) < ∞: Figs. 1(b), 2(b),
and 3(b) portray the soliton-like shape and character of prop-
agation (including the speed and moving direction). It is clear
that the soliton-like solutions with different values of B are
superposed at t = 0 and separate gradually with different speed
and moving directions as t increases. Similarly, the external
force H (t) affects the wave velocity and wave background
in Fig. 1(b), the linear-damping coefficient f (t) influences
the initial center position, the velocity, and background with
bidirectional changing of the soliton-like solutions in Fig. 2(b),
and the dispersive coefficient c(t) works only on the wave
velocity with H (t) = 2 affecting the wave background in
Fig. 3(b). When Q2 > 0 and −∞ < B(Q2) < −1, the soliton-
like shape is reversed, and the character of propagation is
coincident with 1 < B(Q2) < ∞ [as seen in Figs. 1(c), 2(c)
and 3(c) in which the curves with H (t) = 3t and B = −1.5,
f (t) = 3t and B = −2, and c(t) = 3t and B = −2 are not
drawn for clarity].

Hereafter, we devote our effort to investigate the effects of
external force H (t) and parameter C1 on the interaction of the
solitons.

(1) When the external force H (t) = 0 and parameter C1 has
different choices: Fig. 4(a) shows that the trajectories of the
two-soliton-like solutions are two parabolic-typed curves with
the unchangeable amplitudes and oscillation in the local region

5 30
x

5

8
q1 2

20 15
x

8

5
q1 2

20 15
x

8

5
q1 2

(a) (b) (c)

FIG. 3. Soliton-like solutions via expression (30) with the parameters λj = Q1 = 1, d(t) = f (t) = C1 = 0, H (t) = 2, (a) Q2 < 0, B =
0.9/0.6/0.1/0.005 (dashed), c(t) = t , t = 0 (thin), c(t) = 1.5t , t = 1 (middle), c(t) = 3t , t = 1 (thick); (b) Q2 > 0, B = 1.5/2/3 (small
amplification), c(t) = t , t = 0 (thin), c(t) = 1.5t , t = 1 (middle), c(t) = 3t , t = 1 (thick); (c) Q2 > 0, B = −1.5/ − 2/ − 3, c(t) = t , t = 0
(thin), c(t) = 1.5t , t = 1 (middle), c(t) = 3t , t = 1 (thick), superposed on (b).
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FIG. 4. Two-soliton-like solutions via expression (31) with c(t) = t , d(t) = sin(0.8t), f (t) = H (t) = 0, Q1 = −Q2 = 1, λ1 = 0.2.
(a) C1 = 0, λ2 = 0.21; (b) C1 = 0, λ2 = 0.35; (c) C1 = 0.1, λ2 = 0.35; (d) C1 = −0.1, λ2 = 0.35.

for c(t) = t and d(t) = sin(0.8t), and have no interaction
for the small differences between the eigenvalues λ1 = 0.2
and λ2 = 0.21. On the other hand, Figs. 4(b), 4(c), and 4(d)
show that the tracks of the two-soliton-like solutions are also
two parabolic-like curves, but have the interaction for the
relatively-large difference between the eigenvalues λ1 = 0.2
and λ2 = 0.35. In contrast to Fig. 4(b), it can be noticed
that the background goes up for C1 = 0.1 in Fig. 4(c) with
less vibration and two smaller spans of time on the two
parabolic-typed trajectories, and drops down for C1 = −0.1 in
Fig. 4(d) with more vibration and larger time-scale propagation
trajectories. Furthermore, with C1 = 1, the two-soliton-like
solutions will be syncretized to the one-soliton-like solution
with smoother unchangeable amplitude and smaller time scale
on the parabolic-typed trajectory.

(2) When the external force H (t) = −0.1e−0.25t2
and pa-

rameter C1 has some choices: Fig. 5 presents the development
of the two-soliton-like solutions with some vibration for d(t) =
sin(0.8t) on the shock wave background for the external force
H (t) = −0.1e−0.25t2

, but no interacting section and amplitude
change for the small difference between the eigenvalues
λ1 = 0.35 and λ2 = 0.355. The evolution directions of the
two-soliton-like solutions have changed to the positive x axis
direction, and the plane wave background has moved up for
C1 = 1 in Fig. 5(b). However, the propagation directions of the
two-soliton-like solutions have rotated to the negative x axis
direction, and the plane wave background has declined for the
opposite value C1 = −0.3 in Fig. 5(c). On the other hand,
Fig. 6 shows the interaction development of the two-soliton-
like solutions for the differentiation between λ1 = 0.35 and
λ2 = 0.6. When C1 = 0, it can be seen that the propagation
directions of the two-soliton-like solutions have a change

on the shock wave background for H (t) = −0.1e−0.25t2
in

Fig. 6(a). With C1 = 0.5, the propagation directions of the
two-soliton-like solutions hold unchangeable except for the
phase [as seen in Fig. 6(b)]. In comparison, the propagation
directions of the two-soliton-like solutions turn more to
the negative x axis direction with the inverse parameter
C1 = −0.5.

V. CONCLUSIONS

The generalized inhomogeneous model (2) in certain
plasmas and stratified fluids has been investigated. Making
use of the Painlevé analysis, we have obtained Painlevé
integrable conditions (4) of model (2), under which Lax
pair (5) and (6), �-R BT (18) or (19), and WE-BT (21)
and (23) have been presented. Based on the �-R BT, analytic
one- or two-soliton-like solutions (30) and (31) with all the
inhomogeneous coefficients a(t),b(t),c(t),d(t),f (t), external
force H (t), eigenvalues λ′

j , and another parameter C1 have
been constructed, of which the quadratic coefficient a(t)
and the cubic nonlinear coefficient b(t) correspond to the
parameters Q1 and Q2 under Painlevé integrable conditions (4)
with m2 = 6Q2 and m1 = 6Q1 − 12Q2C1, respectively. By
the aid of expressions (41), it has been understood that the
amplitudes of solitons are influenced by the eigenvalues λ′

j in
Lax pair (5) and (6), the linear-damping coefficient f (t), and
the parameters Q1 and Q2 (as seen in Figs. 1–3). By virtue
of the characteristic-line method, velocity (42) has implied that
the inhomogeneous coefficients c(t),d(t),f (t), external force
H (t), eigenvalues λ′

j , and parameters Q1, Q2, C1 will influence
the solitonic velocity (as seen in Figs. 1–3). From the graphic
illustration shown in Figs. 4–6, the solitonic propagation and
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FIG. 5. Two-soliton-like solutions via expression (31) with c(t) = 1, d(t) = sin(0.8t), f (t) = 0, H (t) = −0.1e−0.25t2
, Q1 = Q2 = 1,

λ1 = 0.35, λ2 = 0.355, (a) C1 = 0; (b) C1 = 1; (c) C1 = −0.3.
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FIG. 6. Two-soliton-like solutions via expression (31) with c(t) = d(t) = 1, f (t) = 0, H (t) = −0.1e−0.25t2
, Q1 = Q2 = 1, λ1 = 0.35,

λ2 = 0.6, (a) C1 = 0; (b) C1 = 0.5; (c) C1 = −0.5.

interaction of model (2) have been presented with the facts that
the solitonic background is affected by the linear-damping
coefficient f (t), external force H (t), and another parameter
C1, and the degree of solitonic infection is sensitive to the
eigenvalues λ′

j .
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