
PHYSICAL REVIEW E 88, 053021 (2013)

Three-dimensional dynamics of oblate and prolate capsules in shear flow
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2Laboratoire de Mécanique des Fluides & d’Acoustique (LMFA), CNRS, Ecole Centrale Lyon, Ecully, France
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We study computationally the dynamics of oblate and prolate spheroidal capsules in simple shear flow with
small inertia for a range of dimensionless shear rates. The capsule is modelled as a liquid droplet enclosed by
a hyperelastic membrane, and its equatorial plane is initially tilted out of the plane of shear. We find, at low
shear rates, the well-accepted tumbling motion is not always stable for both oblate and prolate capsules. For an
oblate capsule, the dominant stable modes for increasing dimensionless shear rate are as follows: rolling with
the equatorial plane staying in the plane of shear, precessing following Jeffery’s orbit [Proc. R. Soc. London A
102, 161 (1922)], and tumbling. Interestingly, the order of modes is reversed for a prolate capsule: tumbling,
precessing, and rolling with increasing dimensionless shear rate. At transitional regimes, we find the stable
motion of a capsule can depend on its initial titled angle, even at the same shear rate. At high dimensionless
shear rates, a spheroidal capsule undergoes a complicated oscillating-swinging motion: Its major axis oscillates
about the plane of shear in addition to the swinging about a mean angle with flow direction found previously,
and the amplitudes of both oscillations decrease when increasing the dimensionless shear rate towards a steady
tank treading motion asymptotically. We summarize the results in phase diagrams and discuss the reorientation
of both oblate and prolate capsules in a wide range of dimensionless shear rates.
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I. INTRODUCTION

A capsule is a small liquid droplet enclosed by a thin
membrane which has shear elasticity. The dynamic mo-
tion of a capsule subject to an external flow has been
drawing much attention for many years, because it is
important for both fundamental research and biomedical
or industrial applications (e.g., in microencapsulation and
drug delivery [1,2]). Furthermore, it forms the first step
for considering more complicated situations such as capsule
suspensions [3,4].

Various types of motion have been identified for a capsule
freely suspended in simple shear flow. An initially spherical
capsule has always been found to exhibit a steady tank-treading
motion, wherein the capsule has deformed into a stationary
configuration with a finite inclination with the flow direction
and the membrane rotates around the liquid interior (e.g.,
in Refs. [5–8] and a recent review by Barthès-Biesel [9]).
The motion of nonspherical capsules is richer in that it is
known to yield three modes: a tumbling mode, wherein a
capsule flips continuously; a swinging mode, corresponding
to periodic shape deformation and small amplitude inclination
oscillation with a nonzero mean angle with flow direction
when the membrane is rotating around the liquid interior; and
a vacillating-breathing mode, in which the capsule’s major axis
oscillates around the flow direction and the shape shows ample
deformation (breathing) [10,11]. The vacillating-breathing
mode lies between tumbling and swinging. As to which class
of motion a nonspherical capsule adopts is known to be
affected by the viscosity ratio among the internal and external
liquids [12–14], the membrane viscosity [15–18], the shear
rate [11,19–27], and the membrane bending stiffness [28,29].
In general, the transition from swinging to tumbling can be in-
duced by increasing the viscosity ratio or membrane viscosity,
reducing the shear rate or increasing the membrane bending

stiffness when the capsule has a nonspherical reference
shape.

All of these modes (tank-treading, swinging, tumbling,
and vacillating-breathing) are symmetric about the plane of
shear, and this symmetry has been imposed (at least on initial
conditions) in most previous theoretical and numerical studies
on capsules in shear flow. Early experiments by Goldsmith
and Marlow [12] and a very recent study by Dupire et al.
[30] on red blood cells have suggested the existence of an
asymmetrical mode, however. In other systems, such a mode
is well documented: A rigid ellipsoidal particle can exhibit a
precessing orbit wherein the trajectory of its axis of revolution
forms a cone [31], and the angle of the cone depends on
the initial inclination angle of the rigid particle. A similar
off-the-shear-plane motion has been found recently for vesicles
in shear flow both theoretically [32] and numerically [33–35]
and it was called a “kayaking” motion [33], which appears
when the viscosity ratio and the shear rate are both high.
However, a vesicle differs from a capsule in that its membrane
is incompressible but does not have any shear elasticity, and
such differences in membrane mechanical property lead to very
different dynamics in shear flow (e.g., in Refs. [10,34,36,37]).
For example, the behavior of a vesicle is critically determined
by the viscosity ratio. At low viscosity ratios a vesicle always
undergoes a steady tanking treading motion, independent of
the shear rate; however, a nonspherical capsule could have
a swinging or a tumbling motion depending on the shear
rate at such low viscosity ratios. Without the constraint of
membrane shear elasticity, the dynamics of vesicles appears to
be richer and recently novel modes such as squaring and parity
breaking have been discovered in numerical simulations [35].
So far, the existence of an asymmetrical precessing mode for
capsules is still largely an open issue. The only related study
is by Dupont et al. [38] on prolate capsules. Clearly there
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is a need for a numerical study of this possibility for oblate
capsules, which forms one motivation of the present paper. In
a larger context, it is well accepted that a red blood cell can be
modelled mechanically as a liquid-filled oblate capsule (e.g.,
in Refs. [26,39–41]), so it would be of interest to see to what
extent an asymmetrical mode suggested by experimental work
cited above would indeed be predicted by this model.

