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A wide spectrum of electrokinetic studies is modeled as isothermal ones to expedite analysis even when
such conditions may be extremely difficult to realize in practice. Going beyond the isothermal paradigm, we
address here the case of flow induced electrohydrodynamics, commonly streaming potential flows, in a situation
where finite temperature gradients do exist. By way of analyzing a model problem of flow through a narrow
parallel-plate channel, we show that the temperature gradients applied at the channel walls may have a significant
effect on the streaming potential, and, consequently, on the flow itself. Our model takes into consideration all
the pertinent phenomenological aspects stemming from the imposed thermal gradients, such as the Soret effect,
the thermoelectric effect, and the electrothermal effect, by a full-fledged coupling among the electric potential,
the ionic species distribution, the fluid velocity and the local fluid temperature fields, without resorting to ad
hoc simplifications. We expect this expository study to contribute significantly towards more sophisticated future
endeavors in actual development of micro- and nano-devices for applications simultaneously involving thermal
management and electrokinetic effects.
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I. INTRODUCTION

Streaming potential is one of the four primary elec-
trokinetic phenomena, the other three being electro-osmosis,
electrophoresis, and sedimentation potential. The genesis of
these phenomena is contingent on the development of an
electrical double layer (EDL) which refers to the space charge
distribution in a dielectric medium together with the electrified
surface in whose immediate vicinity such distribution is estab-
lished through a balance between Coulombic and entropic
interactions [1]. The particular phenomenon of streaming
potential is, however, set apart by the fact that its manifestation
does not depend on the application of an external field (unlike
electro-osmosis and electrophoresis) nor does it involve the
transport of particles bearing such electrified surfaces (unlike
electrophoresis and sedimentation potential). As long as flow
(actuated through simple mechanical actuation) of fluid, bear-
ing the space charge distribution, takes place past the electrified
surface, a streaming current will be always generated, and
given a scope of charge accumulation through the specific
geometry, a streaming potential will also develop together with
such current.

Indeed, it is because of this apparent simplicity that ever
since the discovery of this phenomenon more than 150 years
ago by Quincke [2], streaming potential has been found to be a
key element in the explanation of various phenomena in areas
as diverse as physiological [3–5] to geophysical [6]. It has also
been used in a host of applications in the colloidal science
realm; for instance, zeta potential measurement and elec-
trokinetic characterization of surfaces [7–11]. Most recently,
it has provided a new direction in the search for innovative
energy conversion techniques [12–39]. Nevertheless, despite
the long and what would otherwise seem an “established”
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history [40–45], ongoing research efforts continue to further
our fundamental understanding of streaming potential, as well
to extend the possibilities of its use together with a slew of
additional surface and flow characteristics [46–65].

Interestingly, such research and modeling efforts have been
carried out, almost without exception, with the unquestioned
assumption that the systems under consideration are isother-
mal. This is despite the ubiquity of nonisothermal natural
settings, and also in spite of the fact that even in laboratory
settings, perfect isothermal conditions are difficult to realize
in practice. Such an approach is paradigmatic of most of the
electrokinetic modeling efforts inasmuch as it pertains to the
microfluidic and nanofluidic contexts. However, it must be
noted here that there do exist numerous works which are indeed
concerned with temperature variations within the electroki-
netic framework. However, these involve simplistic one-way
couplings [66–71], or, at best, couplings between momentum
and energy through temperature-dependent thermophysical
properties [72–74]. Importantly, they do not consider the
fundamental dependence of the ionic fluxes on the temperature
variation, and the ramifications thereof. This situation is rather
surprising, particularly when considered in the context of the
rich theory that already exists to model coupled momentum,
mass, and thermal transport based on general nonequilibrium
thermodynamic principles [75,76]. Such general theories have
routinely been adapted to represent various transport phenom-
ena involved in membrane technology [77]. Investigations in-
volving nonisothermal transport are also quite common in elec-
trochemical systems under the purview of thermoelectrochem-
istry [78], particularly at high temperatures [79]. On another
front, certain fundamental modeling frameworks have also
been developed under the purview of colloidal science [80,81].
Despite the obvious commonalities that exist between these
areas and micro- and nanofluidics, the modeling of nonisother-
mal electrokinetic transport through micro- and nanochannels,
in general, and streaming potential mediated nonisothermal
transport in particular has remained largely unaddressed [82].
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It is only in the last few years that successful attempts
have been made to capture the fundamental influences of
temperature gradient on the flux of the ionic species itself
[83–93], following the strategy by Guthrie et al. [94]. Notable
precursors to these works were the ones by Ruckenstein [95]
and Morozov [96]. These works have also motivated the
application of thermal gradients for controlled manipulation
of particle motion in microfluidic channels [97]. While the
modeling efforts in these works are directed towards the
transport of colloidal particles and are, hence, reminiscent
of the aforementioned earlier works [80,81], important dif-
ferences do exist in the approach itself [87]. In contrast to the
previous works which involve a dependence on the enthalpy
in the velocity expression, these recent efforts express the
velocity in terms of the temperature gradient in an explicit and
straightforward way. This is done by taking into account the
contribution of the Soret effect, which refers to the motion
of a particle when placed in a temperature gradient [98,99],
directly in the flux. When the particle itself is charged (as in
the case of an ionic species) such transport may work together
with conventionally recognized responses to concentration
and electrical potential gradients to generate novel flow
characteristics.

The influences of the rich interplay among these various
factors under conditions of dynamic equilibrium are particu-
larly intriguing in the case of streaming potential mediated
flow. This is because it holds the possibility of unveiling
new and nonintuitive flow characteristics in the otherwise
routine, primarily pressure-gradient actuated flow through the
simple application of a temperature gradient. This motivates
the primary objective of the current study: to investigate
the influence of an externally applied temperature gradient
on a pressure-gradient-driven flow of an electrolyte solution
which also results in the generation of a streaming potential.
Notwithstanding the apparent simplicity of such an objective,
the scope of this investigation is far reaching owing to its
rigorous and exhaustive treatment of the involved physical
phenomena inherent in the system.

In this study, we delineate the specific extent to which the
Soret effect, and the consequential Seebeck effect (having its
genesis in different values of the ionic heats of transport of the
cations and the anions)—which, in turn, leads to the thermo-
electric field—influence the streaming potential mediated flow.
Furthermore, we unequivocally show that the degree of Soret
effect induced alteration of the resulting flow rate is intimately
dependent on the electrothermal effect, ubiquitous in such
nonisothermal systems. In essence, the primary finding of this
work is that within the general nonisothermal electrokinetic
framework, it is possible to control (either augment or negate)
the volumetric suppression of the primary pressure-driven
flow, due to the streaming potential field, by judicious tuning of
the Seebeck effect. Interestingly, such control over the nature
of the streaming potential mediated flow is achieved simply
on the basis of the electrolyte nature, without changing the
applied temperature gradient.

