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Dislocation dynamics during plastic deformations of complex plasma crystals
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The internal structures of most periodic crystalline solids contain defects. This affects various important
mechanical and thermal properties of crystals. Since it is very difficult and expensive to track the motion of
individual atoms in real solids, macroscopic model systems, such as complex plasmas, are often used. Complex
plasmas consist of micrometer-sized grains immersed into an ion-electron plasma. They exist in solidlike,
liquidlike, and gaseouslike states and exhibit a range of nonlinear and dynamic effects, most of which have
direct analogies in solids and liquids. Slabs of a monolayer hexagonal complex plasma were subjected to a
cycle of uniaxial compression and decompression of large amplitudes to achieve plastic deformations, both
in experiments and simulations. During the cycle, the internal structure of the lattice exhibited significant
rearrangements. Dislocations (point defects) were generated and displaced in the stressed lattice. They tended to
glide parallel to their Burgers vectors under load. It was found that the deformation cycle was macroscopically
reversible but irreversible at the particle scale.
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I. INTRODUCTION

Many known solids have a periodic crystalline structure;
however, perfect periodicity is often disrupted by various
crystallographic defects. These affect significantly mechanical
properties of the crystal, such as mechanical strength, elastic
modulus, and fatigue resistance, as well as transport properties
of the crystal, such as particle and heat transfer. Dislocations,
a subclass of defect, are produced by a shift of crystal planes
relative to each other or by plastic deformations. They can
appear and disappear in response to stress, temperature, and
other environmental parameters, thereby modifying many
material properties. This makes it interesting and important
to study their dynamics in solids.

Various experimental methods have been developed to
observe dislocations in real solids [1]. They include surface
methods, decoration methods, x-ray diffraction, transmission
electron microscopy (TEM), field-ion microscopy, and atom
probe tomography. Surface methods visualize the dislocation
by treating the surface of a sample, for example, by chemical
etching or ion bombardment. If the etching rate is higher in
the vicinity of a near-surface dislocation, a visible macroscopic
dent is produced. Decoration methods involve the introduction
of highly visible impurity atoms into a transparent crystal.
These atoms precipitate near dislocations and make them
observable with an optical microscope. X-ray diffraction
allows the observation of dislocations from the diffraction
pattern that they produce. However, these methods do not
resolve positions of individual atoms at the dislocation. They
can be prone to artifacts and have other limitations, such as
size and thickness of the specimen, quality of the surface,
allowed range of temperatures, size, and number density of
the dislocations. TEM, field-ion microscopy, and atom probe
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tomography do resolve the positions of individual atoms
near the dislocation. They are imaging methods based on
electron or ion beams with a much higher resolution than the
optical methods. Their limitations include size and stability of
the specimen: they produce atomic scale resolution for thin
specimen. They might also be destructive for the specimens,
and they are in general not very fast, making dynamic studies
very difficult if possible.

Computer simulations are widely used to study disloca-
tions, especially to understand their properties, which are not
easy to measure experimentally. The simulation of material
plasticity should include several length scales: interatomic
distances, the mean distance between dislocations, the crystal
grain size, and the size of the crystal lattice. The most difficult
area to model is the core of a dislocation, which is several
interatomic distances thick. This is where deformations are
well beyond the linear elasticity theory, and the atomic posi-
tions are impossible to measure with high enough precision.
Dislocation cores determine the key properties of lattices;
thus, it is very important to understand their physics. Several
computational methods can be used to model dislocations.
Ab initio simulations use first principles quantum mechanical
equations to describe atomic interactions [2,3]. While very
accurate, they are extremely computationally intensive. For
example, it was shown with the first principles simulation
that the orientation of Stone-Wales defects (pairs of pentagons
and heptagons created by 90◦ rotation of a carbon-carbon
bond) close to the edge of graphene nanoribbons could result
in compressive or tensile stress [4]. Molecular dynamics
(MD) or molecular statics methods use discrete atomistic
models described by classical equations of motions [5,6].
While they allow the simulation of much larger lattices, they
need a prior knowledge of interatomic potentials from either
ab initio simulations or experiments. Molecular dynamics
simulation has been used to study defects in melting and
freezing metal nanoparticles consisting of about 3000 nickel
atoms [7]. Continuum methods such as dislocation dynamics
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model string dislocations as line singularities in an elastic or
viscoplastic continuum [8,9]. The dislocations are treated as
reacting with each other and forming networks with junctions.
These three approaches to dislocation simulation work well at
their scale domains: ab initio at the dislocation core scale,
molecular dynamics and statics at the interdislocation and
grain size scale, and dislocation dynamics at the crystal lattice
scale or engineering component scale.

Dislocations and defects have direct analogies in structured
materials studied in various condensed soft matter fields, such
as colloids, foams, granular media, and complex plasmas.
These materials can form crystalline, quasicrystalline, or
amorphous solid structures under certain conditions. Being
macro- or mesoscopic, these structures can be observed easily
using optical microscopy. Colloids are suspensions of small
particles in a liquid. Each individual particle can be tracked
in three-dimensional (3D) colloidal systems in space and
time [10]. This method has been used to study glass transitions
during shear melting in colloidal glasses [11]. Defect dynamics
in two-dimensional (2D) colloids during melting have been
observed directly by Tang et al. [12]. Their analysis indicates
that the melting may be a first order process, whereas the
correlation analysis was consistent with a continuous two-
step melting transition. The topological configurations and
dynamics of individual point defect vacancies and interstitials
in a 2D crystal of colloids interacting via a repulsive Yukawa
potential have been studied by Libal et al. [13]. In [14],
the authors showed that the hopping of defects does not
follow a pure random walk but exhibits some memory effects.
Electrically driven colloids are used to investigate defects,
melting, and crystallization [15]. Defect dynamics have been
studied in 2D charged granular media and showed that the
defects form preferentially at the edge of the lattice [16].
Foams have a topology completely different from other kinds
of soft matter and atomic solids. Monodisperse foams in the
dry limit form polyhedra with flat faces [17], which resemble
Voronoi polyhedra in 3D solids. This analogy also holds in
2D cases. Simulated foams are often generated using Voronoi
polygons [18]. An example of an irreversible process, often
observed in rheology of 2D foams, at the microparticle scale
is neighbor swapping or a T1 event. For example, Lundberg
et al. [19] and Dennin [20] investigated the role of these T1
events in reversible and irreversible macroscopic responses of
sheared foams.