In experiments, yet another mode has been found for
red blood cells besides the suggestion of precessing motion
discussed above (e.g., in Refs. [12,30,42]): A cell spins around
its axis of revolution with its equatorial plane staying in the
plane of shear, like a rolling wheel. These experiments show
that this rolling motion can exist under the same conditions as
tumbling. It is in general accepted that a red blood cell shares
many features in common with an oblate spheroidal capsule;
however, such rolling motion has not been reported for oblate
capsules with numerical simulation or theoretical approaches,
to the best of our knowledge. Only recently with a boundary
integral method, Dupont et al. [38] considered the dynamics of
prolate spheroidal capsules, whose revolution axis are initially
not in the plane of shear. They found that tumbling motion
is not stable at low shear rates and that a prolate capsule will
gradually adopt a log-rolling motion with its revolution axis
aligned with the vorticity axis.

In summary, for nonspherical capsules in shear flow, with
the shear rate increasing, well-documented modes are tum-
bling, vacillating-breathing, and swinging; all are symmetric
about the plane of shear. Experiments of red blood cells in
shear flow have identified an asymmetric off-plane precessing
mode and a rolling mode, but these have not been recovered
in numerical simulations using the oblate-capsule model, and
the relations of these two motions with other modes remain
unclear. In this paper, we therefore study the effects of initially
tilting a capsule’s equatorial plane out of the plane of shear,
as an off-plane perturbation, on its subsequent dynamics,
seeking specifically to establish the sequence of events when
increasing the dimensionless shear rate, which would provide
a platform for future theoretical work, as well as future work
on suspensions of capsules; also, the work establishes the
possibility of coexistence of modes, which has consequences
for experimental observations. We use an immersed boundary
lattice Boltzmann method [43], which has been well validated
for simulating flow-induced deformation of capsules. Both
oblate and prolate spheroidal capsules are considered. The
capsule is modelled as a Newtonian liquid droplet enclosed by
a hyperelastic membrane, in the limit wherein the membrane
is very thin; hence, bending stiffness is neglected. A unity
viscosity ratio is used; also, the capsule is assumed to be
unstressed at its initial shape. Although real situations are
usually more complicated, for example, a capsule membrane
could be prestressed due to osmotic effects, these assumptions
form an important limit that has been studied extensively
for initial conditions wherein the capsule is symmetric about
the plane of shear (e.g., in Refs. [14,24,26]). Results for a
range of initial tilting angles and dimensionless shear rates
are categorized (in particular, new regimes for capsules are
identified and analyzed further) and discussed in light of the
above summary of prior work. The sensitivity of the results to
the membrane constitutive law used is assessed by comparing
results obtained with two different models.

FIG. 1. A spheroidal capsule in shear flow. r represents the
revolution axis. Vorticity axis is the y axis. θry and θrx are angles
that the capsule’s revolution axis makes with the vorticity axis and x

axis, respectively. φ is the phase angle defined as the angle that the
revolution axis makes with x axis in the plane of shear.

II. MEMBRANE MODEL AND NUMERICAL METHOD

We consider an initially spheroidal capsule of various aspect
ratios in an incident linear shear flow, u = (kz,0,0), where k

is the shear rate (Fig. 1). The aspect ratio of the capsule is
defined as the length of its revolution axis over that of the
equatorial axis and is thus larger than unity for a prolate
capsule and smaller than unity for an oblate capsule. The
axis of revolution of the capsule is initially in the y-z plane
and the capsule’s equatorial plane is tilted out of shear plane
under an angle β; an equivalent capsule radius is denoted by
a = (3V/4π )1/3, where V is the volume of the capsule. As
stated in the Introduction, some simplifying assumptions are
made: The fluids inside and outside the capsule are both taken
to be Newtonian and to have the same density ρ and viscosity
μ, and the capsule membrane is assumed to be very thin,
hence, bending stiffness is neglected. This leads also to the
formation of wrinkles in the simulations that would otherwise
be suppressed by bending, but we have found these to remain
at acceptable levels (as in related work, e.g., Refs. [7,26]);
also, results are consistent with analytical work, as discussed
in Secs. III and IV. Barthès-Biesel and coworkers studied
the effect of membrane bending and found that a moderate
bending rigidity would alleviate wrinkles but this does not have
significant effects on the global deformation and the dynamic
motions of a capsule [44].

Results have been obtained for two different membrane
constitutive laws in the present study. One is the neo-Hookean
(NH) law, assuming linear dependence of strain energy density
with the first invariant of the left Cauchy-Green deformation
tensor λ1

2 + λ2
2 + λ3

2. The terms λ1, λ2, and λ3 are the
principle extension ratios in the plane of the membrane, and in
the direction perpendicular to the plane, respectively. The NH
law corresponds to thin membranes made of three-dimensional
isotropic and volume-incompressible polymerized materials.
The area dilation is unrestricted and is compensated by the
thinning of the membrane: λ3 = 1/λ1λ2. The strain energy
function of NH law for a two-dimensional membrane is
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given by

W = 1

6
E

(
I1 − 1 + 1

I2 + 1

)
, (1)

where E is the surface shear elasticity modulus and I1

and I2 are the first and second strain invariants for a two-
dimensional membrane, with I1 = λ1

