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The occurrence of the limit-point instability is an intriguing phenomenon observed during stretching of
hyperelastic membranes. In toy rubber balloons, this phenomenon may be experienced in the sudden reduction in
the level of difficulty of blowing the balloon accompanied by its rapid inflation. The present paper brings out a link
between the geometry and strain-hardening parameter of the membrane, and the occurrence of the limit-point
instability. Inflation of membranes with different geometries and boundary conditions is considered, and the
corresponding limit-point pressures are obtained for different strain-hardening parameter values. Interestingly,
it is observed that the limit-point pressure for the different geometries is inversely proportional to a geometric
parameter of the uninflated membrane. This dependence is shown analytically, which can be extended to a
general membrane geometry. More surprisingly, the proportionality constant has a power-law dependence on
the nondimensional material strain-hardening parameter. The constants involved in the power-law relation are
universal constants for a particular membrane geometry.
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I. INTRODUCTION

The membranes used in membranes and inflatable struc-
tures are usually made of polymeric materials (such as rubber)
which are highly nonlinear, and modeled as hyperelastic mate-
rials (see, e.g., [1–4]). During inflation, a membrane undergoes
large deformation, which makes the analysis geometrically
nonlinear as well (see, e.g., [5–11]). It is the interaction
of the material and geometric nonlinearities that exhibits
counterintuitive and surprising effects, some of which have
been referenced above (also see, [12,13]).

Nonlinear materials exhibit various interesting (but incom-
pletely understood) phenomena when stretched. In this respect,
critical points, which are usually defined with respect to a
load or stretch parameter, are of particular interest. Critical
points are mainly classified as bifurcation points and limit
points. At a bifurcation point, there coexists more than one
equilibrium solution branch. Beyond this point, only the stable
solution branch is expressed. At the limit point, which will be
our focus here, the load or stretch parameter itself exhibits a
limiting (locally extremal) behavior. Thus the configuration
of the membrane in the vicinity of the limit point becomes
nonunique in terms of the load or stretch parameter.

Interesting observations during balloon inflation experi-
ments have been reported in the past [7,14–17]. The key point
noted in most of these observations is the occurrence of the
limit-point instability. This intriguing phenomenon observed
in toy balloons has important consequences for any internally
pressurized or stretched membranes. Such membranes abound
in nature in the form of biological membranes. In recent times,
inflatable structures have become very common. Applications
are found in terrestrial and space structures [18], and vibration
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or impact isolation and damping devices such as inflated tires
and air bags.

During inflation past the limit point, a structure can undergo
rapid deformation or inflation (with the possibility of bursting)
accompanied with a drop in the pressure. Physically, the
structure may become marginally controllable at such points.
Hence, estimation of limit points is important for predicting
the behavior of inflated or loaded membrane structures. The
value of the critical load or pressure at the limit point seems
to be related to the material property. However, it also has a
geometry dependence, which has remained unnoticed. These
issues provide a motivation for the present study.

In this paper, a study has been carried out on the inflation
of axisymmetric membranes of different geometries and
boundary conditions focusing, in particular, on the limit-point
instability phenomenon and its connection to the geometry of
the membranes. Our objective is to bring out a link between
the geometry and material parameters of the membrane,
and the occurrence of the limit-point instability during infla-
tion. The strain energy for the hyperelastic membrane material
is taken in the Mooney-Rivlin form with both strain-hardening
and softening behavior [19]. It is found that the limit-point
pressure of a membrane is inversely proportional to its
geometric parameter in the unstretched state. This behavior can
be understood analytically for membranes of any geometry.
Remarkably, the proportionality constant exhibits a power-law
behavior in terms of the strain-hardening parameter of the
membrane, and involving two universal constants which are
solely dependent on the particular geometry of the membrane.

The paper is organized as follows. In Sec. II, the kinematics
of deformation of an axisymmetric membrane has been
discussed. The variational formulation of the inflation problem
has been presented in Sec. III. Various axisymmetric geome-
tries and the corresponding equilibrium equations and the
boundary conditions are discussed in Sec. IV. The numerical
results are presented in Sec. V. The paper is concluded with
Sec. VI, wherein some future directions are also indicated.
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FIG. 1. (Color online) Spherical membrane before inflation and
after inflation.