The remaining part of this article is organized as follows.
In Sec. II, we describe the model problem for analyzing the
influence of temperature gradient on streaming potential mod-
ulated flows. We also outline the general equations governing
the electrical potential, the ionic species distribution (incorpo-

FIG. 1. (Color online) Schematic of the problem geometry.

rating thermoelectric effects), the fluid-flow equations, and
the energy equation that need to be solved in a coupled
way, considering the thermophysical property variations with
temperature, for a resolution of the intrinsic interdependence
among the various fields. Additionally, in this section, we
derive the electric field associated with the streaming potential
incorporating the thermoelectric effect. For brevity, we also
present in Sec. II the dimensionless versions of all the
governing equations, and the adopted nondimensional scheme,
along with the corresponding dimensional forms. In Sec. III,
we discuss the pertinent boundary conditions. In Sec. IV, we
report and discuss the major findings of our investigation.
Finally, in Sec. V, we draw important conclusions based on
these findings.

II. MATHEMATICAL FORMULATION

Steady, incompressible, and laminar pressure-driven trans-
port of a Newtonian fluid, containing symmetric electrolytes
(z+ = −z− = z), through a long, parallel-plate channel of
height 2H , length L, and width W (W � 2H ) is considered
here (See Fig. 1). The flow is actuated by a constant axial
pressure gradient, Px = −dP/dx. The fluid enters the channel
at temperature T0 with a uniform velocity. The tip of the plate
where the fluid enters is maintained at temperature T1. There
is an imposed linear temperature gradient on both the plates.
The temperature of the tip of the channel where the fluid
leaves is Tf .

A. Potential distribution

The electrostatic potential, ψ , in the diffuse layer of EDL is
governed by the Poisson equation: ∇ · (ε∇ψ) = −ρe, where
ε is the temperature-dependent permittivity of the medium,
and ρe = ez(n+ − n−) is the free charge density, with e being
the electronic charge magnitude, and n+ and n− the number
density of the positive and the negative ions respectively. Now,
we use the nondimensional variables: ψ̃ = ezψ/(4kBT0),
ñ± = n±/n0, x̃ = x/L, ỹ = y/H , and ε̃ = ε/ε0, where kB

is the Boltzmann constant, n0 is the bulk value of the number
density of the electrolyte, and ε0 is the permittivity at T = T0 =
298 K, to reduce the Poisson equation to its corresponding
dimensionless version:

α2 ∂

∂x̃

(
ε̃
∂ψ̃

∂x̃

)
+ ∂

∂ỹ

(
ε̃
∂ψ̃

∂ỹ

)
= −1

8
K2(ñ+ − ñ−), (1)
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where α = H/L is the aspect ratio of the channel, and
K = H/λ0 is the ratio of the half height of the channel to the
Debye screening length λ0 =

√
ε0kBT0/(2n0e2z2) (based on

the permittivity value at T0). It is to be noted here that the factor
4, considered during nondimensionalizing the electrostatic
potential, is in accordance with Ref. [48]. This helps in casting
the pertinent equations into forms analogous to that present in
Ref. [48], which consequently facilitates the validation of the
present solution procedure (discussed later in Sec. IV). The
use of the factor 4 just simplifies the resulting mathematical
expressions, as can be perceived in the existing literature, and
has no physical significance.

B. Species transport

The general species transport equation routinely invoked
in continuum descriptions of electrokinetic phenomena is
∂n±
∂t

= −∇ · j±, where j± is the flux of the cation and the
anion. Here, an important assumption is that there is no source
term due to generation or consumption of any ionic species
by any bulk reaction within the electrolyte. In conventional
isothermal treatments, this flux arises as a combination of
diffusion, electromigration, and advection [100]. However, in
the present case, there is an additional contribution to the flux
from the temperature gradient. Physically, this comes about
due to the propensity of a species to move in response to
gradients in the temperature field, and is classically referred to
as the Soret effect. This has rich implications in the resulting
physical scenario, for this motion of the ionic species due to
the temperature field may itself result in the generation of
an electric potential especially when the thermal diffusivities
of the ionic species, with different polarities of charge on
them, are different. The generation of this thermoelectric
potential is analogous to the Seebeck effect. The total electric
potential which influences the ionic flux is, thus, a combination
of the intrinsic electrokinetic screening potential and the
thermoelectric potential together with the streaming potential
which is induced parallel to the flow direction as a result
of the streaming motion of the ions associated with the
pressure-driven fluid flow. Hence, the resultant species trans-
port is an intimately coupled manifestation of this combined
electric potential, the temperature gradient, the gradients in the
concentration (which is itself coupled to the potential through
the Poisson equation), and the advection associated with the
fluid motion (which, as we show later, is, again, influenced by
the electric potential and concentration gradients). To address
this highly coupled phenomenon, we first note that the flux of
the ionic species may be expressed as [84]

j± = n±u − D±

[
∇n± + n±Q±

kBT 2
∇T ± n±ez

kBT
(∇ψ − Es)

]
,

(2)

where u is the mean fluid velocity, Es is the electric field
associated with the streaming potential (it must be noted
here that the generated thermoelectric potential is incorporated
within Es), D± denote the temperature-dependent diffusivities
of the positive and the negative ions, and Q± denote the
ionic heat of transport of the positive and the negative ions.
The second term between brackets on the right-hand side in
Eq. (2) represents the contribution of the Soret effect. Then, at

steady state, the transport equations for ions reduce simply to
∇ · j± = 0. Augmenting the nondimensionalization scheme
mentioned previously with the definitions, D̃± = D±/D0

±
(where D0

± are the ionic diffusivities at T0), ũ = u/uref , and
T̃ = T/T0, we have the following forms of the dimensionless
species transport equations:

0 = −
[
α2 ∂

∂x̃

(
D̃+

∂ñ+
∂x̃

)
+ ∂

∂ỹ

(
D̃+

∂ñ+
∂ỹ

)]

+ ∂

∂ỹ

[(
−4D̃+

T̃

∂ψ̃

∂ỹ
− Q∂T̃

∂ỹ

D̃+
T̃ 2

)
ñ+

]

+α2 ∂

∂x̃

[(
−4D̃+

T̃

∂ψ̃

∂x̃
+ D̃+

T̃
Ẽs − Q∂T̃

∂x̃

D̃+
T̃ 2

)
ñ+

]

+αPe
∂(ñ+ũ)

∂x̃
, (3)