2 + λ2
2 − 2 and I2 =

(λ1λ2)2 − 1 = (dA/dA0)2 − 1. The parameters dA0 and dA

are initial and final areas of a membrane element. The principal
membrane elastic tensions τ1 and τ2, resulting from NH law,
are

τ1 = E

3λ1λ2

(
λ2

1 − 1

λ2
1λ

2
2

)
(likewise for τ2). (2)

The second constitutive equation used is Skalak’s (SK) law
[45] to model the membrane of a red blood cell,

W = 1
6E

(
1
2I 2

1 + I1 − I2
) + 1

12CEI 2
2 . (3)

Postulated in such a way, SK law can capture the special
feature of biological membranes that deform easily under shear
while almost keep a constant area. For such membranes, on the
right-hand side of Eq. (3) the factor C (in the second term) must
be quite large to ensure negligible area dilation (I2 → 0), and
the first term mainly accounts for shape deformation. These
are clearer when looking at the principle membrane tensions

τ1 = Eλ1

3λ2

[(
λ2

1 − 1 + Cλ2
2I2

]
(likewise for τ2). (4)

We have divided the original strain energy function in Ref. [45]
by a factor of 1.5 so Eq. (3) leads to the same small deformation
behavior as NH law when C = 1.

The 3D capsule membrane is discretized into flat triangular
elements, and a finite-element membrane model is employed
to obtain the forces acting at the discrete nodes of the
membrane. The present simulation method is based on the
immersed boundary lattice Boltzmann method of Sui et al.
[43,46–48]. The fluid-capsule interaction is solved by the
immersed boundary method of Peskin [49], and the flow field
is solved by the lattice Boltzmann method with a multiblock
technique to refine the mesh around the deformable capsule.
The method has been validated extensively against results of
boundary element simulations and small deformation theory
for three-dimensional capsules in shear flow [22,43]. The
simulation setup (e.g., domain and mesh sizes) in the present
study is the same as that in our earlier work, where detailed
convergence tests were carried out. For most cases in the
present study, the global error in mass conservation of the
capsule is within 1.5%.

The following dimensionless groups are used: the Reynolds
number is based on the dimension of the capsule and is defined
as Re = 4ρka2/μ; the ratio of viscous and elastic forces is
represented as G = μka/E, which can be considered to be a
dimensionless shear rate or a capillary number. In the present
numerical simulations, the shear rate is kept constant and the
membrane shear elasticity is varied, so the Reynolds number
does not change but a range of values of dimensionless shear
rates can be achieved. We investigate the effect of the Reynolds
number on the results towards the end of this paper. The
same approach has been used in many previous studies and
in such a way the effect of the dimensionless shear rate can be

isolated from that of the Reynolds number. In the presentation
of the results, the time variable has been made dimensionless
with k−1.

III. MOTIONS OF OBLATE CAPSULES

Results are first presented for an oblate spheroidal capsule
with an initial aspect ratio of 2:3 and an NH membrane for
increasing the dimensionless shear rate G from O(10−4) to
O(10−1) while keeping the Reynolds number fixed at 0.2.
Effects of Re and the initial capsule aspect ratio are discussed
further below.

At low dimensionless shear rates, G � 0.01, it is in general
accepted that the capsule will undergo a tumbling motion. In
the present study, we find tumbling is not stable to off-plane
perturbations; instead, the stable modes of an initially oblate
capsule for increasing dimensionless shear rates are rolling,
precessing, and tumbling.

At very low dimensionless shear rates, G � 10−3, the
capsule’s global deformation is not visible, and it is found
that independent of the value of the initial angle β, the
capsule gradually adopts a rolling motion (shown in Fig. 2
and discussed later on). This can be best characterized by the
time evolution of the angles that the capsule’s revolution axis
makes with the y axis (direction of vorticity) θry (illustrated in
Fig. 1) and x axis (flow direction) θrx , as shown in Fig. 3(a)
for a capsule whose equatorial plane is initially perpendicular
to the plane of shear. It is seen that the angle θry decreases
in an oscillatory fashion towards zero and that θrx exhibits a
dampened oscillation around 90◦. These results indicate that
the motion of the capsule loses its symmetry about the shear
plane quickly; a capsule precesses with its equatorial plane
gradually becomes aligned with the plane of shear and then
carries out a rolling motion as illustrated in Fig. 2(a), in which
the capsule spins about its revolution axis like a wheel. From
Fig. 2(b), it is seen that the capsule membrane in the plane
of shear resembles a closed streamline which also suggests a
steady configuration. It should be noted that a similar transition
to rolling has been observed recently in numerical simulations
of rigid oblate spheroidal particles in shear flow with small
inertia [50,51], which we will discuss in Sec. V. The effect
of dimensionless shear rate on the time evolution of θry is
presented in Fig. 3(b). It is seen that at the same initial tilted
angle, the dimensionless time it takes for the capsule to change
to rolling motion increases monotonically with the shear rate.
This transient time also depends on the initial tilted angle,
and it is longest for β = 90◦ for the same dimensionless shear
rate. We have also carried out simulations of capsules with an
SK membrane and have found a similar transition to rolling
motion at low shear rates. An example has been included in
Fig. 3(b) for C = 10 at G = 0.001.