II. KINEMATICS OF DEFORMATION

Consider a homogeneous, isotropic, hyperelastic axisym-
metric membrane with convected coordinates on the surface as
x1 (radial or meridional) and x2 (circumferential) (see Figs. 1,
3, and 6). Let x3 be the coordinate along the local normal,
with x3 = 0 representing the midsurface of the membrane.
Axisymmetric deformation of the membrane is assumed in the
analysis. Let gij and g̃ij be the undeformed and the deformed
metric tensors of the membrane. The position vector of a point
on the deformed membrane is given by pi = yi + x3 λ3 ni ,
where yi is the position vector of a point on the midsurface,
λ3 is the principal stretch along the surface normal to the
membrane, and ni is the unit outward normal vector to the
membrane midsurface given by

ni = 1
2δilεαβεljky

j
,αyk

,β, (summation convention) (2.1)

where εαβ = eαβ/
√

g̃ [g̃ = det(g̃αβ)] and εijk = eijk are, re-
spectively, the completely antisymmetric contravariant (in
two-dimensional curvilinear coordinates) and covariant (in
three-dimensional Euclidean space) Levi-Civita tensors. Here,
eαβ and eijk are the permutation symbols, and yi

,α = ∂yi/∂xα

are the two orthogonal vectors on the tangent plane of the
deformed membrane surface. The eigenvalues of the right
Cauchy-Green deformation tensor Ci

j = gikg̃kj are, say λ2
i

(i = 1,2,3), where λ1 and λ2 are the in-plane principal
stretches of the membrane.

III. VARIATIONAL FORMULATION

A. Material Strain Energy

For a homogeneous and isotropic generalized Mooney-
Rivlin solid, the strain energy density function (per unit
undeformed volume) may be expressed as [20]

V̂ = C1(Ĩ1 − 3) + C2(Ĩ2 − 3) + 1
2K1(J − 1)2, (3.1)

where C1,C2, and K1 are the material properties, and
J =

√
det(Ci

j ), Ĩ1 = J−2/3I1, and Ĩ2 = J−4/3I2. This rubber
elasticity model is used for limited compressible materials with
K1 � 2C1. Here, I1,I2, and I3 are the strain invariants of the
deformation tensor Ci

j given by I1 = Ci
i, I2 = 1

2 (Ci
iC

j

j −
Ci

jC
j

i), I3 = det(Ci
j ). For a nearly incompressible material

with small strain limit, the material properties C1,C2, and
K1 can be related to the familiar bulk modulus (K) and
shear modulus (μ) as μ = 2(C1 + C2) and K = 2K1. For an
incompressible material, we have I3 = λ2

3g̃s/gs = 1, implying

λ2
3 = gs/g̃s , where gs and g̃s are, respectively, the surface

metric determinants in the undeformed and deformed configu-
rations. Hence, the strain energy density for an incompressible
Mooney-Rivlin material can be written as V̂ = C1(I1 − 3) +
C2(I2 − 3).

B. Pressure Work

The work done by the inflating gas with (gage) pressure
P may be written as

∫
PdV , where the integral is performed

over the volume enclosed by the inflated surface. This volume
integral may be converted to a surface integral using Gauss
theorem (at the mid-surface x3 = 0) and expressed as [21]

W =
∫ ∫

1
3P yi ni

√
g̃s dx1dx2.

Using (2.1), the potential energy of the gas may be rewritten
as

W =
∫ ∫

1
6Pεαβεijky

iy
j
,αyk

,β

√
g̃s dx1dx2. (3.2)

C. Equilibrium

The total potential energy for the system is given by

� =
∫ ∫ (

−V̂ + 1

6h
PJεαβεijky

iyj
,αyk

,β

)
h
√

gs dx1dx2,

(3.3)

where J = √
g̃s/gs and h is the undeformed thickness of the

membrane. By the principle of minimum potential energy we
have δ� = 0. Variation of � gives (see [21])

δ� =
∫ ∫ [

− ∂V̂

∂yi
,α

δyi
,α − ∂V̂

∂yi
δyi + 1

6h
√

g
Peαβeijk

× (
δyiyj

,αyk
,β + yiδyj

,αyk
,β + yiyj

,αδyk
,β

)]
h

√
gs dx1dx2,

=
∫ ∫ [

− ∇α

(
∂V̂

∂yi
,α

δyi

)
+ ∇α

(
∂V̂

∂yi
,α

)
δyi − ∂V̂

∂yi
δyi

+ 1

6h
√

g
Peαβeijk

(
δyiyj

,αyk
,β + yiδyj

,αyk
,β + yiyj

,αδyk
,β

)]