One of the soft matter fields, where dislocation dynamics
is studied, is complex plasmas. They are multicomponent
plasmas containing micron-sized particles or grains, in ad-
dition to the usual weakly ionized plasma components. The
grains collect electrons and ions, acquire high electric charge,
and interact collectively. Complex plasmas are similar to
colloids: they exist in solid, liquid, or gaseous states and
exhibit phase transitions. Unlike colloids, which are based
on liquids, the grains in complex plasmas are exposed to
smaller frictional forces due to gas damping. Thus, complex
plasmas can sustain waves, solitons [21,22], shock waves [23],
phase transitions [24–27], Mach cones [28,29], and other
dynamical effects. They can be used as model systems to
study dynamic phenomena and physical properties of matter
at the kinetic level including dislocation dynamics. A number
of order parameters has been proposed to characterize the

melting of 2D complex plasmas in [30]. Defect dynamics
in a liquid complex plasma have been reviewed by Chan
et al. considering the effects of thermal agitation, external
shear, and structural ordering [31]. The dynamic behavior of
dislocations in 2D strongly coupled complex plasmas excited
by compressional solitary waves has been studied in [32]. It
was found that the dislocations moved either continuously
due to elastic deformation of the lattice or jumped between
pairs of particles in the lattice in the direction parallel to their
Burgers vectors. The data from complex plasma experiments
and MD simulations demonstrated that lattice defects induce
elastic deformations in the surrounding lattice and disturb the
local number density and lattice orientation [33]. Dislocation
dynamics were shown by Knapek et al. to play a decisive
role in determining the nature of a nonequilibrium phase
transition [34]. Nosenko et al. reported a direct experimental
measurement of the relation between glide speed of edge
dislocations and the externally applied shear stress in a
2D complex plasma crystal [35]. They observed sub- and
supersonic dislocations, with the latter ones playing a central
role in shear melting of crystalline solids. Nucleation of
dislocations, compact dislocation clusters, and other point
defects in a 2D complex plasma crystal have been recently
discussed by Zhdanov et al. [36]. The dislocation clusters,
consisting of “paired” dislocations and, hence, topologically
neutral [37,38], are practically immobile under stress. Here we
report experimental observations and numerical simulations
of dislocation dynamics in a monolayer crystalline complex
plasma undergoing a uniaxial cycle of compression and de-
compression of different strengths. We focused on the behavior
of dislocations: their generations and dynamics under different
external compressive loads. We show that deformations were
structurally reversible at the macroscopic scale but irreversible
at the microscopic scale because of plastic deformations at
the particle scale due to the dynamics of dislocations. This
effect has analogies in material science with effects such as
strain aging or annealing, where modifications of dislocation
arrangements can improve materials’ performance [1].

II. EXPERIMENTAL AND NUMERICAL PROCEDURES

A. Experimental setup

The experiments were conducted in a capacitively coupled
radio frequency (rf) discharge as shown in Fig. 1. An argon
flow (2 cm3/min at STP) maintained a constant working gas
pressure of 1 Pa in the chamber. A rf power of 2 W was
applied to the lower disk electrode, which was 20 cm in
diameter. The chamber itself was the other grounded electrode.
Monodisperse plastic microspheres with a mass of 6.1 × 10−13

kg and a diameter of 9.19 ± 0.1 μm were injected into the
plasma through a particle dispenser. Due to different areas of
the electrodes and different mobility of ions and electrons,
the powered electrode had a dc self-bias voltage of −92 V,
which helped to suspend the microparticles in the plasma
sheath against the effect of gravity. The particles were radially
confined by a rim on the outer edge of the lower electrode,
forming a monolayer hexagonal lattice of approximately 6 cm
in diameter. The lattice was illuminated by a horizontal thin
(about 0.1 mm) sheet of laser light. All particles stayed within

053101-2



DISLOCATION DYNAMICS DURING PLASTIC . . . PHYSICAL REVIEW E 88, 053101 (2013)

powered
electrode

(a)

powered  electrode

particle monolayer(b)

wire 1

grounded
electrode

High speed
camera

wire 2

wire 1

wire 2particles

FIG. 1. Sketch of apparatus. (a) Oblique view. Spherical particles
charge negatively and form a monolayer levitating in the plasma
sheath above the lower electrode. (b) Side view. Two wires placed
below the lattice are used to apply the voltage ramps.

the thickness of the sheet. Images of the microparticles were
recorded by a top-view digital camera at a rate of 96 frames per
second. The field of view, equal to 58 × 42.58 mm2, contained
between 2235 and 2408 particles (depending on the run).
The duration of the recording was set to include the whole
compression-decompression cycle.

The crystalline lattice was characterized by an average
interparticle distance of 1.025 mm. Two parallel horizontal
tungsten wires, both 0.1 mm in diameter, were placed below
the particles, symmetrically on both sides of the lattice and
57.4 mm apart [see Fig. 1(b)]. The coordinate system was
chosen, so that the x axis was parallel to the excitation force and
the y axis was parallel to the wires. The vertical position of the
sheet of laser light was adjusted to illuminate well all particles
comprising the monolayer [39]. Negative voltage pulses were
used to excite compressional disturbances [21,23,40]. In order
to compress the lattice uniaxially, we applied a slowly varying
voltage ramp simultaneously to both wires. The initial voltage
of −9.6 V was linearly changed to −50 V in a given rise time
(between 1 and 20 s). It then stayed constant and subsequently
changed linearly back to the initial voltage. The negatively
biased wires repelled the particles on both sides toward the
center of the chamber and thus compressed the lattice. Note
that the vertical confinement of the particles did not noticeably
change because of the presence of the biased wires [39]. A
negative voltage applied to the wires pushed the particles away,
as observed in [41], partly breaking the lattice above the wires
and creating a horizontal compression, perpendicular to the
wires. The monolayer also slightly oscillated with a small
amplitude in the vertical direction after the excitation. This
temporary loss of particles from the field of view was taken into
account and effectively compensated by refining our tracking
algorithm, as described below in Sec. II C. Figure 2 shows
the stages of the experiment: the initial decompressed stage,
compression stage, compressed stage, decompression stage,
and again the decompressed stage. The whole cycle repeated
with a period of 33 or 100 s in order to allow the lattice to
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FIG. 2. (Color online) Stages of the experiment and time evo-
lution of the voltage applied to the wires. The initial voltage was
V1 = −9.6 V and the compressing voltage was V2 = −50 V. The
duration of compression and decompression stages corresponded,
respectively, to the rise and fall time, which had equal values set in
the range between 1 and 20 s. The durations of the compressed and
decompressed stages were approximately equal. The total period of
the experimental cycle was 33 or 100 s. The data sets were divided
into the compression part [red (light gray) dashed double arrow] and
decompression part [blue (dark gray) dotted double arrow] for the
purposes of data analysis. The compression part included a small
portion of the initial decompressed stage, the compression stage, and
a fraction of the compressed stage. The decompression part contained
a small portion of the compressed stage, the decompression stage, and
a fraction of the final decompressed stage.

come to an equilibrium and cool down between runs. The
compression part [red (light gray) dashed double arrow] and
the decompression part [blue (dark gray) dotted double arrow]
shown in Fig. 2 corresponded to the analyzed parts of the
experimental runs. They started slightly before any variation
of the applied voltage and continued for some time after the
voltage settled to a new value.