When the dimensionless shear rate is increased, a new mode
of motion dominates a large range of initial tilted angle values.
The oblate spheroidal capsule still largely keeps its initial
shape; it carries out a precessing motion and seems to achieve a
periodic state after a long transient stage as shown in Fig. 4(a).
At G = 0.004, an initial tilted angle of β = 22.5◦ is not enough
to trigger the precessing motion. The equatorial plane of the
capsule returns to the plane of shear shortly and the capsule
finally carries out a rolling motion. For sufficiently large tilted
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(a)

(b)

FIG. 2. Illustration of the rolling motion of an oblate capsule: (a)
instantaneous profiles, where black dots represent the same membrane
node on the capsule’s cross section in the plane of shear; (b) flow field
around the cross section of the capsule in the plane of shear.

angles, such as β = 45◦ or 60◦, θry finally oscillates around
a constant value, which suggests a periodic state. When G is
increased slightly to 0.005, an initial tilted angle of β = 22.5◦
is sufficient to lead to a precessing motion [Fig. 4(b) and 4(c)].
Figure 4(b) shows the trajectory of the capsule’s revolution
axis projected onto a unit sphere. After the transient stage, the
revolution axis forms a cone, and its intersection point with
the surface of the unit sphere falls into a limit circle.

Apparently similar off-the-shear-plane motion has been
described by Jeffery [31] for rigid particles in shear flow. For
precessing motion of an ellipsoid of aspect ratio χ in shear
flow without inertia, this corresponds to [31]

tan φ = χ tan

(
kt

χ + χ−1

)
, (5)

tan θry = Bχ√
χ2 cos2 φ + sin2 φ

, (6)
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FIG. 3. Rolling motion of oblate capsules: temporal evolutions of
(a) angles that the revolution axis of a capsule with an NH membrane
makes with x axis θrx and y axis θry for β = 90◦ and G = 0.0005.
(b) θry for capsules with NH or SK membranes at different
dimensionless shear rates and β = 45◦.

where the phase angle φ is defined as the angle that the
revolution axis of the particle makes with the flow direction
in the plane of shear (see Fig. 1); B is the so-called orbit
constant which only depends on the initial position of release
of a rigid particle; its value determines the maximum and
minimum values of θry during the periodic precessing motion
through

tan θmin
ry = Bχ, tan θmax

ry = B. (7)

Equation (7) can be used to fit the value of B to the results
of the numerical simulation. In Fig. 4(c) we show an example
comparison of the precessing state with Jeffery’s orbit [31] for
χ = 2/3 and a fitted value of B. Similar good agreement has
been observed for other cases in precessing regime.

We have extracted the time-averaged value and the oscil-
lation amplitude of θry for capsules in the precessing motion;
one example is shown in Fig. 5. The results suggest that
the transition from rolling to precessing happens via a Hopf
bifurcation. It is also seen that the oscillation amplitude of θry

arrives at a maximum value when the time-averaged value is
between 30◦ and 60◦. The time-averaged value of θry increases
with the dimensionless shear rate in the precessing regime,
and for sufficiently high dimensionless shear rates and large
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FIG. 4. (Color online) Precessing motion of an oblate capsule
with an NH membrane: (a) temporal evolution of θry of a capsule with
various initial tilted angles at G = 0.004; (b) the stable trajectory of
the revolution axis projected to a unit sphere for a capsule at β =
22.5◦ and G = 0.005; (c) comparison between numerical simulation
(symbols) and Jeffery’s theory [31] (curves) in angles φ and θry for
β = 22.5◦, G = 0.005.
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FIG. 5. The time-averaged value and the oscillation amplitude of
θry as a function of dimensionless shear rate G for an oblate capsule
with an NH membrane and an initial titled angle β = 45◦.

initial tilted angles, the average value of θry reaches 90◦, which
corresponds to the axis of revolution of the capsule arriving
in the plane of shear and thus a tumbling motion, which is
symmetric about the plane of shear. Our simulation results
show that when G is between 0.01 and 0.02, the capsule
finally carries out the tumbling motion for a wide range of
β. Figure 6(a) presents the time series of θry for a capsule
with various initial tilted angles. For β = 22.5◦ and 45◦, a
tumbling motion is finally achieved, wherein the capsule flips
with its shortest axis staying in the plane of shear (see the
inset). Interestingly, for β = 5◦, which can be considered as
a small off-the-shear-plane perturbation to a capsule whose
equatorial plane is in the plane of shear, the capsule turns back
to rolling motion, which suggests the rolling motion is strongly
stable for an oblate capsule.

At low shear rates (G � 0.02), the shape of the capsule
largely resembles an oblate spheroid. We can find the length of
the revolution axis c and the equivalent diameter of the capsule
in its equatorial plane with area S, b = 2(S/π )0.5. A Taylor
shape parameter D = (b − c)/(b + c) has been computed and
the results are presented in Fig. 6(b). It is seen that the
oscillation amplitude of the shape parameter increases with
G and the minimum value approaches zero. When D becomes
close to zero, the projection of the capsule onto the plane of
shear is close to a circle and it is difficult to identify a major
axis.