×h
√

gs dx1dx2, (3.4)

where ∇α represents the covariant derivative with respect
to xα . Simplifying the expression δ� using Gauss theorem,
integration by parts and the properties of the permutation
tensors gives

δ� = −
∫

∂V

∂V̂

∂yi
,α

δyid	α +
∫ ∫ [

∇α

(
∂V̂

∂yi
,α

)
δyi − ∂V̂

∂yi
δyi

+ 1

6h
√

g
Peαβeijk

(
δyiyj

,αyk
,β − yi

,αδyjyk
,β − yi

,βyj
,αδyk

)]

×h
√

gs dx1dx2, (3.5)

where d	α is the differential length vector tangent to the
boundary of the membrane ∂V . While the first term in (3.5)
gives the boundary conditions, the second term yielding the
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equation of equilibrium (3.5) is satisfied if and only if

∇α

(
∂V̂

∂yi
,α

)
− ∂V̂

∂yi
+ P

h
Jni = 0. (3.6)

IV. GEOMETRY OF THE MEMBRANE

We consider axisymmetric membranes with three kinds of
geometries, namely, the spherical, flat circular, and toroidal
geometries. The spherical and flat geometries have positive
and zero curvature, respectively, while the toroidal geometry
has both positive and negative curvature regions with two zero-
curvature boundaries.

Let rs be the radius of the sphere, rc be the radius of the
flat circular membrane, and R and rt be the major and minor
radius of the toroid, respectively. We denote the field variables
for the three geometries as ui , which are defined conveniently
for the individual cases later in this section. In the rest of the
paper we will use the following nondimensional quantities.
These are, for the spherical membrane,

(r,u1) → (rs,u
1)

h
, α → C2

C1
, P → P

C1
,

for the flat circular membrane

(x1,r,u1,u2) → (x1,rc,u
1,u2)

h
, α → C2

C1
, P → P

C1
,

and for the toroidal membrane

(r,u1,u2) → (rt ,u
1,u2)

R
, α → C2

C1
, P → PR

C1h
.

We also use the scaling C1 = 1, h = 1, and R = 1. Thus,
finally, the three nondimensional parameters in the problem
are, namely, the geometric parameter r , the strain-hardening
parameter α, and the inflation pressure P .

A. Spherical Membrane

Assuming a uniform radial inflation of the spherical
membrane (see Fig. 1) with the inflation radius as u1, the
components of the undeformed and the deformed metric
tensors can be written as

gij =

⎛
⎜⎝

r2
s 0 0

0 r2
s sin2 x1 0

0 0 1

⎞
⎟⎠ ,

(4.1)

g̃ij =

⎛
⎜⎝

(u1)2 0 0

0 (u1)2 sin2 x1 0

0 0 λ2
3

⎞
⎟⎠ .

The three principal stretches of the membrane are given by

λ1 = λ2 = u1

rs

, λ3 = H

h
, (4.2)

where H is the deformed thickness.
The equilibrium solution for the spherical membrane is

given by ( [22,23])

P = 4

u1

(
1 − r6

(u1)6

)(
1 + α

(u1)2

r2

)
. (4.3)

For a given inflation pressure P , one can now solve the
polynomial (4.3) for u1, and thereby obtain the principal
stretches from (4.2) for different strain-hardening and geo-
metric parameters. At the pressure limit point, considering
u1 = a0, we have the condition of local extremum,

dP

du1

∣∣∣∣
u1=a0

= 0. (4.4)

Using (4.3) in (4.4), we obtain the condition

α = z2
0

(
1 − 7z6

0

)
5z6

0 + 1
, (4.5)

where z0 = r/a0. Substituting (4.5) in (4.3), the limit-point
pressure of the spherical membrane can be calculated from the
expression

rPlim = 8z0
(
1 − z6

0

)2

5z6
0 + 1

. (4.6)

