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Information content of turbulence
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We treat a turbulent velocity field as a message in the same way as a book or a picture. All messages can be
described by their entropy per symbol h, defined as in Shannon’s theory of communication. In a turbulent flow, as
the Reynolds number Re increases, more correlated degrees of freedom are excited and participate in the turbulent
cascade. Experiments in a turbulent soap film suggest that the spatial entropy density h is a decreasing function
of Re, namely h ∝ − log Re + const. In the logistic map, also analyzed here, increasing the control parameter
r increases h. A modified logistic map with additional coupling to past iterations suggests the significance of
correlations.
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I. INTRODUCTION

Any physical system is an information channel, since it
is “communicating its past to its future through its present”
[1]. A series of data measured for such a system is thus a
message, a sequence of symbols. Information theory is the
natural framework for the quantitative study of messages
[1–4]. The entropy H , also called the information, plays
a central role in the theory. It is a measure of uncertainty
or disorder. Shannon’s theory of communication has found
wide application in genetics [5], dynamical systems [6,7],
and a variety of other fields in physics [8]. It has also been
used extensively in statistical inference problems [9] and in
this light has provided an interesting way of interpreting the
maximization of entropy in statistical mechanics [10]. In this
work the entropy density h, the entropy per symbol, is used
as a measure of the information content in a 2D turbulent
flow [11,12].

Treating a physical system as a source of information has
its roots in the early development of nonlinear dynamics and
chaos [6]. This connection is nicely illustrated by Pesin’s
theorem, which for many chaotic systems equates the sum
of positive Lyapunov exponents λ with the Kolmogorov-Sinai
entropy hKS [7]. The Lyapunov exponent λ is the rate at which
phase-space trajectories separate, while hKS can be thought of
a special case of h. As two initially almost indistinguishable
trajectories separate, new details are uncovered. Thus if λ is
large, new information is revealed faster, i.e., h is also larger.

When a physical system is probed, it reports to the
experimenter an ordered sequence of signals (s1,s2,s3, . . . ).
In the present experiments, the measured signal is a sequence
of velocities (u1,u2,u3, . . . ) in a turbulent 2D flow. These
fluctuate in magnitude about a mean flow speed.

Presumably, the disorder h of fluid flow is relatively small
if the flow is almost laminar. In this limit of small Reynolds
number Re, one expects h to increase with Re. In the opposite
limit of large Re, a so-called inertial range of correlated
eddies of various sizes develops. Increased correlations implies
added constraints or redundancies, which always decreases the
uncertainty and information content of any message [3]. One
therefore expects that after passing through a maximum, h
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will decrease with increasing Re. (This issue is addressed in
Ref. [13] from a thermodynamic point of view.)

Although turbulence is both a temporal and spatial phe-
nomenon, the fundamental work of Kolmogorov deals only
with the spatial structure of turbulence [14,15]. The work of
Kraichnan and others has shown that many of the essential
features of turbulence are retained if one throws away
temporal correlations but keeps spatial ones [16–18]. Thus, the
expectation that h decreases ought to be true for a spatial series
but may not be true for a time series. When it is necessary to
make a distinction, the spatial entropy density will be denoted
hS while the temporal entropy rate will be denoted hT .

The present experiments probe a turbulent system at high
Re, where hS is indeed seen to decrease with Re for a
spatial velocity sequence. The near-laminar regime, where
one expects hS to increase with Re, is not experimentally
accessible.

The temporal entropy rate hT has often been used to probe
turbulence [7,19–21]. Several novel experiments have shown
that the onset of turbulence in many systems can be described
by a low-dimensional strange attractor. The evidence for this
is provided by probing hT at the transition. In the case of
Taylor-Couette flow [19], hT and the largest λ increase with the
Reynolds number Re, which can be thought of as a measure of
the nonlinearity or strength of the flow. The usual expectation
is that this trend continues as Re increases, as suggested by
some models and analytic work [20,21]. This may be true for
hT , but this work provides evidence that hS follows a different
path.

The motivation for this study is twofold. First, this seems to
be the first study of the spatial disorder of a turbulent velocity
field as a function of Re. By characterizing the flow with the en-
tropy density hS , the fundamental role of the cascade in produc-
ing correlations is clearly manifested. Second, h is one of sev-
eral fundamental quantities necessary to describe how a system
creates and communicates information [1,22]. This approach
appears to provide a new and interesting description of nature
but has not yet been applied to many physical systems [1].