0 = −
[
α2 ∂

∂x̃

(
D̃−

∂ñ−
∂x̃

)
+ ∂

∂ỹ

(
D̃−

∂ñ−
∂ỹ

)]

+ ∂

∂ỹ

[(
4D̃−
T̃

∂ψ̃

∂ỹ
− γQ∂T̃

∂ỹ

D̃−
T̃ 2

)
ñ−

]

+α2 ∂

∂x̃

[(
4D̃−
T̃

∂ψ̃

∂x̃
− D̃−

T̃
Ẽs − γQ∂T̃

∂x̃

D̃−
T̃ 2

)
ñ−

]

+αDrPe
∂(ñ−ũ)

∂x̃
, (4)

where Pe = urefH/D0
+ is the Péclet number based on the

cationic diffusivity at T0 (uref is defined later), Dr = D0
+/D0

−
is the ratio of the diffusivity values at T0, Q = Q+/kBT0 and
γ = Q−/Q+ is the ratio of the ionic heats of transport.

C. Streaming potential field

The downstream migration of ions due to the flow primarily
actuated by the imposed pressure gradient gives rise to a
current known as the streaming current (Is). However, in the
stationary state, this convective transport of ions sets up its own
electric potential known as the streaming potential. The electric
field (Es) associated with this streaming potential generates a
current, known as the conduction current (Ic). Much like the
electro-osmotic flow situation, this conduction current, in turn,
leads to a fluid flow opposite to the pressure-driven flow which
is responsible for inducing the same in the first place. In the
absence of an externally imposed electric field, the conduction
current and the streaming current must balance each other so
that the net ionic current in the system along the axial direction
is zero; thus

Iionic = Is + Ic = 0. (5)

It is important to realize here that the real physical situation
is far more involved than the aforementioned simplistic
description. The intricacy stems from the interplay among the
electric potential (with contributions from the electrokinetic
screening potential, the thermoelectric potential, and the
streaming potential), the concentration profiles, the velocity
and the temperature fields (the latter being also responsible for
providing an additional coupling among the pertinent physical
fields through thermophysical property variations with tem-
perature). However, in spite of the inherent complexity, the
only requirement that needs to be necessarily satisfied is that
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the total ionic current along the axial direction, at any cross
section of the channel, vanishes. In order to capture this general
requirement, we express the local ionic current in terms of the
axial direction components of the cationic and the anionic
fluxes:

i = ez(j+x − j−x), (6)

so that the total ionic current across a cross section of the
channel is given by

Iionic = ez

∫ 2H

0
(j+x − j−x)dy. (7)

Thereafter, imposing the condition of the vanishing total
ionic current, we obtain an expression for the electric field,
Es , associated with the streaming potential in the following
dimensionless form:

Ẽ = ezL

kBT0
Es = − 1

α
DrPeI1 + I2 + I3 + QI4

I5
, (8)

where the streaming potential field has been nondimensional-
ized by kBT0/ezL, and the expressions of the various integrals
are

I1 =
∫ 2

0
(ñ+ − ñ−)ũdỹ, (9)

I2 =
∫ 2

0

(
DrD̃+

∂ñ+
∂x̃

− D̃−
∂ñ−
∂x̃

)
dỹ, (10)

I3 =
∫ 2

0
4

(
DrD̃+ñ+ + D̃−ñ−

T̃

)
∂ψ̃

∂x̃
dỹ, (11)

I4 =
∫ 2

0

(
DrD̃+ñ+ − γ D̃−ñ−

T̃ 2

)
∂T̃

∂x̃
dỹ. (12)

The important thing to note here is that this is not an
explicit expression because the velocity field in the integral I1

depends on this streaming potential field itself. To determine
this dependence, we next move on to a description of the
velocity fields from the Navier-Stokes equations representing
the momentum transport of the fluid.

D. Velocity field

The axial advection contributing to the flux and, hence, to
the streaming potential field is governed by the x-momentum
equation which under the assumption of low Reynolds number
flow reduces to

0 = −dP

dx
+ ∂

∂x

(
μ

∂u

∂x

)
+ ∂

∂y

(
μ

∂u

∂y

)
+ Fx, (13)

where μ is the temperature-dependent dynamic viscosity,
and Fx is the total body force, which is made up of three
contributions: first, FOx

due to the osmotic pressure; second,
FEx

due to the Maxwell stress along the axial direction; and
third, FET x due to the electrothermal contribution (stemming
from the electrical permittivity variations with temperature).
Noting that the general expression of force due to osmotic
pressure is FO = −∇[(n+ + n−)kBT ], the x component of
this force is

FOx
= −kB(n+ + n−)

∂T

∂x
− kBT

∂(n+ + n−)

∂x
. (14)

It is, therefore, this contribution from the osmotic pressure
which takes into account the dependence of the velocity
field on the temperature gradient as well as the concentration
gradients that are established as a combined consequence of the
electrokinetic and Soret effects. Next, the general expression
for the contribution of the Maxwell’s stress to the body force
is FE = ε∇2φ∇φ, where the total potential φ = φ0 + ψ , and
∇φ0 = −Es . Further, we note that ∇2φ ≈ ∂2

yψ because φ0 is
constant along the transverse direction and both φ0 and ψ are
assumed to weakly vary along the x direction. Under these
considerations, the axial component of this force becomes

FEx
=

[
∂

∂x

{
ε

(
−Es + ∂ψ

∂x

)}
+ ∂ε

∂y

∂ψ

∂y
+ ε

∂2ψ

∂y2

]

×
(

−Es + ∂ψ

∂x

)
. (15)

The general expression of the force due to the electrothermal
contribution is FET = − 1

2 |E|2∇ε so that the axial component
becomes

FET x = −1

2

[(
Es − ∂ψ

∂x

)2

+
(

∂ψ

∂y

)2]
∂ε

∂x
. (16)

Using Eqs. (14)–(16) in Eq. (13), and the previously described
nondimensionalization scheme together with the definition
μ̃ = μ/μ0 (where μ0 is the dynamic viscosity at T0), the
dimensionless version of the x-momentum equation becomes

0 = 2 +
[
α2 ∂

∂x̃

(
μ̃

∂ũ

∂x̃

)
+ ∂

∂ỹ

(
μ̃

∂ũ

∂ỹ

)]
− C

∂

∂x̃
(ñT̃ )

+ 2
C

K2

[
α2 ∂ε̃

∂x̃

(
−ẼS + 4

∂ψ̃

∂x̃

)
+ 4

∂ε̃

∂ỹ

∂ψ̃

∂ỹ
+ 4ε̃

∂2ψ̃

∂ỹ2

]

×
(

−ẼS + 4
∂ψ̃

∂x̃

)

− C

K2

[
α2

(
ẼS − 4

∂ψ̃

∂x̃

)2

+ 16

(
∂ψ̃

∂ỹ

)2]
∂ε̃

∂x̃
, (17)

where C = 2n0kBT0
−LdP/dx

represents the strength of the osmotic
pressure relative to that of the hydrodynamic pressure, and
uref can now be defined as uref = PxH

2

2···0 .