B. Molecular dynamics simulations

Two-dimensional numerical simulations have been per-
formed using a molecular dynamics code described in [23].
It solved the equations of motion of the negatively charged
microparticles interacting with all the other microparticles via
a force derived from a Yukawa potential ∝ exp(−r/λD)/r ,
where λD is the Debye length and r is the interparticle
distance. As we did not impose any boundary conditions on the
system, a global confining potential was implemented in order
to counteract the repulsive Yukawa interaction: a parabolic
potential was used, U = m�2(x2 + y2)/2, where m is the
particle mass, � is the horizontal confining parameter, and
x and y are the microparticle coordinates. The particle motion
was damped by collisions with neutrals modeled by a friction
force expressed as −mνv with a damping rate ν and a particle
velocity v. The equations of motion were solved using the
fifth order Runge-Kutta method with the Cash Karp adaptive
step size control algorithm [42]. The particles were randomly
seeded and the code was run without any excitation force in
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order to equilibrate the system and to generate a monolayer
hexagonal lattice. We then applied excitation forces of different
durations and amplitudes to this monolayer and analyzed their
evolution. The numerical model allowed us to use exactly the
same initial lattice (which is not possible in the experiment)
for the numerical runs, which differed by the external forcing
conditions.

A complex plasma lattice consisting of 3000 particles was
simulated using the following parameters: a particle mass
m = 5 × 10−13 kg, a damping rate ν = 1 s−1, a confining
parameter � = 2 Hz, a constant Debye length λD = 1 mm, and
a constant particle charge Q = 16000e, where e is the electron
charge. The equilibrated lattice was initially characterized
by an average interparticle distance of 0.725 mm and a
diameter of 50.2 mm. An inward compressing force has been
applied simultaneously at both sides of the lattice along the
x direction to mimic the wire force in the experiment. Each
numerical run consisted of a compression stage, compressed
stage, decompression stage, and decompressed stage (Fig. 3).
The amplitude of the force started from zero, increased to
its maximum value of Fex0, kept its maximum value, reduced
back to zero, and stayed zero afterward. The compression and
decompression stages of the excitation each lasted τ seconds
and followed a parabolic temporal profile. The compressed
and decompressed stages had equal duration, so that the
whole cycle lasted 40 s. The spatial profile of the excitation
force (independent on the y coordinate) was composed
of two semi-infinite Gaussian transitions with a waist w

of 2 mm—exp[−(x + x0)2/w2] − exp[−(x − x0)2/w2] for
|x| � x0 = 12 mm—and it was equal to 1 otherwise. The
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FIG. 3. (Color online) Stages of simulation and temporal evolu-
tion of the excitation force in the simulations. Fex0 was the amplitude
of the excitation force and it varied between 0.05 and 1 arb. unit. The
rise and fall time τ corresponded to the duration of the compression
and decompression stages. These times were equal to each other
and varied between 2.31 and 13.86 s depending on the numerical
run. The total period of the numerical cycle was 40 s. The data sets
were divided into the compression part [red (light gray) dashed double
arrow] and decompression part [blue (dark gray) dotted double arrow]
for the purposes of data analysis. The compression part consisted
of compression and compressed stages. The decompression part
contained decompression and decompressed stages.

lattice responded to these variations of the applied load, first by
a displacement of the particles in the direction parallel to the
force toward the center of the lattice to reach the compressed
state and second by a motion in the outward direction to
reach the decompressed stage. We varied the duration τ and
the force amplitude Fex0 to produce multiple numerical runs.
The force amplitude is reported below in normalized units
4πε0mλ2

D/Q2, where ε0 is the vacuum permittivity. The data
analysis was performed for the numerical runs split into the
compression part [red (light gray) dashed double arrow] and
decompression part [blue (dark gray) dotted double arrow]
(Fig. 3) in order to facilitate comparison with the experiments.

C. Particle and defect tracking

The experimental data were analyzed by identifying the
particle positions and tracking them in consecutive frames. In
order to perform an accurate analysis of defect dynamics in the
experimental runs, we had to take special measures in order
to reduce the number of misidentified or lost particles. The
video images were preprocessed [43] to remove the stationary
background. First, all video frames in the sequence were
averaged and blurred with a Gaussian filter. The image pixels
were compared to the corresponding pixels of the background
and set to zero if their values were below. Second, we applied
a small fixed threshold to all images in order to remove any
residual random noise. Third, morphological operations of
opening and closure [44] were applied to the binary template
of the image in order to connect bright objects with small
gaps in between and thus prevent particle fragmentation.
The particle identification was performed using an intensity
weighted moment method and following the recommendations
of [45,46] in order to reduce the pixel locking. We used
a particle tracking velocimetry algorithm instead of a more
advanced method based on an extended Kalman filter [47] due
to its significantly lower computational cost. This was essential
for analyzing numerous long experimental runs. The tracking
algorithm [21] has been refined by introducing a multiframe
tracking, which would find and link particles that were lost for
a few frames and then reappeared later. These simple measures
have significantly improved the particle tracking reliability and
thus reduced the incidence of falsely identified lattice defects.

Crystal cells of a stable ideal 2D lattice have a sixfold
symmetry; in other words, each central particle has six nearest
neighbors. Particles with another number of nearest neighbors
form defective cells. The most common are fivefold (penta)
and sevenfold (hepta) defects. In a lattice with a low defect
density they usually form pairs: penta-hepta defects (PHDs)
or dislocation [32]. The deformation affected by a dislocation
might be thought of as being caused by the insertion of an extra
half line of particles to the ideal hexagonal lattice [48]. Each
dislocation is characterized by its Burgers vector b, which
is nearly orthogonal to the line connecting the centers of
the fivefold and sevenfold cells and the length of which is
equal to the lattice constant [49]. The Burgers vector quantifies
the distortion of the lattice by the dislocation, and it can be
considered as the dislocation’s topological charge [8].