II. PARTITIONS

In order to treat a physical system as a message, the
experimental data must be converted to symbols [23]. A
partition is defined which separates the data into disjoint slices
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FIG. 1. (Color online) An example of a partition used with
turbulence data. The dividers are a distance ε apart. Data points
that fall inside a section are assigned to that section’s symbol. As
ε decreases, the number of symbols required to describe the data
increases.

of size ε. The data values in each specified range (slice) are
then assigned to a unique symbol [23,24]. That is, if data
points are ε apart, they correspond to different symbols. (In
some sense, all experiments do this because of their limited
precision.) The size and location of the divisions can be chosen
to faithfully represent the original system even for seemingly
coarse partitions [23].

Figure 1 shows an example of how a partition is used for
some of the turbulence data where the mean speed has been
subtracted out and the result divided by the rms velocity. The
distance between the horizontal dividers is the partition size
ε. Data falling between the same walls (or on the boundary
as prescribed) are assigned to the same symbol. The number
of symbols required to describe the data is inversely related to
the magnitude of ε. For all the data used here, if ε � 10 and a
divider line kept at 0, then the data are effectively binarized.

Correctly identifying those partitions which completely
describe the system (called generating) can be extremely
difficult [24]. However, much can and has been learned
about complex systems such as the brain or turbulence even
after converting a data series into a simple binary alphabet
[23,25–27]. Approximate treatments are usually necessary and
often useful, as long as they still represent the underlying
system [23]. For a chaotic time series, the entropy rate hT

may approach a constant value (hKS) as ε decreases [24,28].
For a spatially extended system, one may expect a similar
asymptotic behavior.

III. ENTROPY AND ENTROPY ESTIMATION

The entropy of a message is usually defined as [2]

H [X] ≡ −
∑

x

p(x) log p(x), (1)

where p(x) is the probability of the symbol x occurring in
the message. The argument [X] indicates for which set of
variables the entropy is calculated and is often dropped unless

necessary. The natural logarithm is used, giving the entropy
in “nats.” One may consider − log p(x) as a measure of the
information gained from any one symbol. Thus the entropy
is the average information of the message. If the message is
completely random, then the surprise and the amount of new
information H is maximal. H is generally large for broad
distributions [3]. By contrast, a constant, unchanging stream
of data will have zero entropy. The message contains no new
information and no uncertainty.

However, one must take correlations into account since
these always reduce the amount of information a message
contains. Consider sequential blocks of symbols of length L.
The probability of any unique block xL is p(xL). The Shannon
entropy of single symbols can then be generalized to define
the block entropy

HL ≡ −
∑
xL

p(xL) log p(xL), (2)

where the sum is over all blocks xL. This block entropy will
diverge as L goes to infinity. Therefore one defines a quantity
h [3,29],

h = lim
L→+∞

hL = lim
L→+∞

HL+1 − HL. (3)

This h is the extra information one gets from measuring one
more symbol. The limit exists for stationary processes [3]
and may be reached much sooner than L = ∞. In spatially
extended systems, such as these turbulence measurements, h

is called the entropy density hS . For a time series, h is called
the entropy rate or metric entropy hT [29–32]. Although this
distinction does not affect the calculation, it does influence the
interpretation of the turbulence results for hS . (For instance,
there is no Pesin’s theorem for the entropy density.) The hS

estimated here thus differs markedly from that considered in
previous work where it has been estimated for time series
[19–21,33].

The above definition already suggests problems one might
have in estimating h, since the infinite limit is impossible
for a finite data set. Fortunately, hL for real data reaches an
asymptote sooner than infinity since correlations are usually
finite in scale. Some of the techniques designed to overcome
the finite data issues can be found in Ref. [24]. Most methods
involve making an assumption about the distribution of rare
events. A technique proposed in Ref. [24] is used here,
although the results are not changed much by its use (see
Fig. 2).

In this work the block entropies are used to make an estimate
of h by looking for the asymptote of hL defined by Eq. (3) as
shown in Fig. 2. This estimate will be called h∗. In Fig. 2, the
naive (frequency count) estimate of hL is plotted vs L along
with the Grassberger estimate from Ref. [24]. The dotted line
is the value of h determined by the inflection point of hL. The
asymptote is usually reached around L � 10.