It can be checked that the limit-point pressure does not
exist beyond α = 0.214 5 (obtained by solving the equation
dα/dz0 = 0). This analytical solution clearly shows that
the first limit-point pressure is inversely proportional to the
geometric parameter r and the proportionality constant is a
function of the strain-hardening parameter α. The variation
of the inflation pressure with the principal stretch of the
spherical membrane for different strain-hardening parameters
is shown in Fig. 2(a) for r = 1. The limit points for different
strain-hardening parameters are traced by the dashed curve.
It can be clearly observed from the dashed line that there is
no limit-point pressure for the spherical membrane when the
strain-hardening parameter exceeds α = 0.214 5. However,
an inflexion point still exists. The variation of inflation
pressure with the principal stretch of the spherical membrane
for different geometric parameters and the strain-hardening
parameter α = 0.1 is shown in Fig. 2(b). It can be noted from
the figure that with the increase in the value of the geometric
parameter, the limit-point pressure reduces.

B. Circular Membrane

Two cases of circular flat membranes are considered in this
paper: (a) a circular membrane with a fixed boundary as shown
in Fig. 3(a), and (b) two circular flat membranes bonded at the
boundary as shown in Fig. 3(b). Let the undeformed radii of
the circular membranes be rc, which are flat in their uninflated
configuration as shown in Fig. 3, with x1 along the radial
direction. The deformed and the undeformed metric tensors
on the circular membrane are given by [13]

gij =

⎛
⎜⎝

1 0 0

0 (x1)2 0

0 0 1

⎞
⎟⎠ ,

(4.7)

g̃ij =

⎛
⎜⎝

((
u1

,1

)2 + (
u2

,1)2
)

0 0

0 (u1)2 0

0 0 λ2
3

⎞
⎟⎠

where u1 = u1(x1) and u2 = u2(x1) are as shown in Fig. 5.
The three principal stretches of the membrane are given
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FIG. 2. (Color online) For a spherical membrane variation of (a) inflation pressure with principal stretch for different values of the material
parameter and r = 1, and (b) inflation pressure with principal stretch for different values of the geometric parameter and α = 0.1. Dashed
curve in (a) traces the two limit-points of the membrane for different strain-hardening parameters and the markers in (� ,�) (b) represent the
first and second limit points for different geometric parameters.

by

λ1 =
√[(

u1
,1

)2 + (
u2

,1

)2]
, λ2 = u1

x1
, λ3 = H

h
. (4.8)

FIG. 3. (Color online) (a) Circular flat membrane fixed at the
boundary before inflation and after inflation. (b) Configurations
before and after inflation of two circular flat membranes made of
the same material bonded at the boundary.

The equilibrium equations of the circular membrane may
be represented as [11]

F
(
ui

,1,u
i,x1,P

) = 0. (4.9)

Following [24] and [13], it can be observed that the
equilibrium equations (4.9) obey the scaling property
F(ui

,1,δu
i,δx1,P/δ) = F(ui

,1,u
i,x1,P ). This invariance prop-

erty can be used to easily solve the inflation problem with the
conditions λ1|x1=0 = λ2|x1=0 = λ0 along with the boundary
conditions for the two cases as follows:

A boundary fixed circular membrane:

u1(0) = 0, u2
,1(0) = 0, u1(r) = 0, (4.10)

Two bonded circular membranes:

u1(0) = 0, u2
,1(0) = 0, u1

,1(r) = 0. (4.11)

The variation of the principal stretches of the membrane(s)
at x1 = 0 for α = −0.1,0,0.1, 0.2 and two inflated config-
urations at pressure P = 3 for α = 0 before and after the
limit-point pressure are presented in Fig. 4 (for a circular flat
membrane) and Fig. 5 (for two bonded circular membranes).
For the case of bonded circular membranes, impending
wrinkling conditions of the membrane have been checked
following [25]. We have observed (results not presented) for
this case that there is no wrinkling beyond a certain value of
the inflation pressure.