It has been observed that dislocations can either move in
small increments following the lattice particles due to elastic
deformation or jump from one pair of particles to the next [32].
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FIG. 4. (Color online) Schematic diagram of a dislocation jump
from the initial state at time t to the final at t + �t . The lattice is
compressed by an external force Fex applied to the opposite edges
of the lattice along the x axis. The filled triangle (�) and square
(�) indicate the initial position of the fivefold and sevenfold defects,
respectively. The open triangle (�) and square (�) mark the final
position of the fivefold and sevenfold defects, respectively. The
position of the dislocation is calculated as the midpoint of a line
connecting the fivefold and sevenfold defects, also known as the
barycenter. The dislocation displacement vector (i.e., jump) j joins the
old and the new positions of the barycenter. The angle α characterizes
the absolute direction of the dislocation jump. It is the angle between
the displacement j and the x axis. The angle θ is the angle between j
and the Burgers vector b of the dislocation.

This makes dislocation tracking not very straightforward even
in the simulation, where the identities of all lattice particles are
known [36]. Our dislocation tracking algorithm is somewhat
similar to the particle tracking velocimetry procedure. First, the
dislocations were identified using Delauney triangulation, and
pairs of particles with five and seven nearest neighbors were
found. Second, we checked the presence of defective cells
around a PHD in order to identify it as isolated [50]. It should
be noted that more complicated methods are used to identify
dislocations in 3D lattices [51]. Third, the dislocations were
tracked by finding a nearest isolated dislocation in the next
frame. This took into account that the dislocations were not
permanently associated with the lattice particle but were able
to jump between them. The algorithm then calculated the dis-
placement of all isolated PHDs between consecutive frames.
If the dislocation disappeared or came into close contact with
another one and became nonisolated, it was discarded by the
tracking program. Newly appearing PHDs were also tracked as
long as they became isolated. This procedure provided reliable
tracking of jumping isolated dislocations and allowed us to
reconstruct their trajectories in the 2D lattice.

In order to fully characterize dislocations, the tracking pro-
gram also calculated their Burgers vectors b, the displacement
vector (i.e., jump or glide) j, the angle α between j and
the x axis, and the angle θ between j and b (Fig. 4). The
angle α characterizes the absolute direction of the dislocation
motion. It varies in the range ±90◦ since the force is applied
symmetrically from both sides. The angle θ shows the relative
direction of displacement with respect to the Burgers vector.
It changes in the range ±180◦.

III. RESULTS AND DISCUSSION

A. General observations

Here we summarize some of the key facts observed
during uniaxial compression of complex plasma crystalline

lattices. These observations were qualitatively identical in the
experiments and in the simulations, so that the discussion
will equally apply to both, unless a distinction is made
explicitly.

The initial lattice had mostly regular hexagonal structure
with some isolated dislocations and defect chains [Fig. 5(a),
where we can count 28 isolated dislocations in the initial
configuration of the lattice generated numerically]. The pres-
ence of defects resulted from the interplay between different
symmetries: the Yukawa interparticle interaction favored a
hexagonal structure, whereas the global parabolic confinement
induced a circular symmetry. The simulated lattice had a
circular shape initially. The experimental initial lattice was
bound by the wires; therefore, it had the shape of a slab
with two linear sides and two rounded; the camera view
cropped the lattice in the y direction keeping the middle
part and showing its full extent in the x direction. As the
excitation force was applied, the lattice was compressed
uniaxially in the x direction and simultaneously elongated
in the y direction becoming ellipselike [Figs. 5(b) and 5(c)].
When the compressing force was released, it returned to
its original shape after decompression [Figs. 5(d) and 5(e)].
This macroscopic reversibility, however, did not hold at the
microscopic level. Individual particles were moved along
the x axis toward the lattice center by the compressive
force, and the final distribution of defects was distinctly
different in each experimental and each numerical run. Faster
compression rates generated more lattice defects [Fig. 5(b)]
than the slower ones [Fig. 5(c)]. However, the final defect
density after decompression and cooling was in general
independent on the compression rate, as discussed below in
Sec. III B.

Lattice compression caused enhanced mobility of newly
generated and existing defects. New defects were produced in
pairs as dislocations (PHDs) via shear slips. A more detailed
discussion about defect generation is given in Sec. III C.
Isolated dislocations tended to move under strain faster and
over longer distances than chains or clusters of defects (see
Sec. III D). PHDs with opposite orientations of their Burgers
vectors annihilated after collisions. Another mechanism of
defect loss was at the edges of the lattice.

B. Fraction of dislocations in lattices under compression

After a compressional excitation force was applied to
the lattice, the latter responded by deforming. Initially the
deformation was elastic; i.e., no defects were generated or
moved. As the elastic limit was exceeded, the number of
dislocations sharply increased. Figure 6 shows experimental
production of isolated dislocations under compressional load.
The temporal evolution of the applied excitation for com-
pression and decompression is shown in Figs. 6(a) and 6(b),
respectively. Figures 6(c) and 6(d) show corresponding time
evolutions of the fraction of isolated dislocations. The number
of PHDs rose after a small delay in both cases of compression
and decompression, reaching roughly the same maximum
value. After the maximum fraction of isolated dislocations was
reached, it persisted for some time before it slowly returned
to a low equilibrium value, similar to the one at the beginning
of the experiment. The number of dislocations produced by
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FIG. 5. (Color online) Simulated crystal structures for fast and slow compression/decompression. The figures show Voronoi maps with
the lattice defects marked by squares � (sevenfold) and triangles � (fivefold). Defects forming isolated dislocations are highlighted by filled
squares � (sevenfold) and triangles � (fivefold). The centers of sixfold lattice cells are not marked for clarity. The same initial equilibrated
lattice (a) was used for all simulations. The lattice structure near the end of the compression stage is shown for fast compression τ = 2.31 s in
(b) and for slow compression τ = 11.55 s in (c). The faster compressed lattice exhibits more defects. The final decompressed stage at the end
of the simulation cycle has a similar defect fraction for fast (d) and slow (e) decompression.

the load increased as the rise or fall time of the excitation
decreased in most cases. This resulted in few PHDs generated
by slow excitations (such as τ = 20 s) and many by the shorter
ones. The only exception in the trend was the case of τ = 3.3 s.
It had a shorter cooling time between the runs: 33 s instead
of 100 s compared to other compression rates, which could
have resulted in a lower quality of the initial lattice and thus
enhanced the defect production. It also had a slightly higher
initial proportion of dislocations, which associated with the
strong perturbation could have enhanced the generation of new
ones. We calculated the height of the first peak of the particle

pair correlation function for all our experimental runs in order
to characterize the quality of the lattice. Its value was 4.3 for the
case of τ = 3.3 s and between 8.5 and 9.8 for all other cases.
Note that a high value of this first maximum is characteristic
of a highly ordered (crystalline) state, as seen in [52].