The limit Dmin → 0 has been proposed recently in Ref. [26]
as a criterion for a transition from tumbling to swinging. A
swinging regime is indeed achieved when G is beyond 0.03,
where the major axis of the capsule can be identified from the
principle axis of the capsule membrane’s moment of inertia
tensor. In previous studies where the capsule is symmetric
about shear plane during deformation (e.g., in Refs [21,22,26]),
it has been found that the angle between the major axis and
the flow direction oscillates around a mean value with a small
amplitude in a swinging motion. Interestingly, in the present
study, we find that initially tilting the capsule out of the shear
plane can lead to very complicated swinging states, in which
the major axis oscillates about the plane of shear in addition
to the previously found swinging about a mean angle with
the flow direction. Such an off-plane swinging motion has
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FIG. 6. (Color online) Tumbling motion of an oblate capsule with
an NH membrane: (a) temporal evolution of θry of a capsule at G =
0.01. The inset shows the stable trajectory of the revolution axis
projected to a unit sphere for a capsule with β = 22.5◦; (b) variations
of the Taylor shape parameter at different dimensionless shear rates
for a capsule with β = 45◦.

also been found for prolate capsules in shear flow and was
named as oscillating-swinging (OS) motion [38]; here we use
the same name. Figure 7(a) shows the trajectory of the long
axis projected to a unit sphere for such a oscillating-swinging
state, and it is seen to form a lemniscate with size decreases
when G is increased. Figure 7(b) shows the variations of the
angles that the major axis of the capsule makes with the shear
plane and the x-y plane. When increasing the dimensionless
shear rate, both oscillation amplitudes decrease towards zero,
which corresponds to a steady tank treading mode. However,
there are two exceptions. One corresponds to β = 90◦, where
the capsule carries out a swinging motion while adhering to
symmetry about the shear plane; this has been well studied
before. The other exception is for β = 0◦, i.e., when the
capsule’s equatorial plane is initially in the plane of shear,
where we find the capsule to always be symmetric about the
shear plane and this is very stable to small perturbations at β �
5◦. The capsule achieves a stationary shape with a constant

G
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-60
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FIG. 7. (Color online) Oscillating-swinging motion of an oblate
capsule with an NH membrane. (a) Trajectories of the long axis of
a capsule projected to a unit sphere. The values of G are 0.05, 0.1,
and 0.2, respectively, with the sizes of the lemniscates decreasing;
β = 67.5◦. (b) Variations of the angle that the long axis of a capsule
makes with the plane of shear θlxz (blue lines) and the angle that the
long axis makes with the x-y plane θlxy (red bold lines) for increasing
dimensionless shear rate.

inclination angle with the x-y plane and the membrane rotates
around the liquid inside, just like a spherical capsule in shear
flow.

Recently, Bagchi and coworkers identified a novel
vacillating-breathing mode for nonspherical capsules in shear
flow [11], notably when the fluid inside the capsule is much
more viscous. This motion happens between tumbling and
swinging when increasing the shear rate. Vacillating-breathing
mode was first predicted theoretically by Misbah [10] for
vesicles. It differs from swinging mode in that the major axis
of the capsule or vesicle oscillates around the flow direction
and thus has a zero mean inclination angle. In the present
study, assuming a unity viscosity ratio, we do find swinging
motion with the major axis of the capsule periodically crossing
the plane of zero velocity, but the time-averaged value of the
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inclination angle with the flow direction is always considerably
larger than zero.

In a recent work by Omori et al. [52] on the dynamics
of an oblate spheroidal capsule in shear flow, an interesting
reorientation phenomenon was discovered wherein the capsule
is in the swinging regime at high shear rates. Defining a unit
vector which extends from the mass center of the capsule to
the material point of the membrane that initially intersects with
the revolution axis of the capsule, it was found that this vector
would gradually approach the plane of shear at relatively low
shear rates [similar to that in the tumbling motion and here
we use OS(T) to represent this mode], and the unit vector
would approach the vorticity axis of the shear flow at relatively
high shear rates [similar to that in the rolling motion and here
we use OS(R) to represent this mode]. In the present study
we observed a similar reorientation for oblate capsules. For
example, in Fig. 7, G = 0.05 belongs to the OS(T) regime
and G = 0.1 and 0.2 belongs to the OS(R) regime. Detailed
features of the reorientation can be found in Ref. [52] and
thus are not repeated here; such a reorientation will be further
discussed in Sec. V, covering both oblate and prolate capsules
in a much wider range of dimensionless shear rates.

To summarize the various regimes as a function of the
dimensionless shear rate and the initial tilted angle, a phase
diagram has been constructed and is shown in Fig. 8, noting
that the viscosity ratio is unity and bending has been neglected.
Several novel features can be observed from the phase diagram:
first, at low dimensionless shear rates (G � 0.02 for the
present oblate capsule), previous studies assuming an initial
symmetry about the shear plane have reported only one
tumbling mode, while the present results indicate that when
increasing the dimensionless shear rate, the dominant stable
motion exhibits the following modes: rolling, precessing, and
tumbling. Second, it is seen that there can be different modes
at the same G, for example, at G = 0.01, which would explain
the coexistence of different modes (e.g., tumbling and rolling)
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FIG. 8. Phase diagram for an oblate capsule with an initial aspect
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FIG. 9. Illustration of the rolling motion of a prolate capsule.
Black dots represent the same membrane node on the capsule’s cross
section in the plane of shear.

observed in experiments on red blood cells [12]. Third, at high
dimensionless shear rates, a sufficient initial titled angle could
lead to a more complicated oscillating-swinging motion.