E. Temperature field

Taking into consideration the effects of axial conduction
and viscous dissipation the thermal transport equation can be
written as

ρCpu
∂T

∂x
= ∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ μ

(
∂u

∂y

)2

, (18)

where ρ is the density, Cp is the specific heat capacity, and
k is the temperature-dependent thermal conductivity of the
electrolyte. Again using the nondimensionalization scheme
mentioned previously with the added definition k̃ = k/k0

(where k0 is the thermal conductivity at T0), we obtain the
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dimensionless version of Eq. (18) as

αPeT ũ
∂T̃

∂x̃
= ∂

∂ỹ

(
k̃
∂T̃

∂ỹ

)
+ α2 ∂

∂x̃

(
k̃
∂T̃

∂x̃

)
+ BrRμ̃

(
∂ũ

∂ỹ

)2

,

(19)

where PeT = ρCpurefH

k0
, is the thermal Péclet number, and

BrR = μ0u
2
ref

k0T0
is the Brinkman number based on T0. It must

be noted here that the classical Joule heating term in the
energy equation is outweighed by the viscous dissipation term
for the physical problem under consideration. This can be
easily concluded from a simple order of magnitude analysis of
the two physical quantities. In accordance with the ongoing
analysis, the viscous dissipation term scales as μ0u

2
ref/H

2

(where uref = PxH
2

2μ0
), while the Joule heating term scales as

z2e2D
kBT0

2n0E
2
s [78]. Hence, the ratio of these two quantities

comes out to be Viscous dissipation
Joule heating ∼ 1

4K2
P 2

x H 4

εDμ0E2
s
. Now, using

K = 10 and Es = ẼskBT0
ezL

with Ẽs ∼ 1 to be a representative
value of the nondimensional streaming potential field, along
with the physically consistent values of the other involved
parameters (mentioned in detail later), we find that the value
of the ratio is >150. Therefore, the neglect of the Joule
heating term in comparison to the viscous dissipation term,
as done here, stems directly from the physical condition under
consideration, and is in no way an ad hoc simplification which
compromises the generality of the problem. However, it is
important to note here that the ratio of viscous dissipation to
Joule heating is dependent on the parameters H (which is fixed
by the choice of K and λ0) and n0. The aforementioned order
of magnitude analysis holds true for electrolyte concentrations
∼10 mM, which is very much within the physically realizable
range for electrokinetic experiments. However, for even higher
concentrations of the electrolyte solution, the above ratio
decreases and Joule heating may play an important role.

III. BOUNDARY CONDITIONS

A. Wall

A linear temperature gradient is applied along the channel
wall [T = T1 + (Tf − T1)x/L]. The wall is considered to be
an impenetrable boundary so that there is no flux of ions across
it (n̂ · j± = 0), with n̂ depicting the unit vector normal to the
surface. Further, no-slip boundary condition is assumed: u = 0
at the wall. In dimensionless form these boundary conditions
at the wall (ỹ = 0 and 0 � x̃ � 1) are expressed as

T̃ = T̃1{1 + x̃(Tratio − 1)},
∂ñ±
∂ỹ

± 4

(
n±
T̃

∂ψ̃

∂ỹ

)
+ Q±

kBT0

(
ñ±
T̃ 2

∂T̃

∂ỹ

)
= 0, (20)

ũ = 0,

where Tratio = Tf /T1. It is important to note that the electrical
potential boundary condition on the wall (zeta potential,
ζ ) involves a variation along the wall because of its tem-
perature dependence. Such variation of the zeta potential
with the temperature has been extensively studied in the
geophysical context. Ishido and Mizutani [101] presented
a comprehensive experimental and theoretical treatment of

temperature-dependent zeta potential. They found that for
quartz, in an aqueous solution of 10−3N KNO3 with a pH of
6.1, the zeta potential increases in magnitude by 3.3 mV/10 ◦C.
Later, more sophisticated modeling efforts by Revil et al. [102]
and Reppert and Morgan [103] that included extensive use
of chemical equilibria conditions were validated against the
primary results of Ishido and Mizutani. Considering this to be
representative of the paradigmatic combination of SiO2 surface
in physical contact with a binary symmetric electrolyte widely
used in microfluidic applications, we use the temperature-
dependent variation of zeta potential as proposed by Ishido and
Mizutani. Importantly, we do not unnecessarily incorporate
the rather involved chemical equilibria-based modeling in
our framework with the understanding that the ultimate
denouement of such complicated developments is indeed the
simple relation given by [101]

dζ

dT
= sgn(ζ )g, (21)

where g = 3.3 × 10−4 V K−1. Using this, the dimensionless
form of the boundary condition on the wall becomes

ζ̃ = ζ̃0 + g̃sgn(ζ )T̃1(Tratio − 1)x̃, (22)

where {ζ̃ ,ζ̃0} = ez/4kBT {ζ,ζ0}, with ζ0 the zeta potential at
the left tip of the wall, g̃ = ezg/4kB , and T̃1 = T1/T0.

B. Centerline

At the channel centerline, we assume far-stream condition
(ψ = 0) together with the electroneutrality condition: n± =
n0. Since the characteristic EDL penetration depths under
consideration are smaller than the channel half height, the
channel centerline does not “feel” the charging effect of the
wall, so that the boundary conditions ψ = 0 and ∂ψ/∂y = 0
are equivalent. Exploiting the symmetry of the channel about
the centerline, we set the gradient of the velocity and the
temperature gradient in the transverse direction to be zero:
∂u/∂y and ∂T /∂y = 0. In dimensionless form, these bound-
ary conditions at the centerline (ỹ = 1 and 0 � x̃ � 1) are
given by

ψ̃ = 0, ñ± = 1,
∂ũ

∂ỹ
= 0,

∂T̃

∂ỹ
= 0. (23)

C. Entrance

We assume the fluid to enter the channel at a temperature
T = T0 (uniform), with a uniform velocity (we take this
to be u = 0.1uref), and ionic concentration equal to the
bulk concentration (n± = n0). In dimensionless form, the
boundary conditions at the entrance (0 � ỹ � 1 and x̃ = 0) are
given by

ñ± = 1, ũ = 0.1, T̃ = 1. (24)