As the density of generated dislocations increased, more of
them had a chance to interact with one another, forming chains
and clusters of defects. In order to characterize this clustering,
the fraction of isolated dislocations was plotted as a function of
the total number of lattice defects [Fig. 6(e)]. We counted each
dislocation as a pair of defects; thus, if all dislocations were
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FIG. 6. (Color online) Experimentally measured fractions of isolated dislocations during compression and decompression parts of uniaxial
load cycles. Time evolution of compressing and decompressing excitation voltages is shown in (a) and (b), respectively. The initial and final
voltages remained the same for all experiments, while the rise and fall time of the voltage ramp varied. The dislocation fraction time series
were aligned at the beginning of compression (c) and decompression (d) stages for easy comparison. It was found that the dislocation fraction
started increasing soon after the voltage ramp was applied and stayed elevated after the end of the ramp before decreasing to the initial value.
Shorter excitations resulted in more dislocations generated. The fraction of isolated dislocations vs the total fraction of lattice defects (e) plotted
for all experiments shows a growth followed by a saturation and a decline of the dislocation fraction. This happens because at high defect
densities more dislocations cease to be isolated and join others to form clusters and chains. In our system a defect is a microparticle with a
number of nearest neighbors different from six. An isolated dislocation is defined as a pair of fivefold and sevenfold defects (a microparticle
with, respectively, five and seven nearest neighbors) not in direct contact with any other defective microparticle. On average, 44% of defects
formed isolated dislocations.
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FIG. 7. (Color online) Simulated fractions of isolated dislocations measured during compression and decompression parts of uniaxial load
cycles. (a) Time evolution of the compressing and decompressing excitation force Fex. The amplitude of the excitation Fex0 was varied, while
the rise and fall time remained the same for all numerical runs. It was found that the dislocation fractions (b) started increasing soon after the
force ramp was applied and stayed elevated after the end of the ramp before decreasing to the initial value or even below it. Higher amplitude
excitations resulted in more dislocations generated. The fraction of isolated dislocations vs the total fraction of lattice defects (c) plotted for all
runs shows a proportional growth. The excitations were too weak to observe a clear saturation phenomenon.

isolated, the total number of defects would be twice the number
of PHDs. The fraction of defects (dislocations) was calculated
with respect to the total number of lattice sites. Figure 6(e)
shows that as the total fraction of defects increased the fraction
of isolated dislocations started saturating and finally dropped
off below the maximum value of about 6%. This indicates that
more defects clustered at higher defect fractions.

Similar trends of defect behavior were observed in the
simulations. Here we investigated the effects of different
amplitudes (Fig. 7) and different rise and fall times of
the excitation force (Fig. 8). As in the experiments, the
fraction of isolated PHDs increased following a small delay
after the compression (decompression) force was applied.
It then reduced to the initial value or below some time
after the excitation force became constant (compressed and
decompressed stages).

Figure 7(a) shows the applied excitation with varying
amplitude Fex0, and Fig. 7(b) shows the corresponding time
evolution of the fraction of isolated dislocations. The max-
imum number of isolated PHDs increased roughly with the
amplitude of the applied excitation. Since the initial lattice
was the same in each series of simulated runs, we could
unambiguously observe an effect of lattice annealing, when
the final number of isolated dislocations was lower than the
initial one. This effect was more pronounced for stronger
excitations. It also appears to have a threshold value. The
lowest perturbation amplitudes produced no visible annealing,
while generating defects during compression (decompres-
sion). Figure 7(c) presents the fraction of isolated PHDs as
a function of the total number of defects. The saturation
is less pronounced than in the experiment due to weaker
excitations.

The effect of the rise and fall time of the excitation
τ is presented in Fig. 8. Figure 8(a) shows the variation

of the perturbation, and Fig. 8(b) shows the corresponding
time evolution of the fraction of isolated dislocations. The
maximum fraction of isolated PHDs increases as the rise (fall)
time decreases, reproducing the results of the experiment.
Since the relaxation times in complex plasmas are of the
order of 0.1 s, compression rates of 1–3 s are equivalent to
those produced by shocks or ultrashort laser pulses. Shehadeh
et al. have investigated ultrashort wave propagation caused by
shocks in copper single crystals and how they produce plastic
deformation and interact with dislocations [53]. It was found
that if a pulse of constant pressure was used for compression
the dislocation density increased with the pulse duration up to a
threshold beyond which the density saturated. For our system,
a saturation was also observed for the shortest rise (fall) time,
as shown in Fig. 8(c).

C. Generation of dislocations by deformations

In this section we discuss how dislocations are produced
at the microscopic level. Initially, when the applied force was
below the elastic limit, the lattice cells deformed elastically.
As the force grew larger, the deformation became plastic due
to irreversible microscopic effects such as defect production
under strain, their mobility, and interactions. The most in-
teresting fact observed previously is that while the applied
deformation is compressive the lattice fails via a shear slip [39].
This can be explained by the fact that a uniaxial compression
is a superposition of “more elementary” uniform compression
and shear. It is relatively easy to compress complex plasmas
uniformly. The only limitation is the vertical lattice stability
in quasi-2D lattices (experiment) [54]. Our experiments were
conducted under conditions ensuring vertically stable lattices.
True 2D lattices (simulation) do not have this limitation. As
the uniform compression is absorbed elastically by reducing
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FIG. 8. (Color online) Simulated fractions of isolated dislocations measured during compression and decompression parts of uniaxial load
cycles. (a) Time evolution of the compressing and decompressing excitation force Fex. The amplitude of the excitation force remained the
same for all numerical runs, while the rise and fall time τ was varied. It was found that the dislocation fractions (b) started increasing soon
after the force ramp was applied and stayed elevated after the end of the ramp before decreasing to the initial value or even below it. Shorter
excitations resulted in more dislocations generated. The fraction of isolated dislocations vs the total fraction of lattice defects (c) plotted for
all runs shows a nonlinear dependence, as observed in the experiments [see Fig. 6(e)] for the shortest rise (fall) time τ of the excitation force.
This happens because at high defect densities more dislocations cease to be isolated and join others to form clusters and chains resulting in a
nonlinear dependence which tends to saturate.

the average interparticle distance, the shear strain accumulates
[39]. When the shear exceeds the elastic limit, it is relieved
by one of the following irreversible deformations: shear slip,
enhanced dislocation mobility, or interactions of preexisting
dislocations. Only the first of these processes results in
the generation of new dislocations. Apart from shear slips,
PHDs are generated by direct heating of the lattice [55,56].
This effect is more pronounced for the short excitation
pulses in our experiments and simulations. Dislocations can
also be emitted from grain boundaries or disappear by
recombination [31].