C. Toroidal Membrane

Consider a toroidal membrane of ring radius R and cross-
sectional radius rt with coordinates x1 (meridional) and x2

(circumferential) on the surface as shown in Fig. 6. The
deformed and the undeformed metric tensors on the toroidal
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FIG. 4. (Color online) (a) Variation of inflation pressure with the principal stretches (λ1 = λ2 = λ0) with r = 1 at x1 = 0 for strain-hardening
parameter α = −0.1,0,0.1,0.2. (b) Two inflated configurations at P = 3 and α = 0 for a circular membrane fixed at the boundary on a y1 − y3

plane. The principal stretch values corresponding to the markers (©,•,�) shown in (b) are marked in (a). The marker (�) in (a) represents
the first limit point.

membrane are given by ( [12,25])

gij =

⎛
⎜⎝

r2
t 0 0

0 (R + rt cos x1)2 0

0 0 1

⎞
⎟⎠ ,

(4.12)

g̃ij =

⎛
⎜⎝

[(
u1

,1

)2 + (
u2

,1

)2
]

0 0

0 (u1)2 0

0 0 λ2
3

⎞
⎟⎠ .

The three principal stretches of the toroidal membrane are
given by

λ1 =
√[(

u1
,1

)2 + (
u2

,1

)2]
rt

,

λ2 = u1

(R + rt cos x1)
, (4.13)

λ3 = H

h
.

FIG. 5. (Color online) (a) Variation of inflation pressure with the principal stretches (λ1 = λ2 = λ0) at x1 = 0 for r = 1. (b) Two inflated
configurations at P = 3 and α = 0 for the case of two circular membranes bonded at the boundary on a y1 − y3 plane. The principal stretch
values corresponding to the markers (©,•,�) shown in (b) are marked in (a). The marker (�) in (a) represents the first limit point.
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FIG. 6. (Color online) Toroidal membrane before inflation and after inflation.

The equilibrium equations of the toroidal membrane are
obtained from (3.6) as

d

dx1

[
∂λ2

1

∂u1
,1

(
1 + αλ2

2

)(
1 − 1

λ4
1λ

2
2

)√
gs

]

− ∂λ2
2

∂u1

(
1 + αλ2

1

)(
1 − 1

λ2
1λ

4
2

)√
gs + Pu1 u2

,1 = 0, (4.14)

d

dx1

[
∂λ2

1

∂u2
,1

(
1 + αλ2

2

)(
1 − 1

λ4
1λ

2
2

)√
gs − 1

2
P (u1)2

]
= 0.

(4.15)

From the symmetry conditions of the membrane, the boundary
conditions may be written as

u1
,1(0) = u1

,1(π ) = 0, u2(0) = u2(π ) = 0. (4.16)

The two-point boundary value problem of the membrane
defined by (4.14)–(4.16) is solved using a shooting method
as detailed in Ref. [12].

The variations of principal stretches of the toroidal
membrane at x1 = 0 for strain-hardening parameter α =
−0.1,0,0.1,0.2 are shown in Fig. 7(a) and the two inflated
configurations of the torus cross section at pressure P = 2.9
for α = 0.1 before and after the limit point are shown in
Fig. 7(b). In this case the impending wrinkling conditions
of the membrane have also been checked following [25].

V. LIMIT-POINT INSTABILITY

Consider a small circular patch (not necessarily flat) of
radius r in the uninflated membrane which deforms to a radius
r̃ upon inflation. Let P be the corresponding pressure acting

FIG. 7. (Color online) (a) Variation of inflation pressure with the principal stretches (λ1,λ2) at x1 = 0 for the strain-hardening parameter
α = −0.1,0,0.1,0.2. (b) Two inflated configurations at P = 2.9 and α = 0.1 for the case of a toroidal membrane on a y1 − y3 plane. The
principal stretch values corresponding to the markers (©,•,�) shown in (b) are marked in (a). The markers (� ,�) in (a) represent the first
limit points corresponding to (λ1,λ2).
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FIG. 8. Variation of the limit-point pressure with geometric
parameter in the log-log plane circular membrane with fixed boundary
(©), two circular membranes bonded at the boundary (•), spherical
membrane (�), and toroidal membrane (�).

on the patch. Assuming the equibiaxial state of stretch, λ1 =
λ2 = λ = r̃/r . For a given strain energy density function V̂ ,
the stress resultant is given by T = (h/λ)∂V̂ /∂λ. The relation
between the pressure and the stress resultant can be written up
to the first order in thickness of the membrane (for thin shell
approximation) as

P A ∼ T L, (5.1)

where A ∝ r̃2 and L ∝ r̃ are, respectively, the projected
surface area and circumference of the patch. One may rewrite
(5.1) as