An alternative method for determining a message’s in-
formation content is based on data compression. The lower
limit for the length S to which a message can be compressed
from its original length S0, for any compression algorithm,
is its entropy: S � H [3,24,34,35]. Compression algorithms
operate by finding redundancies and correlations in data and
re-expressing the message in a shorter form. Compression
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FIG. 2. (Color online) hL as a function L for binarized turbulence
data. hL initially decreases until correlations are no longer important.
The value of hL at the point of inflection is taken to be h∗. For larger
L, hL decreases again due to undersampling. The naive estimate (•)
calculates probabilities based on frequency counts. The Grassberger
estimate (�) takes the undersampling bias into account [24].

provides a nice way of thinking about how much information
is contained in a message, since it reduces the message to its
“essentials.” There is no way to shorten a completely random
message since each symbol is independent of the others and
there can be no compression. For a repetitive stream of symbols
(like “. . . 111111 . . . ”) the message is trivially compressed to
almost zero size.

The information content is then [34]

c = log D

(
S

S0

)
, (4)

where D is the alphabet size (e.g., for a binary alphabet
D = 2). The Lempel-Ziv algorithm is optimal in the sense
that c converges to h in the limit of infinite S0, so it can
be used as another estimate of h and a check on h∗. The
value of c is independent of file type but does require that the
compression program be based on the Lempel-Ziv algorithm.
In order to account for the “overhead” (file headers, etc.),
a random data set is compressed and that compression ratio
is used to normalize the real data [36]. Just as with h, the
compression ratio will be denoted as cS for a spatial series and
cT for a temporal one as necessary.

Traditionally, c has been given the name of algorithmic or
Kolmogorov complexity [3,34,36]. This is a measure of the
computational complexity of the data set in question. Even if c

is not equal to h, it is still a measure of the information content
of the data [36–38]. It is important to recognize the many
limitations involved in calculating information content. At best
h∗ and c are approximations to h, but this does not make them
meaningless and they can still be used for comparison [23].

IV. RESULTS

A. Logistic map

The estimates h∗ and c are first applied to the logistic map
as a test of the method as well as to illustrate some principles
regarding hT for chaotic systems. The logistic map is a
simple one-dimensional nonlinear map which nicely illustrates
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FIG. 3. (Color online) Lyapunov exponents λ (•) for the logistic
map plotted as a function of r (see text). The entropy rates were
estimated using block entropies h∗

T (binary: �, 10−1: �) and
compression cT (binary: �, 10−1: 	). Although h∗

T performs better as
an estimate of hT , all estimates show the same trend.

chaotic behavior [28],

xn+1 = rxn(1 − xn), (5)

where r is a parameter that increases the strength of the
nonlinearity. As r increases, the system goes through a series of
period-doubling bifurcations and eventually becomes chaotic
at r � 3.56995 (λ > 0). As usual, x ∈ (0,1) and r ∈ [0,4]. As
mentioned earlier, Pesin’s theorem states that the sum of the
positive Lyapunov exponents λ is equal to hKS, as long as the
system satisfies certain conditions [7]. For the logistic map,
which is one-dimensional, there is only one λ for each value
of r . The value of λ has been calculated as a function of r ,
using the algorithm in Ref. [39], and is compared with h∗

T and
cT in Fig. 3. For each value of r , a randomly chosen initial
condition is iterated 106 times.

Two partitions are shown in Fig. 3. A binary partition is
used where x = 1 if x � 0.5 and x = 0 if x < 0.5, so ε = 0.5.
(The location of this partition divider is important [40].) The
second partitioning involves simply rounding the data to the
first decimal point (ε = 10−1) and assigning a symbol to each
distinct data value. The estimate h∗

T performs very well, while
cT shows significant deviations for the 10−1 partition. Despite
its shortcomings in estimating hT , cT is nonetheless useful as a
measure of the information contained in these finite sequences,
as discussed above. It follows the same trend as λ and reveals
the logistic map’s information dependence on r . The values
of r for which λ is negative have hT � 0, since it is positive
definite.

Partitions with as few as 2 slices or as many as 1000
slices give essentially the same h∗

T and cT . This is because the
partitions are all generating, i.e., they represent the dynamics
faithfully and the entropy calculated for any of them is the
Kolmogorov-Sinai entropy hKS [24]. In other words, anything
smaller than a binary partition is overkill. This is not always
true but suggests that crude representations of data can still
capture important features. This emboldens us to do the same
for turbulence, to be discussed in Sec. IV C.