Shear slips are displacements of particles in neighboring
lattice rows in opposite directions by one (or more) inter-
particle distance. They generate pairs of dislocations moving
in opposite directions [39,57] and increase the number of
lattice defects. Nosenko et al. described dislocation nucleation
during a shear slip in [58], which is a complicated four-stage
process. The generation of dislocation pairs under high stress
has been also observed by Chen et al. in carbon nanotubes
[59]. Effects of instantaneous strain on polymer glasses have
been studied by Wallace and Joos using molecular dynamics
simulation [60]. Two regimes were separated: elastic for small
deformations and plastic for large ones. Irreversible collective
processes have been studied in the plastic regime, such as
“jumps” and system relaxation. These results can be applied
to understand the yield strength and material aging. The
dynamics of dislocations will be discussed in the following
sections.

D. Dislocation dynamics

This section discusses how dislocations move and interact
with each other under strain. We focus in particular on the

characterization of the dislocations’ jumps. The first section
illustrates the dislocations’ trajectories, which are compared
with the average motion of all particles during jumps as well as
during elastic deformations. Then we analyze the direction of
these jumps with respect to the direction of the external load,
i.e., the excitation force, and to the dislocation’s Burgers vector
b by considering the angles α and θ between these different
vectors, as defined in Fig. 4.

It was observed that dislocations exhibited enhanced motion
under strain. Two types of displacement were observed: a
smooth elastic displacement for low amplitude strains and
jumps or glides for high amplitude strains [32]. The PHDs
stayed with the same pair of lattice particles during the
smooth elastic motion and followed the deformation of the
lattice imposed by the external load. For these displacements
the PHDs were “immobile” with respect to the lattice; this
motion was reversible. For jumps, the dislocations could also
displace from one pair of lattice particles to a neighboring
one during jumps. The amplitude of these jumps was close
to the lattice spacing, and its direction was either parallel
or antiparallel to the Burgers vector of the PHD, as will
be discussed in Sec. III D4. Isolated dislocations propagated
mostly in one direction and with almost constant speed under
compression or decompression. Dislocation jumps or hopping
have been also observed in 2D colloidal systems [14]. PHD
motion under strain is also a frequent subject of atomistic
computer simulations with various interatomic potentials
such as the Lennard-Jones or semiempirical embedded atom
method [61].

Although our work mostly focused on isolated dislocation,
some observations were made of interacting PHDs. When a
pair of dislocations with antiparallel Burgers vectors collided,
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they were annihilated in a process opposite to a shear slip.
Pairs of colliding PHDs with other Burgers vectors orientations
would form a cluster and slow down or even stop. More
complicated dislocation arrangements such as multijunctions,
chains, grain boundaries, or clusters could also immobilize
isolated PHDs very effectively. Similar behavior has been
observed in dislocation dynamics simulations [36,62,63].
Mobility of dislocations strongly influences the properties
of materials, and their mutual interactions have significant
contribution to their mobility [64].

1. Dislocations’ trajectories

We now explore the statistics of the dislocations’ trajec-
tories in the lattice. Figures 9 and 10 show the temporal
evolution of all dislocations’ displacements �r during elastic
deformations (first column) and jumps (second column) as well
as the dislocations’ trajectories (third column), respectively,
for two experimental and four different simulated cases.
We compared extreme experimental and simulated cases:
minimum and maximum values of the rise and fall time (i.e.,
3.3 and 20 s) in the experiment and minimum and maximum
values of the duration (i.e., 2.31 and 13.86 s) or amplitude
(i.e., 0.05 and 1 arb. unit) of the excitation force in the
simulation. We have considered the dislocations’ jumps and
elastic displacements separately.

Elastic displacements of the dislocations shown in
Figs. 9(a), 9(d), 10(a), 10(d), 10(g), and 10(j) followed
the variations of the global lattice deformation (solid line),
characterized by the average displacement of all particles. The
amplitudes of these elastic displacements increased with the
amplitude of the force or as the duration of the compression
and decompression stages was shorter. In the experiments, for
a rise time of 3.3 s the dislocations’ displacement could be
up to a factor 2 larger than the average particle displacement.
The second experimental case with a longer rise time case
was “noisy” during all the analyzed parts of the run; the
movement of the dislocations could be up to three times the
average particle displacement. In the simulations the largest
displacements occurred when the lattice was perturbed by a
varying external excitation force, i.e., during the compression
and decompression stages, shown with the double arrows.
Large amplitude displacements corresponded to dislocations
closer to the edge where the particle number density was lower
[21]. Not all dislocations were mobile, as the displacements
could be close to zero between consecutive time steps. These
small displacements were due to the motion of dislocations
close to the center of the lattice, where the compressive or
decompressive load did not act immediately, or they occurred
during the compressed and decompressed stages when no
variable strain was imposed on the lattice.

FIG. 9. (Color online) Displacement of dislocations in two experiments with different rise and fall times equal to 3.3 and 20 s, respectively
for the first and second line. (a, d) Displacement of dislocations during elastic deformations (jumps excluded). The continuous line corresponds
to the average displacement of all particles from frame to frame. (b, e) Amplitudes of the jumps, which also include the overall deformation
of the lattice. The continuous curve corresponds to the temporal evolution of the average interparticle distance. (c, f) Positions of “jumping”
PHDs (after the jump). The red (light gray) triangles � [blue (dark gray) points •] correspond to jumps occurring during part I covering the
compression stage (part II covering the decompression stage). The initial lattice size (area recorded by the video camera) was x ∈ [0,55] mm
and y ∈ [0,42.5] mm. The double arrows correspond to periods of the experimental runs when the applied force was varying (compression and
decompression stages), whereas the white background is associated to a constant load (maximum or minimum, compressed and decompressed
stages), as illustrated in Fig. 2.
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FIG. 10. (Color online) Displacement of dislocations in the simulation for different amplitudes and durations of the excitation force. (a–c)
Fex0 = 0.5 arb. units and τ = 13.86 s. (d–f) Fex0 = 0.5 arb. units and τ = 2.31 s. (g–i) Fex0 = 0.05 arb. units and τ = 9.24 s. (j–l) Fex0 = 1 arb.
units and τ = 9.84 s. (a, d, g, j) Displacement of dislocations during elastic deformations (jumps excluded). The continuous line corresponds to
the average displacement of all particles from frame to frame. (b, e, h, k) Amplitudes of the jumps, which also include the overall deformation
of the lattice. The continuous curve corresponds to the temporal evolution of the average interparticle distance. (c, f, i, l) Positions of “jumping”
PHDs (after the jump). The red (light gray) triangles � [blue (dark gray) points •] correspond to jumps occurring during the compression and
compressed (decompression and decompressed) stages as illustrated in Fig. 3. The initial configuration of the lattice as illustrated in Fig. 5(a)
was circular with a radius of 50.2 mm centered on the origin. The double arrows correspond to periods of the simulations when the applied force
was varying (compression and decompression stages), whereas the white background is associated to a constant load (maximum or minimum,
compressed and decompressed stages; see Fig. 3).
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The PHDs’ jumps or glides, which occurred when the
dislocations jumped from a pair of microparticles to a neigh-
boring one, followed the evolution of the average interparticle
distance (solid line in the second column of Figs. 9 and 10).
The points outside this trend corresponded, in the case of
small amplitude jumps, to rotations of dislocations, which were
close to a network of dislocations or “sandwiched” between
defective areas, in a highly deformed lattice structure. In
contrast, jumps of high amplitude corresponded to dislocations
moving close to the edge of the lattice, where the number
density was lower [21]. The amplitudes of these glides were
between 6 and 20 times higher than the displacements during
elastic deformations: they were comprised between 0.6 and
1.2 mm for the experiments and between 0.6 and 1.1 mm
for the simulations. As the dislocations jumped, they could
disappear as they interacted with other dislocations with
opposite Burgers vectors [31]. They could also form clusters
or lines of defects [33].