IV. MOTIONS OF PROLATE CAPSULES

In previous studies of prolate capsules in shear flow (e.g.,
in Ref. [26]), the revolution axis of the capsule was initially in
the plane of shear. It was found that the capsule undergoes a
tumbling motion at low shear rates and transits to a swinging
motion with the shear rate increasing. Recently, Dupont et al.
[38] studied the motions of prolate capsules in shear flow,
with the revolution axis being initially titled out of the plane
of shear. They found at low dimensionless shear rates that the
stable mode is a log-rolling motion, where the long axis of the
capsule aligns with the vorticity axis, as illustrated in Fig. 9.
They also discovered that with the shear rate increasing the
rolling motion becomes unstable, and the capsule precesses
around the vorticity axis, which was named as wobbling
(illustrated in Fig. 10). At even higher shear rates, the long
axis of the prolate capsule tends to approach and to oscillate
about the plane of shear, in an oscillating-swinging motion
similar to that of an oblate capsule as described in Sec. III. This
similarity is possibly because at high shear rates both prolate
and oblate capsules deform into elongated ellipsoidal shapes.
In the present study, we have also considered the dynamics of
prolate spheroidal capsules in shear flow, for situations similar
to that of Dupont et al. [38]. The difference between our study
and that of Dupont et al. is that we include small inertia, and the
lowest dimensionless shear rate considered has been reduced
to G = 0.0001.

In this section, results are presented for a prolate capsule
with an initial aspect ratio of 2:1 enclosed by an SK membrane
with C = 1. The dimensionless shear rate considered ranges
from G = 10−4 to 0.4 and the Reynolds number is kept at
0.2. We summarize the results in a phase diagram as shown
in Fig. 11. At relatively high dimensionless shear rates, G �
0.01, our results are consistent with those of Dupont [38]:
with the dimensionless shear rate increasing, we find rolling,
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FIG. 10. Snapshots of a prolate capsule during a wobbling
motion. Time sequence is from (a) to (h). Two small spheres are
attached to the surface of the capsule as tracer particles.

wobbling (or precessing), and oscillating-swinging motions as
the stable modes. However, at lower dimensionless shear rates,
where the deformation of the capsule is very small, we have
observed fundamentally new features.

At very low dimensionless shear rates, G � 0.0005, we find
independent of the initial tilted angle a capsule finally adopts a
tumbling motion. The capsule places its long axis in the shear
plane and rotates about its minor axis. Figure 12(a) shows the
evolution of θry at low dimensionless shear rates with an initial
tilted angel of 45◦; it is seen that the transient dimensionless
time towards tumbling motion (θry = 90◦) increases with the
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FIG. 12. (a) Temporal evolution of θry for prolate capsules in
tumbling and precessing motions; (b) comparison between numerical
simulation (symbols) and Jeffery’s theory [31] (curves) in time
evolution of angles φ and θry for β = 30◦ and G = 0.001 when a
capsule is in a precessing motion.

dimensionless shear rate. When the dimensionless shear rate
is increased to around 0.002, a precessing motion dominates
a wide range of initial tilted angles. In this mode, the long
axis of a capsule precesses around the vorticity axis with a
nutation and forms a cone. The time evolution of θry of a prolate
capsules in a precessing motion is presented in Fig. 12(a), and a
comparison with Jeffery’s orbit [31] is presented in Fig. 12(b),
where very good agreement is observed. From Fig. 12(a), we
also infer a dependency of the final stable motion on the initial
titled angle, similar to that of an oblate capsule. At G = 0.001,
an initial titled angle of β = 45◦ leads to a tumbling motion,
and β = 30◦ results in a precessing motion.
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FIG. 13. (Color online) Temporal evolution of θry for prolate
capsules that are finally in tumbling and rolling motions.

In the precessing regime, the time-averaged value of θry

decreases with the dimensionless shear rate towards 0◦, which
corresponds to a log-rolling motion. For the dimensionless
shear rate G � 0.004, rolling motion is a dominant stable
mode where the prolate capsule finally rotates around its
long axis which is aligning with the vorticity axis. The time
evolutions of θry for prolate capsules in the rolling regime are
presented in Fig. 13 for a range of dimensionless shear rates.
It is interesting to find that upon increasing the dimensionless
shear rate, the transient dimensionless time towards steady
rolling first decreases to approximately G = 0.01, beyond
which it increases until the next stable mode of motion, which
is wobbling. We also conclude from Fig. 13 that the tumbling
motion of the prolate capsule is strongly stable: Initially
tilting the revolution axis out of the plane of shear by 15◦
is not sufficient to trigger the rolling motion at G = 0.004,
when rolling is the dominant mode. The qualitative difference
between the present results and that of Dupont [38] may
originate from the inertial effect, which we will discuss in
Sec. V.

V. DISCUSSION

A. Particle shear stress and effect of Reynolds number

We investigate the particle shear stress for both oblate and
prolate capsules at low shear rates in order to test the relevance
of an hypothesis of Jeffery [31] that nonspherical rigid particles
in Stokes shear flow finally adopt a motion with minimum
energy dissipation. The normalized particle shear stress is [6]

σxz = 1

μkV

∫
A

[fxxz + μ(λ − 1)(uxnz + uznx)]dA, (8)

where fx is the membrane force in the direction of x and λ

is the viscosity ratio. The particle shear stress can be used to
indicate the shear viscosity of the suspension of capsules.