Once the transition to chaos occurs, λ and the estimates of
hT increase almost monotonically. There are several isolated
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FIG. 4. (Color online) Entropy rate estimate cT for the modified
logistic map using a binary partition. (Recall that a binary partition
is generating for the logistic map.) As d increases, c is lowered
considerably. (d = 0: ©, d = 0.01: �, d = 0.05: 	, d = 0.1: �.)
Inset: cT vs d for fixed r in the chaotic regime.

regions where the logistic map returns to periodic behavior [28]
and so λ < 0 and hT � 0. The general behavior appears to be
that as the strength of the nonlinearity increases (see Fig. 3),
so does hT . Chaos creates information. Similar behavior was
observed at the onset of turbulence in Taylor-Couette flow [19].
This increase in hT for the logistic map is accompanied by a de-
crease in the strength of correlations, as will be shown shortly.

B. Modified logistic map

In order to get a better picture of the importance of
correlations, a modified logistic map is introduced to explicitly
increase correlations through a term that couples to previous
iteration values further back than one. Denoting

f (x) = rx(1 − x), (6)

the modified logistic map is defined as

xn+1 = f (xn) + d

[
f (xn−2) + f (xn−1)

2
− f (xn)

]
, (7)

where d is the coupling strength. This modification is really
a kind of logistic delay map [28]. Now using three random
intial conditions, this map is also iterated 106 times and the
compression estimate is used to compare hT for different
values of d. The results are shown in Fig. 4.

Even for small d, cT is changed drastically. As d is
increased, cT is decreased more and the transition to chaos
shifts to larger values of r . This suggests that in addition to
decreasing hT , correlations can also act to suppress the chaotic
transition.

In order to quantify correlations for messages, it is useful to
introduce the mutual information I [3]. This is a measure of the
information shared between two variables. For two variables
X and Y it is

I (X; Y ) ≡
∑
x,y

p(x,y) log
p(x,y)

p(x)p(y)
= H (X) − H (X|Y ),

(8)
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FIG. 5. (Color online) Decay rate of mutual information for
logistic map and modified logistic map as a function of r using a
binary partition (d = 0: ©, d = 0.01: �, d = 0.1: �). The decay rate
here was calculated as the reciprocal of the area underneath the mutual
information curve: 1/

∑∞
0 I (�). If this is large, then the correlations

are weak. As the coupling d increases, the correlations get stronger.

where p(x,y) is the joint probability. Here uppercase letters
denote the variable and lowercase letters denote specific values
of that variable. The second equality shows that the mutual
information may also be thought of as the information about
variable X minus the information about X given knowledge of
Y . When X and Y are uncorrelated, I (X; Y ) = 0. When the two
variables X and Y are symbols separated by a certain number of
symbols � (X(i), Y = X(i + �)), then I (�) becomes like an
autocorrelation function for symbolic sequences [41,42]. For
the logistic map and modified logistic map, � is a temporal
interval while for the turbulence measurements � is a spatial
interval.

The mutual information is observed to decay exponentially
for more than a decade for the chaotic regime of the logistic
map and the logistic delay map, with a decay rate γC that
increases with r (see Fig. 5). Put another way 1/γC , which
can be thought of as a correlation time, decreases with
r . The correlations are thus decreasing as the strength of
the nonlinearity increases, which corresponds well with the
understanding that hT is reduced by correlations. Figure 5
shows γC as a function of r for three different values of d.
The addition of coupling has increased the strength of the
correlations and mirrors the drop in cT .

C. Turbulence

Now consider the real physical system of a turbulent soap
film, which is a good approximation to 2D turbulence since
the film is only several μm thick [11,12]. The soap solution
is a mixture of Dawn (2%) detergent soap and water with
1.5-μm particles added for laser doppler velocimetry (LDV)
measurements. Figure 6 is a diagram of the experimental setup.

The soap film is suspended between two vertical blades
connected to a nozzle above and a weight below by nylon
fishing wire. The nozzle is connected by tubes to a valve and a
reservoir which is constantly replenished by a pump that brings
the soap solution back up after it has flowed through. The
flow is gravity driven. Typical centerline speeds u are several
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FIG. 6. Left: Experimental setup showing the reservoirs (TR and
TB), pump (P), valve (V), comb (C), blades (LB and RB), weight
(W), and LDV. Center: Fluctuations in film thickness from turbulent
velocity fluctuations for smooth walls and a comb. (Here the thin
blades have been replaced by fishing wires.) Right: Fluctuations
created by a rough wall. The width w of the channels is several cm.

hundred cm/s with rms fluctuations u′ ranging from roughly
1 to 30 cm/s. The channel width w is usually several cm.