D. Exit

We consider the channel exit condition to be such that there
are no axial gradients in the flow ( ∂ũ

∂x̃
= 0), and that the ionic

concentration at the exit is equal to the bulk concentration
(n± = n0). The temperature profile at the exit is derived from
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the energy conservation principle (i.e., the energy leaving the
control volume is the sum of the energy entering the control
volume and the energy generated through viscous dissipation).
Thus, at the exit (0 � ỹ � 1 and x̃ = 1) we have the following
dimensionless form of the boundary conditions:

ψ̃ = 0, ñ± = 1,
∂ũ

∂x̃
= 0,

αPeT

∫ 1

0
ũ(0,ỹ)T̃ (0,ỹ)dỹ −

∫ 1

0
k̃
∂T̃

∂ỹ
dx̃

(25)

+ BrR

∫ 1

0

∫ 1

0
μ̃

(
∂ũ

∂ỹ

)2

dx̃dỹ

= αPeT

∫ 1

0
ũ(1,ỹ)T (1,ỹ)dỹ.

IV. RESULTS AND DISCUSSIONS

The primary objective of the present work is to investigate
the influence of temperature gradients on streaming potential
mediated flows. Devoid of any ad hoc simplifications, the
framework which is constructed here to model such scenarios
is, however, not amenable to analytical treatments. Hence,
it requires the use of numerical techniques for its solution.
For our purpose, we choose the finite element method as
implemented in the COMSOL MULTIPHYSICS environment.
Our numerical framework is first validated by way of com-
parison of the isothermal condition results, obtained from
the same, with those from a well-established semianalytical
formulation found in Ref. [48] (see Appendix); pertinently,
Ref. [48] has formed the basis of a number of subse-
quent works dealing with streaming potential mediated flows
[29,34–36,39,53,54,57,62]. The excellent agreement between
the results, for the isothermal condition, obtained from the two
methods sets a robust ground for using the present numerical
framework in further investigations of the influence of the
temperature gradient. In this regard, we show the importance
of considering the Soret effect by comparing the results
obtained by incorporating the temperature-gradient influences
solely in the momentum equation, with those obtained by
considering the influence of the temperature gradient on the
ionic flux as well. Finally, we explicate the role of the Soret
effect, and the consequential thermoelectric effect, in altering
temperature-gradient mediated streaming potential flows, as
embodied by the variations in the resulting flow rate, through
its intrinsic influence on the ionic species transport. During
this endeavor, we also highlight in a pinpointed manner the
influence of electrothermal effects on such nonisothermal
streaming potential flows by isolating its consequences from
the other thermal effects. In this section, unless otherwise
mentioned, we show all results corresponding to constant
values of ζ̃0 = −0.5, K = 10, C = 0.828, α = 2.39 × 10−6,
and Pe = 6.85 × 10−4. Also, as reference values of the ionic
heat of transport of the cation, Q+, and that of the anion, Q−,
typical values for an alkali halide are used [84]; corresponding
values of Q and γ are 1.388 and 0.153 (in the ensuing
discussion these values ofQ and γ will be referred to asQ∗ and
γ ∗). The dependence of viscosity, thermal conductivity, and
permittivity on temperature is captured through the following

TABLE I. Values of the coefficients used to capture the tem-
perature dependence of the viscosity, thermal conductivity, and the
permittivity.

Coefficient Value Coefficient Value

a0 1.379957 b0 −8.69 × 10−1

a1 −2.112402 × 10−2 b1 8.948 × 10−3

a2 1.360456 × 10−4 b2 −1.5836 × 10−5

a3 −4.64509 × 10−7 b3 7.9754 × 10−9

a4 8.904274 × 10−10 c0 251.1
a5 −9.079069 × 10−13 c1 −0.7992
a6 3.845733 × 10−16 c2 7.375 × 10−4

polynomial fit forms [104]:

μ = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5 + a6T
6,

k = b0 + b1T + b2T
2 + b3T

3,

ε = 8.85 × 10−12(c0 + c1T + c2T
2),

where the values of the coefficients are given in Table I.
Additionally, the diffusivity is known to increase by 2.5%
for every degree rise in temperature [105], so that the form of
the diffusivity dependence on temperature is taken to be

D± = D0
±{1 + 0.025(T − T0)}.

The straightforward stratagem that one might expect to
follow while investigating any thermal influence would be
through the incorporation of such thermal gradients, ema-
nating from osmotic pressure contributions (which otherwise
remain latent in conventional isothermal treatments), in the
momentum equation. While such an expectation is not wrong,
it does not constitute the entire picture. For, even though
the incorporation of temperature gradients in the momentum
equation and the consequent influences on the velocity field
may in turn be expected to influence the ionic flux leading
to significantly coupled manifestation of such gradients in the
overall field distributions, it still does not take into account the
intrinsic dependence of the ionic species flux on the tempera-
ture gradient. Indeed, the influence of the temperature gradient
on the ionic flux is deeply ingrained in the fundamental cross
couplings associated with the nonequilibrium thermodynamics
of general species transport; in particular, the Soret effect,
as represented, within the present framework, by the term
D±n±Q±

kBT 2 ∇T in Eq. (2). It is this physical phenomenon that
determines the transport of a particle in response to an applied
temperature gradient.

As a first step in our discussion of the temperature-gradient
influence on the overall transport problem, we show, through
Fig. 2, the differences in the results obtained from the con-
sideration of Soret effect as compared to the aforementioned
intuitive (but physically incomplete) stratagem. Figure 2 shows
the velocity profile across the cross section at x̃ = 0.5. The
plots with Soret effects incorporated are obtained for Q = Q∗
and γ = 100γ ∗. The Soret effect is observed to suppress
the magnitude of the velocity profile. This is particularly
significant because it is the velocity profile which ultimately
determines the volumetric flow rate and thus the throughput
ratings of any micro- or nano-device. It is important to note
that this suppression of the volumetric flow rate due to the
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ỹ

ũ
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FIG. 2. (Color online) Comparison of the velocity profiles con-
sidering Soret effect and that without, along the cross section of the
channel at x̃ = 0.5 with ζ̃0 = −0.5, K = 10. Values of Q = Q∗ and
γ = 100γ ∗. Symbols “w” and “w/o” represent with and without the
Soret effect, respectively. It is to be noted here that the thermal effects
stemming from the osmotic pressure contributions in the momentum
equation are considered in both the velocity profiles.

temperature-gradient influences is over and above that due
to the streaming potential effects which invariably reduces
the throughput in pressure-gradient-driven flows through the
generation of a back potential that drives a self-induced
back-electro-osmotic flow. A discussion of the reason behind
the Soret effect induced suppression is in order.