For an oblate capsule with an NH membrane and an initial
aspect ratio of 2:3, at G = 0.001 the value of σxz averaged

over one period equals 3.15 for tumbling motion and 3.87
for rolling motion, so it appears the capsule tends to adopt a
mode of motion which makes a larger contribution to the shear
stress. The same phenomenon is observed for prolate capsules,
thereby also negating the applicability of Jeffery’s hypothesis
when extended to flows with finite inertia. However, the
solution of the Stokes equations are known to minimize
energy dissipation only for given boundary velocities (e.g.,
in Ref. [53]), and the presence of the membrane around the
capsule makes the applicability of this theorem here unclear.
Furthermore, numerical studies on rigid particles in shear
flow [50,51] have shown that when the Reynolds number is
within [0.1,100], rigid oblate spheroids tend to carry out a
rolling motion and prolate particles tend to tumble, which are
very similar to the present findings.

In early experiments of Karnis et al. [54] about axial
migration of particles in Poiseuille flow, it was found that
inertia becomes sufficient to break the reversibility of the flow
when the particle Reynolds number (defined in a similar way
to the present study) is of O(10−4), above which both rigid
rods and disks adopt motions that contribute to increasing
the suspension viscosity. Drawing an analogy between rigid
particles and capsules, we would expect there could be a
transition in stable modes of motions for capsules when the
Reynolds number is at a similar order. However, reducing Re
from the present 0.2 to 10−4 will increase the computational
time by three orders of magnitude, which is currently not
accessible. An attempt has been made to assess the significance
of inertia here by carrying out a simulation with reduced Re
from 0.2 to 0.02 for a capsule with an NH membrane with
β = 45◦ and G = 0.001. The results as shown in Fig. 14,
indicate that the capsule transits to rolling motion in a
slightly shorter dimensionless time with decreasing Reynolds
number. We therefore leave this issue to future study, when
new algorithms that can reduce the computation time to an
acceptable level are adopted.
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FIG. 14. Temporal evolutions of θry of an oblate capsule with an
initial aspect ratio of 2:3 and an NH membrane at β = 45◦, G =
0.001, and Re = 0.02 and 0.2.
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B. Flow decomposition

In order to understand the mechanism whereby a spheroidal
capsule adopts a motion that increases the suspension shear
viscosity, we have decomposed the simple shear flow into an
elongational flow and a rotational flow for the case presented
in Fig. 14 at Re = 0.2 and studied the dynamics of the capsule
in each of these basic flows separately. We have found that the
capsule finally undergoes a tumbling motion in the rotational
flow; in the elongational flow the capsule achieves a steady
state with the revolution axis aligned with the direction of
compression and the equatorial plane being perpendicular to
the original plane of shear. In both flows, the revolution axis
of the capsule is within the original plane of shear, and thus
combining these two modes together would naturally lead to a
tumbling motion for the oblate capsule. However, the capsule
adopts a rolling motion in the combined flow (simple shear
flow). Although this analysis does not completely explain the
mechanism, it suggests that the fluid-capsule system with small
inertia is complicated and highly nonlinear.

C. Effect of initial tilted angle

For both oblate and prolate spheroidal capsules, it is
interesting to find that the long-term dynamics of a capsule
can depend on the initial inclination angle in transitional
regimes in the phase diagrams: at the same dimensionless
shear rate, a capsule can adopt different modes of motion.
For example, in Fig. 4(a), an oblate capsule adopts either
a rolling or a precessing motion; even when β falls into
the range where a capsule undergoes a precessing motion,
the average value of θry (the cone angle of the trajectory
of the capsule’s revolution axis) still depends on the initial
tilted angle β. We have observed a similar phenomenon for
prolate capsules, which suggests that fluid-capsule system is a
high-dimensional dynamical system. In fact, the dependence
of the final stable motion on the initial condition has been
observed in other systems. Zhao and Shaqfeh [34] considered
vesicles in shear flow with zero inertia, Huang et al. [51]
studied prolate and oblate rigid particles in shear flow with
finite inertia, and both reported off-the-shear-plane modes that
are sensitive to the initial inclination angle of the vesicle or
particle. These studies may shed some light on the intriguing
phenomenon of red blood cells subjected to shear flow where
individual cells adopt different types of motion even under the
same flow condition [12].

D. Reorientation

We generalize the reorientation phenomenon discussed in
Sec. III to both oblate and prolate capsules and a much wider
range of dimensionless shear rates covering all modes of
motion observed in the present study. Interestingly, for an
oblate capsule, on increasing the dimensionless shear rates,
the unit vector (extending from the mass center of the capsule
and pointing to the membrane material point that initially
intersects with the revolution axis) changes from being aligned
with the vorticity axis (in rolling motion) to being within the
plane of shear (in tumbling motion) and, finally, turns back
to being aligned with the vorticity axis [in the OS(R) mode].
In between, the capsule adopts transitional off-the-shear-plane

motions (i.e., precessing and oscillating-swinging modes). It
is also interesting to find the reorientation of the unit vector for
a prolate capsule with increasing dimensionless shear rate is in
an opposite order: The unit vector changes from being within
the shear plane (in tumbling motion) to being aligned with the
vorticity axis (in rolling motion) and, finally, changes back to
being within the plane of shear. Similar to that of an oblate
capsule, off-the-shear-plane modes are observed in between.
Such a reorientation phenomenon and the difference between
the reorientation of prolate and oblate spheroidal capsules
can be utilized in applications such as particle alignment
techniques.