Pλ2r2 ∼ T λr ⇒ Pr ∼ h

λ2

∂V̂

∂λ
. (5.2)

Now, at the limit point, one can write (from the local extremum
condition of the stress-stretch relation (see, e.g., [3,17,26])

−2

λ3

∂V̂

∂λ
+ 1

λ2

∂2V̂

∂λ2
= 0. (5.3)

Integrating (5.3) once gives

1

λ2

∂V̂

∂λ
= I, (5.4)

where I is the integration constant. Using (5.4) in (5.2) at the
limit-point pressure yields the relation

rPlim = �, (5.5)

where � is a constant (obtained by a scaling of I ) which
depends only on the geometry and the material parameters
involved in the strain energy function of the membrane. Here,
the only material parameter is the strain-hardening parameter
α.

To check the relation (5.5), the values of the limit-point
pressure are obtained for four different geometries with the
Mooney-Rivlin strain energy function. The variation of the
limit-point pressure Plim for α = 0.05 with the geometric
parameter r is shown on the log-log plane in the Fig. 8 for
different geometries of the membrane. For all the geometries,
all the points fall on respective straight lines, all of which
have a slope of –1, as observed in Fig. 8. Thus Plim is
inversely proportional to the geometric parameter given by
(5.5) (where � is the x intercept in Fig. 8). It is interesting to
note that for the case of the toroidal membrane, the limit-point
pressure is independent of the major radius R of the torus.
As mentioned above, it is evident that � can only be a
function of the strain-hardening parameter α. A plot of �

with (1 + α) is shown on the log-log plane in Fig. 9(a) for
different geometries. For all the geometries considered, all
the points of the respective geometries match excellently with
the corresponding straight line fits. However, the slope and y

FIG. 9. Variation of proportionality constant � with strain-hardening parameter (α) for circular membrane with fixed boundary (©), two
circular membranes bonded at the boundary (•), spherical membrane (�), and toroidal membrane (�).
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TABLE I. Constants for the power-law relation � = a(1 + α)b

for different geometries.

Geometry a b

Circular membrane fixed at the boundary 3.7664 2.9559
Two circular membranes bonded at the boundary 3.4819 2.2645
Spherical membrane 2.5053 1.9261
Toroidal membrane 1.4910 1.6703

intercept of these lines vary with the geometry. This clearly
indicates the power-law dependence of � on α, which can be
expressed as

� = a(1 + α)b,

where a and b are suitable constants. The variation of �

with α for different geometries is shown in Fig. 9(b). The
constants a and b obtained from the intercept and the slope
of these lines in Fig. 9(a) for different geometries are given in
Table I. These constants are universal for the corresponding
geometry. Using the above table, one can now easily find the
limit-point inflation pressure of the four membrane geometries
considered.

VI. CONCLUSIONS

The phenomenon of limit-point instability during finite
inflation of hyperelastic membranes under internal pressure
is addressed in this paper. The Mooney-Rivlin material model
for the membrane is considered in the analysis. Four axisym-

metric membrane geometries are studied, namely, a spherical
membrane, a circular membrane fixed at the boundary, two
circular membranes bonded at the periphery, and a toroidal
membrane.

In the vicinity of a limit pressure point, a dramatic change
in the inflation behavior of a membrane is expected. Any
imperfection or defect in the material may lead to unpre-
dictable behavior of the structure (including the possibility
of bursting). Therefore, a priori estimation of the limit-point
pressure assumes importance. A functional relationship of
a general form relating the limit-point instability pressure
with a geometric parameter of the uninflated membrane
has been proposed. For the different cases, the geometry-
dependent parameters in the functional relationship have been
obtained numerically. These are expected to be useful in
the estimation of the limit-point pressure for the geometries
considered.

The dependence of the limit-point pressure on the geometry
is due to the connection of the geometry with the stress
distribution. However, what is remarkable is that the limit-
point pressure depends on a geometric parameter of the
uninflated membrane. This functional dependence appears to
be an invariant property of the membrane geometry for the
Mooney-Rivlin class of hyperelastic materials. It remains to
be seen how the constants can be related in a more fundamental
way to the geometry of the membrane. Furthermore, the role
of geometry on the small-amplitude dynamics and stability of
the membranes around the critical points may be interesting to
investigate (see, e.g., [27,28]).
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