Positive values of Q and γ , originating from positive values
of Q+ and Q−, represent the thermophobic nature of the
ions. This means that within the sole purview of the Soret
effect (independent from any other electrokinetic or convective
influences), these ions have a tendency to move from the hot
to the cold region. Since temperature increases in the direction
of the pressure-gradient-driven flow (as shown in Fig. 1), the
thermodiffusive movement (associated purely with the Soret
effect) of the ions is in the opposite direction. In perfect analogy
with the physical explanation of the phenomenon of electro-
osmosis, where it is the electrophoretic motion of the electrical
double layer charges which gets translated into a motion of the
fluid, so also in the current situation the back-thermodiffusive
motion of the ions results, in turn, in a thermo-osmotic flow of
the fluid. Since this temperature-gradient mediated backflow
of the fluid is in the same direction as the streaming potential
induced backflow, the applied temperature gradient is seen
to further suppress the fluid flow compared to the case with
no consideration of the Soret effect. It is important to note
here that Fig. 2 simply justifies the importance of considering
the influence of local temperature gradients on ionic transport
for predicting the accurate flow rate for thermally mediated
streaming potential flows by considering a particular value of
Q and γ . However, in order to critically analyze the role of
Soret effect, in its entirety, it is imperative to take into con-
sideration the genesis and ramifications of the consequential
thermoelectric effect, through a more exhaustive parametric
study. This thermoelectric effect arises due to the accumulation
of the ions which get transported in response to the Soret effect.

In order to obtain a clearer picture of the combined influ-
ences of the electrokinetic, Soret, and the as-yet unexplained
thermoelectric effects, we investigate the extent to which the
values of the Soret effect parameters Q and γ affect the
volumetric flow rate. In both Figs. 3(a) and 3(b), we study
the variation of the dimensionless volumetric flow rate over
the half-channel cross section (defined to be

∫ 1
0 ũdỹ) as the

value of Q is varied around Q∗ over four orders of magnitude,
i.e., −2 � log10(Q/Q∗) � 2 for different values of γ . Here,
we also make an attempt to isolate the role of the electrothermal
effect in altering the flow characteristics. To this end, in
Fig. 3(a) we consider the electrothermal effects based on
the temperature dependence of the permittivity, whereas in
Fig. 3(b) we do not consider the electrothermal effects. While
both Figs. 3(a) and 3(b) show qualitatively similar trends, there
are significant quantitative differences between them as clearly
shown in Fig. 3(c). In what follows, we first justify these
similar qualitative trends, and then discuss the reasons for
the quantitative differences by taking into consideration the
electrothermal effect.

For the explanation of the qualitative trends, we first observe
that based solely on the explanation of the temperature-
gradient-driven backflow of the ions (with the concomitant
backflow of the fluid), presented in relation to Fig. 2, it
would be natural to expect that the volumetric flow rate
would decrease with increase in the value of Q. However,
in reality we observe that the value of the volumetric flow
rate Q is practically constant until about log10 Q/Q∗ ∼ 0.5,
beyond which it rapidly increases or decreases depending
on the magnitude of γ . The increase in the volumetric flow
rate clearly proves that the explanation based on the simple
backflow of the fluid, due to the back-thermodiffusive motion
of the ions, does not capture the complete physical picture of
the Soret effect, and is strongly indicative of the presence
of more involved phenomena. To understand this, it is to
be first noted that the unequal values of the ionic heat of
transport of the counterions (in our case the cations) and
the coions (in our case the anions) determine the extent of
their thermophobicity, and hence dictate the strength of their
motion away from the hotter region. Therefore, the lower
value of the ionic heat of transport of the coions (anions)
than that of the counterions (cations), as represented by γ < 1
(i.e., γ < 10γ ∗), ensures that the counterions have a greater
propensity of migrating upstream, i.e., towards the region
of lower temperature, than the coions. Additionally, since
the number density of the counterions is higher than that
of the coions, there is a predominant accumulation of the
counterions in the upstream region; this segregation of the
ions then leads to the generation of a thermoelectric field where
the potential drops down along the direction opposite to that
of the temperature-gradient induced motion of the ions. In
our case, this is also the direction of the primary pressure-
gradient-driven flow. Hence, for γ < 10γ ∗, the thermoelectric
field opposes the streaming potential field. Consequently, it
also opposes the further flow of counterions in the upstream
direction in response to both the temperature-gradient induced
thermodiffusion and the streaming potential mediated back-
electro-osmosis. This ultimately leads to a decrease in the
suppression of the pressure-gradient-driven volumetric flow
rate. Now, at a particular value of γ , satisfying the condition

053020-7



GHONGE, CHAKRABORTY, DEY, AND CHAKRABORTY PHYSICAL REVIEW E 88, 053020 (2013)

−2 −1 0 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log10(Q/Q∗)

Q

 

 

γ = γ∗

γ = 5γ∗

γ = 15γ∗

γ = 20γ∗

−2 0 2
0.46

0.48

0.5

0.52

log10(γ/γ∗)

Q

 

 

(a)

−2 −1 0 1

0

0.5

1

1.5

log10(Q/Q∗)

Q

 

 

γ = γ∗

γ = 5γ∗

γ = 15γ∗

γ = 20γ∗

−2 0 2
0.35

0.4

0.45

log10(γ/γ∗)

Q

 

 

(b)

−2 −1 0 1 2
−0.8

−0.6

−0.4

−0.2

0

0.2

log10(Q/Q∗)

Q
(w

it
h

E
T

)
-

Q
(w

it
ho

ut
E

T
)

 

 

γ = γ∗

γ = 5γ∗

γ = 15γ∗

γ = 20γ∗

(c)

FIG. 3. (Color online) Variation of the dimensionless volumet-
ric flow rate corresponding to the variation of Q/Q∗ over four
orders of magnitude for four different values of γ /γ ∗. In (a)
electrothermal effects are considered, and in (b) electrothermal
effects are not considered; inset shows the variation of the di-
mensionless volumetric flow rate with γ /γ ∗ varying over four
orders of magnitude. In (c) differences in the volumetric flow rates
with and without considering electrothermal effects are shown.
The values of ζ̃0 = −0.5, K = 10, and Tratio = 1.17 are kept
constant.

γ < 10γ ∗, with increasing value of Q, the strength of the
thermoelectric field increases. Therefore, the suppression of
the primary flow continually decreases, and consequently, the
volumetric throughput progressively increases.