Turbulence in the soap film is generated by either (1)
inserting a row of rods (comb) perpendicular to the film or
(2) replacing one or both smooth walls with rough walls
(saw blades) with the comb removed. When protocol (1) is
used decaying 2D turbulence results which is almost always
accompanied by the direct enstrophy cascade [11,12]. If
procedure (2) is used, then forced 2D turbulence can be
generated with an inverse energy cascade [11,12]. The ability
to see the inverse energy cascade depends sensitively on the
flux and channel width. This sensitivity is decreased if two
rough blades are used. The type of cascade is determined
by measuring the one-dimensional velocity energy spectrum
E(k), where 1

2u′2 = ∫ ∞
0 E(k)dk.

Although a condensate has been observed in some 2D
turbulent systems [12], it is not present in this one. A
condensate is revealed by a sharp spike in E(k), which is never
observed. In other experimental arrangements, two slopes are
seen in a log-log plot of E(k) vs k, indicating a dual cascade of
both energy and enstrophy [11,12,43]. For these experiments
only one slope is observed.

Measurements of the velocity are usually taken near the
vertical middle of the channel. In all cases, the data are obtained
for the longitudinal velocity component at the horizontal center
of the channel. The data rate is �5000 Hz and the time series
typically had more than 106 data points. For this system, the
time series should be thought of as a spatial series by virtue of
Taylor’s frozen turbulence hypothesis [11,12,15]. Its validity
has been thoroughly tested for this system [44]. The fact that
these measurements involve a spatial series rather than a time
series is a crucial point.

With this high data rate, the smallest turbulent scales are
easily resolved. A number of measurements were taken near
the top of the channel where the flow is still quite slow. In this
case there is no power-law scaling in E(k) and so apparently
no cascade, although the flow is not laminar (u′ 
= 0). Some
representative spectra are shown in Fig. 7.
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FIG. 7. (Color online) Representative one-dimensional energy
spectra in a log-log plot of E(k) vs k. The enstrophy cascade (�)
has a slope close to −3 while the energy cascade (�) has a slope
close to −5/3. The flat curve (©) has no cascade.

Before converting the velocity data into symbols, the mean
velocity is subtracted out and the result divided by u′. This
was done to have a similar alphabet size for different Re and
seems a natural way to treat the data. The velocity data were
then partitioned in a similar way to the logistic map. That
is, the data were separated into slices of various sizes and
then converted into symbols. In the turbulence case a binary
partition means that a 1 is assigned if the velocity is above the
mean value and 0 if below.

The main results of this paper appear in Fig. 8, which is
a plot of h∗

S and cS vs Re, where Re ≡ u′w/ν and ν is the
kinematic viscosity. The Reynolds number Re is a measure of
the nonlinearity of the system, much like r for the logistic map.
Four different estimates of hS are shown in Fig. 8. The open
circles (©) and squares (�) show h∗

S and cS , respectively, for
the binary partition. The two upper data sets (�,�) are h∗

S and
cS for a finer partition where the velocity data are distinguished
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FIG. 8. (Color online) Entropy density estimates of hS vs Re
for the 2D turbulent data. hS is a decreasing function of Re. The
flat, higher hS region corresponds to the no-cascade data. The decay
begins with the emergence of the cascade. A binary partition (h∗

S : ©,
cS : �) and a second partition where the data is saved to the nearest
integer (h∗

S : �, cS : �) are shown here. Dividing lines are shown
that separate the data into no-cascade, energy, and enstrophy regions,
respectively.
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by their first significant figure (ε = 1). The same trend is shown
by both partitions and for all partitions studied, namely that h∗

S

and cS are decreasing functions of Re.
Note that h∗

S and cS are very weakly dependent on Re:
h∗

S ∝ − log Re + const after an initial plateau. This very slow
decay invites an explanation. The decrease begins as soon as a
cascade appears, as seen in Fig. 8. The decrease is independent
of the type of cascade, as both the energy and enstrophy
cascade data are present in the figure. The flat region at low
Re corresponds to the data without a cascade.

At first glance this result seems surprising, but the decrease
is in accord with the common picture of the turbulent cascade
[11,12,15]. The energy (enstrophy) flows from one scale r to
nearby spatial scales. The eddies participating in the cascade
are necessarily correlated and the extent of the inertial range
(cascade region) increases with Re. Since laminar flow is
presumably not disordered at all, this implies that hS passes
through a local maximum at an intermediate value of Re. It
is regrettable that the soap film is not stable at low Re, thus
hindering the observation of this local maximum.