In the simulations, we observed bursts in the amplitudes
of the jumps initiated by variations of the external excitation
force during the compression and decompression stages. The
number of jumps during the decompression stage (when the
load was varied) was lower by 46 to 50% in the simulations
and by 24 to 38% in the experiments compared to the
initial compression stage. We also noticed an increase in
the number of jumps with the amplitude of the excitation
force Fex0 as reported in [32] for the study of the interaction
between dislocations and solitary waves. The evolution of
the number of jumps with respect to the duration τ was
more complicated: it first decreased as τ was increased up to
9.24 s and then it increased for larger durations. As mentioned
in [65], this suggests that there are several relevant rates
related to the material, for example, the rate of increase of
dislocation density and the rate of plastic relaxation. For
Fex0 = 0.05 arb. unit, the number of dislocations was rather
small and the number of jumps was equal to 48 in total. The
statistics were therefore very dependent on the localization
of these defects in the lattice. For example, the peaks at
t ∼ 3 s in Fig. 10(a) correspond to the dissociation and further
displacements of two dislocations close to the edge of the
lattice.

The third columns of Figs. 9 and 10 show dislocations’
trajectories during the compression and decompression parts
in the experiments and simulations, respectively. As the
compression was applied from both sides of the lattice during
a large duration of the numerical and experimental runs, we
did not generate any finite-size perturbation propagating in
the lattice, which could have been reflected at the edge of
the lattice and later could have complicated the dynamics of
our systems, as the dislocations would have been submitted to
a successive forward-backward series of perturbations. This
case was reported by Robles et al. using 2D MD simulations
of Lennard-Jones systems [66]. The authors could distinguish
three phases in the dislocation motion: the first one was just
after the interaction with the perturbation, the second one
corresponded to a released period at the end of which the
dislocation stopped moving, and the last one was associated
to the second interaction with the reflected wave. By using a
uniaxial compressive force described in the previous sections,

we ensured that the lattice was submitted to a compressive
load followed by its gradual relaxation.

The dislocations’ trajectories were mostly at an angle
compared to the load direction (see Sec. III D3). This behavior
was also observed by Pertsinidis and Ling in 2D colloidal
crystals during viscoplastic deformations [38]. The disloca-
tions were more mobile when the lattice was submitted to
high amplitude or short duration perturbations. The length of
their trajectories increased as the perturbation was reduced
by increasing the rise and fall times in the experiments or
the duration of the force τ or by reducing the amplitude
of the excitation force Fex0 in the simulations since fewer
defects were generated, which could potentially interact with
mobile dislocations, preventing their further displacement. We
also noticed that there was no preferential localization of
the dislocations’ motion in the lattice for sufficiently high
external loads; the jumps occurred over the whole lattice area.
This effect was also reported by Devincre et al. in [67].
The authors used 3D dislocation dynamics simulations to
investigate the influence of the dislocations’ mean free path,
i.e., the distance traveled without any interaction with other
defects, on strain hardening properties of crystalline structures
submitted to tensile deformations. They observed bursts in the
dislocations’ motion as well as dislocations avalanches in all
parts of the crystals. Dislocations avalanches were also ex-
perimentally observed using acoustic emission on ice crystals
[68], where the authors studied the influence of temperature
and microstructure on the dynamics of these avalanches.
Finally, in our experiments and numerical simulations of
complex plasma crystals under compressive loads, the tra-
jectories during the decompression and decompressed stages
did not overlap with the initial compression and compressed
motion: the microscopic deformation was irreversible and
plastic.

2. Dislocations’ flow

The dynamics of dislocations have been characterized
experimentally and theoretically mostly by the analysis or
observations of glides or climbs (in three-dimensional sys-
tems) of dislocations [1]. In this section we consider the glides
or jumps of isolated dislocations, whose absolute amplitudes
were given for the two experimental and four numerical cases,
respectively, in Figs. 9(b), 9(e), 10(b), 10(e), 10(h), and 10(k).
For this analysis we subtracted the lattice deformation in
the neighborhood of each gliding dislocation to calculate the
“corrected” amplitudes of the jumps �rcor for all analyzed
experimental runs (six cases) and all numerical simulations
(five with varying rise time τ and 6 with varying amplitude
Fex0). These jumps occurred between two successive time
frames.