As the value of γ increases towards 1, i.e., as the difference
in the values of the ionic heat of transport of the counterions
and the coions decreases, there is smaller manifestation of
the thermoelectric effect. This can be clearly perceived in
Fig. 3 where the volumetric flow rate decreases for γ = 5γ ∗,
as compared to γ = γ ∗, implying that the thermoelectric
field is now relatively weaker so that it cannot counteract
the volumetric flow resistance, due to streaming potential
induced backflow and the thermodiffusive motion of ions,
to a greater extent. For the value γ = 1 (this is true for
γ ∼ 10γ ∗), the thermoelectric field will be solely determined
by the predominance in the number density of the counterions.
Further increase in the value of γ beyond 1, i.e., γ >

10γ ∗, leads to a reversal in the nature of the thermoelectric
field. Indeed, with γ now being greater than 1 (implying
Q− > Q+), it is the coions (anions for our case) which
have a greater propensity to flow upstream compared to the
counterions: This leads to an inversion in the polarity of the
thermoelectric field. Consequently, this thermoelectric field is
now directed opposite to the pressure-gradient-driven flow, and
aids the streaming potential mediated back-electro-osmotic
flow leading to a significant decrease in the overall volumetric
flow as seen in Fig. 3 for the plots corresponding to γ = 15γ ∗
and γ = 20γ ∗. Moreover, as mentioned before, the stronger
the thermophobicity of the ions indicated by higher (positive)
values of the ionic heats of transport, the stronger is the Soret
effect induced backmigration of ions and the higher is the
magnitude of the thermoelectric field: This explains the strong
decrement in the values of the overall volumetric flow rate
for higher values of log10 Q/Q∗, for γ > 10γ ∗. As a further
validation of the aforementioned explanation, the inset of Fig. 4
clearly shows the decreasing trend in the volumetric flow rate
with increasing value of γ relative to γ ∗ for a constant value of
Q = Q∗. An important point to remember is that irrespective
of the values of Q and γ , the combined consequences of
the thermoelectric field, the Soret effect, and the streaming
potential mediated flows are fundamentally determined by the
criterion that the net ionic current across any cross section of
the channel should necessarily be zero in the stationary state.

The quantitative differences between Figs. 3(a) and 3(b),
as graphically represented in Fig. 3(c), arise due to the
consideration of the electrothermal effect stemming from the
temperature-dependent permittivity variation [electrothermal
effects are present in the case of Fig. 3(a) and absent in the case
of Fig. 3(b)]. We note that a reference Debye length, λ0, has
been defined earlier based on the permittivity at T0. However,
if the permittivity is temperature dependent, then the local
Debye screening length, λ, along the wall will be a function
of the temperature (and will thus be different from λ0). As
the temperature increases, the permittivity, ε, decreases. Since
λ ∼ ε1/2, the Debye screening length decreases along the wall,
too. This means that as the temperature increases along the
wall, the local penetration of the diffuse layer of the EDL
into the bulk decreases. This is of immediate consequence to
the streaming potential. A reduced penetration of the diffuse
layer means that there will be a reduced streaming current
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ỹ

ψ̆
,

ψ̃
 

 

ψ̆

ψ̃

n̆−, ñ−
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FIG. 4. (Color online) (a) Number density of counterions and

coions along the cross -section at x̃ = 0.5 corresponding to
�

ζ = −0.5
and K = 10 and in the absence of any temperature gradient. Inset
shows the corresponding electrokinetic screening potential profile.
(b) The corresponding axial direction velocity profile. The plots with
markers represent the results from the semianalytical formulation
[48] while those without represent the results from the numerical
framework developed in this study. These results are found to be in
excellent agreement.

(as a larger portion of the electroneutral region will now be
in the path of the pressure-gradient-driven flow) which will
lead to a lower streaming potential. This, in turn, will lead
to a lower streaming potential induced backflow, ultimately
resulting in a reduced volumetric suppression. Hence, the
pressure-gradient-driven volumetric throughput is more for
the case considering electrothermal effect than that obtained
without it. This culminates in an almost constant positive value
of the difference in volumetric flow rates with and without
considering electrothermal effects, as plotted in Fig. 3(c).
This physical picture is true only up to log10 Q/Q∗ ∼ 0.5,
a regime where the streaming potential effects predominate.
Beyond this, as discussed previously, the thermoelectric effects
supersede the streaming potential effects (either opposing it
or aiding it depending on the value of γ ). However, in this
regime too, the reduced penetration of the diffuse layer of
the EDL, on considering the electrothermal effect, results in a
reduced thermoelectric field. This is so because a greater part
of the channel region is now covered by the electroneutral zone

(with equal number densities of the counterions and coions).
Therefore, for lower values of γ (γ < 1, which holds true
for γ<10γ ∗; this implies that the ionic heat of transport of
the counterion is higher), when the thermoelectric field is
directed opposite to the direction of the streaming potential
field, the volumetric flow rate does increase compared to the
log10 Q/Q∗ < 0.5, but it is significantly less than the case
when no electrothermal effects are considered due to the
weaker thermoelectric effect. This manifests in increasingly
negative values of the difference in volumetric flow rates
with and without considering electrothermal effects, for lower
values of γ , as can be seen in Fig. 3(c).

For higher values of γ (γ > 1, which holds for γ > 10γ ∗),
it is the coions which have a greater propensity for backflow
compared to the counterions due to the Soret effect, and this
results in a thermoelectric field having the same direction as the
streaming potential field. However, the electrothermal effects
with the resultant reduced penetration of the diffuse layer gives
rise to a reduced thermoelectric field. This weakened thermo-
electric field does reinforce the volumetric suppression due to
the streaming potential field, but this reinforcement is less than
in the case without considering electrothermal effects. Hence,
the resulting flow rate is more for the case with electrothermal
effect, than that obtained without it. This trend is also clearly
observed in Fig. 3(c), where the difference between the
volumetric flow rates obtained with and without considering
electrothermal effects becomes positive for higher values of γ .