Although the system under study here is two dimensional,
the same decrease in hS should also hold for three-dimensional
turbulence in the fully developed regime. It should be noted
that the results in Fig. 8 appear to be somewhat similar to that
of Wijesekera et al. in their study of spatial density fluctuations
in the ocean [45]. However, the behavior of the spatial entropy
density hS vs Re observed here differs substantially from that
of the temporal entropy rate hT studied elsewhere [19–21,33].

The spatial correlations in the flow are becoming increas-
ingly important as Re increases. This is evidenced by the de-
crease in the (spatial) decay rate γC for the mutual information
I (�) as shown in Fig. 9. Note the similarities between Figs. 9
and 8. The increased strength of the correlations is responsible
for the decrease in hS , which follows from its definition in
Eq. (3).

Unlike the logistic map, the turbulence data are more
sensitive to the size of the partition ε when converting to
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FIG. 9. (Color online) Spatial decay rate of mutual information
for turbulence data using a partition where data are saved to the
nearest integer. The decay rate here was calculated as the reciprocal
of the area underneath the mutual information curve: 1/

∑∞
0 I (�). If

this is large, then the correlations are weak. Dividing lines are shown
that roughly separate the data into no-cascade, energy, and enstrophy
regions, respectively. As Re increases, the correlations get stronger.
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FIG. 10. (Color online) Entropy density h∗
S as a function of the

partition size ε for three different Re. (The largest partition size
corresponds to binarized data.) The three curves correspond to the
no-cascade (©), energy cascade (�), and enstrophy cascade (�) data.
Despite the significant ε dependence, none of the curves intersect.
This means that the Re dependence is ε independent.

symbols as shown in Fig. 10. Here h∗
S is plotted as a function

of ε for three different values of Re. Although h∗
S increases as

ε decreases, the curves never cross for the different Re. The
reason for the general inverse relationship between ε and h∗

S is
that as ε decreases, more detailed information is described by
the symbols. The location of the dividers is important for the
coarser partitions [40], but as the partition size decreases the
results are not sensitive to this placement.

The compression ratio cS is not a reliable estimate of
hS at the finer partitions, but it is still an indicator of the
information content of the data streams and also shows
the same decrease with Re [36]. The important point is that the
general behavior of cS and h∗

S is the same for partitions of all
sizes.

Although the selection of a correct partition is trickier for
the turbulent data since h∗

S and cS are more sensitive to ε

for the turbulence data, they show that the spatial disorder
decreases with Re at each level of descriptive precision. An
estimate can be made for the smallest size of the partition
needed to capture the entire inertial range, based on the
smallest eddy’s characteristic velocity uη [15,46,47]. Simple
estimates show that the smaller partitions are fine enough
to resolve a fluctuation of this magnitude for all Re. It is
surprising that even a binary partition captures the main
features: hS ∝ − log Re + const. This suggests that one may
fruitfully study turbulence just by looking at these 1s and 0s.
Similar studies of complex systems such as the brain and heart
and even turbulence [23,25–27] have also used very coarse
partitions.

As an additional test of the validity of this coarse-graining
approach, the decay rates calculated from the raw data using
the autocorrelation method and with the mutual information
were compared for various partitions (data not shown). The
Re dependence was almost exactly the same, although there is
a shift by a factor of 1/e for the mutual information method.
Since the entropy is fundamentally connected to correlations,
this is strong evidence for the validity of this coarse-graining
approach.
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Entropy maximization is a familiar principle for solving
a variety of problems and is a fundamental principle in
equilibrium statistical mechanics [9,10]. In these problems,
understanding the constraints is of paramount importance. In
a turbulent system the constraints are correlations that span
a wider range of scales as Re increases. These constraints,
combined with some variational principle, may explain the
decrease in hS with Re observed here. Perhaps the organization
of the cascade is the response to the system’s effort to more
efficiently transfer energy (enstrophy) between scales.

V. CONCLUSION

Treating turbulence as a message enables one to quantify
the information content in the system through the entropy
density hS . Estimates show that hS , a measure of disorder, is
a decreasing function of Re at large Re. The cascade reduces
spatial randomness by introducing correlations.

Cascades in turbulence are often thought to arise naturally
because of the wide separation between the forcing scale and
the dissipative scale, as well as because of some essential
features of the Navier-Stoke’s equation [15,48]. However,
this may not be the only way of looking at the issue, just
as in mechanics one can use either Newton’s laws or a
variational principle and reach the same conclusion. Perhaps
the underlying reason for the development of a cascade can be
connected to the decrease of hS as Re increases.
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