Figure 11 shows the histograms of the distribution of this
dislocation jump’s corrected amplitude. In the experiments
the most probable value of �rcor was equal to 0.85 and
0.97 mm during compression and decompression, respectively.
For the simulations, varying duration or amplitude of the
excitation force, the most probable amplitude was 0.65 mm for
the compression and 0.69 mm for the decompression. These
values were in good quantitative agreement with the averaged
interparticle distance (over all experimental or simulated cases,
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FIG. 11. (Color online) Histograms of the “corrected” isolated dislocations’ jumps �rcor (i.e., amplitude of the jump minus local lattice
deformation). (a) Experimental runs with the rise and fall time of τ = 1, 2, 3.3, 5, 10, and 20 s. (b) Simulation runs with the rise and fall time of
τ = 9.24 s and the excitation amplitudes of Fex0 = 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0 arb. unit. (c) Simulation runs with the excitation amplitude
Fex0 = 0.5 arb. unit and the rise and fall time of τ = 2.31, 4.62, 9.24, 11.55, and 13.86 s. The histograms were obtained using 60 bins for the
experimental results and 40 bins for the simulations, resulting in a bin width of 0.021 mm.

over the whole duration of the compression and decompression
parts, and over the whole lattice), which is equal to 0.93 mm
in the experiments and 0.77 mm in the simulations. This
behavior was also observed by Nosenko et al. [see Figs. 2(a)
and 2(b) of Ref. [35]] in complex plasma crystals submitted
to shear stress. The authors also noticed two regimes for
the speed of the dislocations depending on how defective
the area they were moving toward was. In our case the
larger difference observed in the simulations is due to a
more inhomogeneous lattice, where the interparticle distance
could vary by up to 90% between the center of the lattice
(more dense) and its edge. The absence of any overlap
between compression and decompression parts emphasizes the
occurrence of plastic deformations in the experiments and the
simulations.

3. Direction of dislocations’ jumps with respect to the
excitation force

Figure 12 shows the histograms of the distribution of angles
α between the dislocation’s jump direction and the external
load direction during the compression part (first line) and the
decompression part (second line) in, respectively, (a, d) all
experimental runs (six runs) and in the simulations for all
different values of (b, e) the amplitudes Fex0 (six runs) and
(c, f) the durations τ (five runs) of the excitation force. We
counted all jumps of PHDs during each run and then binned
the values of angle α in 72 bins covering the range [−90◦,
90◦]. We compiled all cases in which a single characteristic
parameter of the excitation force, i.e., the amplitude or the
duration, was varied in order to analyze its influence on the
dislocations’ jumps.
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FIG. 12. (Color online) Histograms of the angle between the direction of the dislocation jump and the applied compressive force α. (a, d)
Experimental runs with the rise and fall time of τ = 1, 2, 3.3, 5, 10, and 20 s. (b, e) Simulation runs with the rise and fall time of τ = 9.24 s
and the excitation amplitudes of Fex0 = 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0 arb. unit. (c, f) Simulation runs with the excitation amplitude Fex0 =
0.5 arb. unit and the rise and fall time of τ = 2.31, 4.62, 9.24, 11.55, and 13.86 s. Panels (a–c) show compression parts, and panels (d–f) show
decompression parts of the runs. The histograms were obtained using bins of 2.5◦.
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FIG. 13. (Color online) Histograms of the angle between the direction of the dislocation jump and the Burgers vector of the dislocation θ .
(a) Experimental runs with the rise and fall time of τ = 1, 2, 3.3, 5, 10, and 20 s. (b) Simulation runs with the rise and fall time of τ = 9.24 s
and the excitation amplitudes of Fex0 = 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0 arb. unit. (c) Simulation runs with the excitation amplitude Fex0 =
0.5 arb. unit and the rise and fall time of τ = 2.31, 4.62, 9.24, 11.55, and 13.86 s. The histograms were obtained using bins of 2.5◦. The data
show that the jumps occur either in the direction of the Burgers vector or in the opposite direction.

The compression part of the experimental runs showed
more defined peaks than the decompression part, but the prob-
ability associated with each binned angle in each individual
experimental run was quite low, 12% at most. We also noticed a
broadening of the distribution during the decompression stage,
reaching a lower maximum probability of 9.4%.

For the simulations, the decompression part showed more
defined peaks than the compression part (see Fig. 3). The
distributions shown in Figs. 12(b) and 12(c), obtained by
varying, respectively, the amplitude or the duration of the
excitation force, were similar with slightly different count
numbers for each angle.

The different distributions of angles between the histograms
associated with both parts of the experiments and simulations
confirm that there was no symmetry between the two phases
of the lattices’ deformations. This difference between the two
parts of the runs has several causes: (i) the lattice had been
deformed by the load, resulting in a different orientation of the
crystalline structure and a possible rotation of subdomains of
the crystal, and (ii) the hopping or jumping dislocations were
different and therefore so were their Burgers vectors because of
the occurrence of some generation and annihilation processes
between defects.

4. Direction of the jump with respect to the dislocation’s Burgers
vector

Figure 13 shows the distribution of the angles θ between
the PHDs’ Burgers vectors and the directions of their jumps
during the compression and decompression parts for (a)
all experimental runs and all simulations with (b) different
amplitudes (six runs) of the excitation force and (c) different
durations (five runs) of the excitation force. These histograms
show narrow and localized distributions of θ around 0 and
±180◦ with a probability for each run comprised between
18 and 37% in the experiments and 20 and 45% in the
simulations. This figure clearly shows that the jumps occurred
mostly in the direction parallel or antiparallel to the disloca-
tion’s Burgers vector. During the jumps, the orientation of the
Burgers vector varied by 10◦ on average.

Nosenko et al. used this property of dislocations’ dynamics
to perform their experiments: the authors aligned the laser

beams with a principal lattice axis of complex plasma crystals.
This way, the dislocations’ motion in a controlled shear stress
field is quasi-one-dimensional [35], and in 2D colloidal crys-
tals stressed through an imposed chemical gradient Pertsinidis
and Ling could determine the direction of the applied stress
from the directions of the dislocations’ jumps [38].

Finally, the different counts between the compression and
decompression parts in Fig. 13 underline the fact that the
deformations were plastic at the microscopic scale.

IV. CONCLUSION

We have reported experimental and numerical analysis
of free dislocations’ dynamics in two-dimensional com-
plex plasma crystals submitted to a cycle of compression,
constant compressed, decompression, and constant decom-
pressed loads. Varying different experimental and numerical
parameters has enabled us to analyze quasistatic as well
as large deformations in these lattices. We have focused
on dislocations’ concentrations and their dynamics during
elastic deformations and jumps, as well as on the influence
of the excitation force’s characteristics on the dislocations’
jumps.

The jumps or glides of dislocations were mostly in the
direction of the dislocation’s Burgers vector. The concentration
of dislocations was sensitive to the excitation force, as a high
amplitude or short-duration perturbation would generate many
defects preventing the generation or motion of dislocations
and favoring the formation of clusters or chains of defects
instead. The deformation was reversible at the macroscopic
scale, as the lattice regained its original dimensions once the
load was canceled. However, the microscopic deformation
was plastic, as the dislocations’s trajectories during both
parts of the experimental and simulated runs did not overlap,
showing that the deformation was not reversible at this
scale.

This point has analogies with effects observed in material
science, where dislocation dynamics can explain effects like
strain aging and fragilization and could be exploited to modify
material properties.
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