Finally, to put the aforementioned observations in a realistic
perspective, we mention here the real values of volumetric
throughputs for thermally mediated streaming potential flows,
as obtained from the present theoretical framework for certain
practically realizable situations. The numerical values of the
flow rates presented here correspond to uref = 2.86 μm/s.
Let us first consider the case with the electrothermal ef-
fect which addresses the most general scenario. Now, for
Q+ = 5.744 × 10−22 J, which conforms to the streaming
potential dominated flow regime (i.e., log10 Q/Q∗ � 0.5), the
actual volumetric flow rate is obtained to be Qdim = 34.4 pl
(picoliter). Accordingly, for a greater value of the ionic heat of
transport of the cation Q+ = 5.744 × 10−19 J, which satisfies
the condition log10 Q/Q∗ > 0.5, the volumetric flow rate is
found to be Qdim = 54.35 pl (i.e., 57.99% increase compared
to the flow rate in the streaming potential dominated regime)
for γ = γ ∗, and Qdim = 13.9 pL (i.e., 59.59% decrease
compared to the flow rate in the streaming potential dominated
regime) for γ = 20γ ∗ (values of all the other parameters being
identical). This unambiguously proves that the role of the Soret
effect, and the consequential thermoelectric effect, in opposing
or aiding the streaming potential field induced suppression
of the volumetric flow rate is quite significant, and hence,
cannot be trivially precluded from any theoretical analysis
pertaining to nonisothermal streaming potential flows. Now, on
neglecting the electrothermal effect, the volumetric flow rate
is obtained to be Qdim = 103.83 pl for γ = γ ∗, and Qdim =
4.33 pl for γ = 20γ ∗, corresponding to the same value of the
ionic heat of transport (Q+ = 5.744 × 10−19 J). This validates
the observation that the electrothermal effect weakens the
thermoelectric field. So, when electrothermal effects are not
considered, it results in a stronger suppression of the flow
rate (compared to the case where electrothermal effects are
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considered) for the cases where the thermoelectric field and
the streaming potential field are directed opposite to each other.
However, where the two fields reinforce each other in inducing
a backflow, there is a reduced flow rate suppression (compared
again to the case where electrothermal effects are considered).

V. SUMMARY AND CONCLUSIONS

In this study, we clearly delineate the as-yet unaddressed
temperature-gradient induced alterations of the streaming
potential mediated pressure-gradient-driven flows. These al-
terations primarily stem from the intrinsic dependence of the
ionic flux on the local temperature gradients, as coherently
captured in our modeling framework by the inclusion of
the Soret effect. In this regard, we clearly show that the
inclusion of the Soret effect significantly alters the velocity
profiles, and hence its consideration is imperative for ac-
curate prediction of the electrohydrodynamic characteristics
pertaining to nonisothermal streaming potential flows. We
unambiguously prove that the resulting volumetric flow rate
of such nonisothermal streaming potential flows stems from
the combined interplay of electrokinetic effects, Soret effect,
and the consequential thermoelectric effect, which arises due
to the differences in the ionic heats of transport of the cations
and the anions. This realization paves the way for the most
important finding of our study: We show here, that depending
on the polarity of the generated thermoelectric field, which is
determined by the relative thermodiffusive migration strengths
of the cations and the anions, the suppression of the volumetric
flow rate due to the streaming potential field may be opposed or
aided. Hence, the simple imposition of an external temperature
gradient provides an additional control over the volumetric
flow rate for streaming potential flows through the Soret effect
and the concomitant thermoelectric field. This control over the
resulting flow rate can be exercised, for a definite magnitude of
the externally applied temperature gradient, by simply chang-
ing the nature of the electrolyte. Finally, we also highlight, in
a pinpointed manner, the role of the electrothermal effect in
the observed alterations of the temperature-gradient mediated
streaming potential flows. The electrothermal effect basically
weakens the thermoelectric field leading to reduced flow rate,
as compared to the case without electrothermal effects, when
the thermoelectric and streaming potential fields are opposing
each other, and enhanced flow rate, when the thermoelectric
field and the streaming potential field are oriented along the
same direction. So, based on the findings of our work, it
can be definitely concluded that temperature gradients can be
successfully employed for tuning streaming potential mediated
flows. Moreover, the implications of this endeavor hold the
promise of addressing a new paradigm of microfluidic devices
that relies on strong thermoelectrical coupling.

The influence of the Soret effect and the consequential
thermoelectric effect on the flow characteristics of nonisother-
mal streaming potential flows, as delineated here, can be
experimentally verified (or practically realized) by measuring
the flow rates at the outlet reservoir, for normal pressure-driven
flows of electrolyte solutions through polydimethylsiloxane
(PDMS)-glass microchannels. To this end, the temperature
gradient on the channel walls can be imposed by maintaining
hot water and cold water reservoirs at the two ends of the

channel. However, for implementing a linear temperature
gradient at the channel walls, as done in the present work, it is
sufficient to maintain a constant heat flux at the walls [106]. For
a definite magnitude of the wall temperature gradient, flows of
different electrolytes (having different magnitudes of the ionic
heats of transport) can be sustained through the microchannel
by means of a syringe pump, and the resulting flow rate at the
outlet can be simultaneously measured by a suitable flowmeter.
A comparison of the outlet flow rates, for different electrolytes,
will clearly highlight the influence of the thermal effects on
streaming potential mediated flows. However, such an exten-
sive experimental endeavor is beyond the scope of the present
work, and can be the premise of a separate research work.
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APPENDIX: VALIDATION OF SIMULATION RESULTS

For the sake of this validation study, we first switch off the
influence of the temperature gradient in our numerical frame-
work by setting Tratio = 1. Next, we restate the dimensionless
axial direction velocity from the semianalytical formulation
of Ref. [48] in a suitably modified nondimensional format to
make the representation amenable for meaningful comparisons
with the present formulation. The axial velocity, in accordance
with Ref. [48], can be expressed as

�

u = (2ỹ − ỹ2) − 8
C

�

Es

K2
ζ̃

(
1 − ψ̃

ζ̃

)
. (A1)

Here the dimensionless streaming potential (
�

Es) is given by

�

Es =
1
α

PeI1s

I2s − 8 CPe
αK2 I3s

, (A2)

where the expressions of the three integrals are

I1s =
∫ 2

0
(

�

n+ − �

n−)(ỹ2 − 2ỹ) dỹ, (A3)

I2s =
∫ 2

0
(

�

n+ + �

n−) dỹ, (A4)

I3s =
∫ 2

0

�

ζ (
�

n+ − �

n−)

(
1 −

�

ψ
�

ζ

)
dỹ. (A5)

It is to be noted that in this formulation, the electrokinetic
potential profile is obtained by solving the Poisson equation:

∂2
�

ψ

∂ỹ2
= −1

8
K2(

�

n+ − �

n−), (A6)

where the ionic number densities are assumed to follow the
Boltzmann distribution:

�

n± = exp(∓4
�

ψ).
In Fig. 4(a), we show the distribution of the number

density of the counterions and the coions along the cross
section of the channel at x̃ = 0.5 obtained from both the
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numerical implementation and the semianalytical formulation.
We also show, in the inset of Fig. 4(a), the comparison
of the electrokinetic potential profile, accompanying the ion
distribution, obtained from the two methods. Furthermore, in

Fig. 4(b), we show the corresponding velocity profiles obtained
from the two methods. All the results from the two methods
are found to be in excellent agreement, thereby establishing
the accuracy of the present numerical framework.
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