E. Effect of membrane constitutive laws
and capsule aspect ratio

Different membrane constitutive laws have been used in
the present study: the strain-softening neo-Hookean (NH)
law and strain-hardening Skalaks (SK) law. When C = 1 in
Eq. (3), both constitutive laws lead to the same results at
low dimensionless shear rates. We carried out simulations for
an oblate capsule with an SK membrane with C = 1, aspect
ratio 2:3, and β = 45◦. The phase diagram, corresponding to
a horizontal line in Fig. 8, is the same to that of a capsule
with an NH membrane. In the oscillating-swinging regime,
we observe larger oscillating amplitudes of θlxy and θlxz for
the capsule with an SK membrane. This is mainly because an
SK membrane is strain hardening and leads to less deformation
at high shear rates when compared with an NH membrane. The
effect of membrane constitutive laws has also been discussed
by Dupont et al. [38]; they found that the main factor that
determines the stable mode of motion and the transition
is the deformation of the capsule instead of the membrane
constitutive law. On these bases, we argue that the phase
diagrams obtained in the present study are robust to membrane
constitutive laws of the capsules.

We have also carried out simulations of capsules with higher
sphericity. For an oblate capsule with an aspect ratio of 9:10,
an NH membrane, and an initial angle of β = 45◦, we observe
all types of motion and in the same order as in Fig. 8 when
increasing the dimensionless shear rate. However, the upper
boundary of G for rolling motion is increased from 0.003
to 0.006 when compared with an oblate spheroidal capsule
with an aspect ratio of 2:3. When G is further increased
to 0.007, the capsule is already in the oscillating-swinging
regime. This suggests that the window of dimensionless shear
rate for precessing and tumbling motions would be reduced
when increasing the sphericity of an oblate spheroidal capsule.
A similar phenomenon has been found for prolate capsules,
the range of rolling motion for a prolate capsule with an
aspect ratio of 3:2 and an SK membrane is 0.005 � G � 0.1,
slightly smaller than that of a capsule with an aspect ratio
of 2:1. In precessing motion at low dimensionless shear
rates, we find the dependence of the precessing cone angle
of the revolution axis on initial tilted angle is weaker for
capsules with lower sphericity. For a prolate capsule with
an aspect ratio of 3:2, we observed that different values
of β can lead to precessing with different cone angles at
the same dimensionless shear rate. However, for a capsule
with an aspect ratio of 2:1, the cone angle seems only to
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be a function of the dimensionless shear rate for all cases
considered. Finally, at high dimensionless shear rates where
the capsule is undergoing the oscillating-swinging motion, we
find the oscillation amplitudes of the angles θlxy and θlxz are
smaller for a capsule of higher sphericity.

VI. CONCLUSION

We have studied the dynamics of oblate and prolate
spheroidal capsules in simple shear flow with small inertia,
for the case of equal internal and external fluid viscosity
and without bending stiffness, using an immersed boundary
lattice Boltzmann method. The effect of the initial tilted
angle that the capsule’s equatorial plane makes with the plane
of shear on the motion the capsule would carry out after
an initial transient stage has been investigated. Identifying
the sequence of events when increasing the dimensionless
shear rate, and characterizing the various modes observed,
form a necessary step to further experimental and theoretical
work.

For oblate capsules, it is found here that tumbling, a
previously well-accepted mode of motion at low shear rates,
is unstable. Instead, at very low dimensionless shear rates,
independent of the initial angle, the capsule is found at
late times to be in a rolling motion, wherein the capsule’s
equatorial plane tends to stay in the plane of shear. At larger
dimensionless shear rates, a precessing motion is observed for
most initial inclination angles over a long computational time.
It is shown that this motion can be represented by Jeffery’s
theory [31] for a rigid spheroid in shear flow. Further increasing
the shear rate leads to the well-known tumbling motion as
the stable mode for a large range of inclination angles, in
which the capsule flips with its revolution axis staying in
the plane of shear. We find that, in transitional regimes,

the capsule’s motion could depend on the initial inclination
angle. At high dimensionless shear rates, the capsule carries
out a complicated oscillating-swinging motion: While the
membrane is rotating around the liquid inside, the major axis
of the capsule oscillates about the shear plane in addition
to the previously found swinging about a mean angle with
the flow direction. Both oscillations become weaker with
the dimensionless shear rate, towards a steady tank treading
motion asymptotically. The motion of a prolate spheroidal
capsule is found to differ from that of an oblate one. When
increasing the dimensionless shear rate, the stable modes are
tumbling, with the revolution axis staying in the plane of
shear precessing following Jeffery’s orbit, log-rolling with
the revolution axis aligned with the vorticity axis, precessing
with large deformation (wobbling), and, finally, oscillating-
swinging at high dimensionless shear rates.

Both the rolling motion of an oblate capsule and the
tumbling motion of a prolate capsule at very low dimensionless
shear rates correspond to modes that contribute to increasing
the particle shear stress. These are similar to the recent findings
for rigid oblate and prolate solid particles in shear flow with
small inertia [51], suggesting that the hypothesis of Jeffery [31]
that nonspherical particles in Stokes shear flow finally adopt a
motion with minimum energy dissipation does not apply to sit-
uations where inertial effects are significant. Finally, we have
also reported here the interesting reorientation phenomenon,
wherein modes are observed in opposite order for oblate and
prolate capsule upon increasing the dimensionless shear rate,
which can be used in particle alignment techniques.
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