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Kinematic dynamo action in square and hexagonal patterns
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We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity
is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action
is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component.
As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall
growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows
results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the
growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough
magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo
properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly
conducting and infinite magnetic permeability boundary conditions.
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I. INTRODUCTION

One of the principal goals of dynamo theory is to understand
the origin of large-scale magnetic fields observed in stars
and planets. Although the dynamo action required certainly
depends on many parameters, it is often useful to study the
induction processes in simplified flows. This approach has
led to significant improvements in our understanding of the
generation of magnetic fields by the motions of an electri-
cally conducting fluid in astrophysical objects and laboratory
experiments. Kinematic dynamos driven by simplified flows
are indeed very useful to model the fundamental induction
mechanisms of more realistic liquid metal experiments [1–3].
The velocity field driving the dynamo can be measured ex-
perimentally or modeled analytically [4]. The famous Roberts
flow [5,6], whose analytical expression is very simple, is the
perfect illustration of what is called a mean-field or large-scale
dynamo, a mechanism which might explain the origin of
magnetic fields coherent on much larger scales than those of the
fluid motion. In mean-field theory, which is a turbulent closure
theory describing the evolution of the large-scale quantities in
terms of the statistical properties of the small-scale pertur-
bations [7,8], the evolution equation for the large-scale field
is derived from the induction equation by decomposing the
magnetic field into mean and fluctuating parts. The small-scale
velocity field interacts with this large-scale magnetic field
creating magnetic perturbations at small scales. Provided the
flow lacks reflectional symmetry, these induced small-scale
magnetic perturbations then interact with the small-scale
velocity generating a nonvanishing mean electromotive force,
which sustains the large-scale magnetic field. Although this
scenario is very appealing as an explanation of the existence
of large-scale magnetic fields in many astrophysical objects,
the situation becomes more complicated when the flow is less
ideal, e.g., turbulent, or when the magnetic Reynolds number
becomes large as expected in the astrophysically relevant
regime.

*Corresponding author: b.favier@damtp.cam.ac.uk

Of particular interest here is the well-studied topic of
convectively driven dynamos, where the flow is sustained by
thermal convection between two parallel horizontal plates [9].
Magnetic fields of planets and stars are often accepted to
be the result of convectively driven flows of an electrically
conducting fluid occupying a large volume of the star or planet.
Early numerical studies have concentrated on the turbulent
regime [10–12] where the Rayleigh number is much larger
than its critical value. However, without rotation, the flow
is reflectionally symmetric so that only small-scale dynamo
action can occur. When the plane-layer is rotating around
the vertical axis, the viscous force can become of secondary
importance in comparison to the Lorentz force and the flow
is thus strongly controlled by the forces exerted by the
magnetic field. Fully three-dimensional dynamo solutions in
the rapid rotation limit were numerically studied by several
authors [13–15]. It has also been shown by [16] that turbulent
moderately rotating Boussinesq convection, while breaking
reflectional symmetry as required by mean-field theory, is not
necessarily capable of sustaining a dynamo of mean-field type.
It is certainly able to sustain a small-scale dynamo, but the
magnetic field is then locally regenerated by the stretching
properties of the flow and is strongly intermittent without
large-scale coherence. Since then, several studies have tried
to clarify the problem [17–19], but it seems that a definitive
answer is still elusive. More recently, a transition has been
shown to occur between two different types of dynamos in
rapidly rotating Boussinesq convection [20]. In order to clarify
the transitions between rotationally dominated and more
turbulent dynamos, it therefore seems interesting to consider
rotating convection just above onset where the flow is much
more coherent spatially and temporally than in the turbulent
regime. Several studies have considered the kinematic dynamo
action driven by simple patterns of convection such as rolls,
squares, and hexagons without rotation [21–23]. In the rotating
case, the pioneering work of [24] has shown the existence of
a large-scale dynamo in the limit of rapid rotation.

We here consider the kinematic dynamo problem in a steady
velocity field corresponding to rotating Boussinesq convection
just above onset. While we neglect here the effect of the
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Lorentz force, our model is sufficient to derive interesting
results concerning the transition between large-scale and
small-scale dynamos, as well as the surprising consequence
of the so-called turbulent pumping effect [7,8,25,26]. Near
onset, the preferred pattern consists of rolls providing the
system is symmetric with respect to the mid-layer. However,
at sufficiently large rotation rate, these rolls are unstable to the
Küppers-Lortz instability [27]. In this case, a given set rolls is
unstable to another set of rolls with a different orientation.
This new set of rolls is equally unstable to yet another,
leading to spatiotemporal chaos. Surprisingly, at even larger
rotation rates, square patterns were experimentally found to be
stable [28]. The existence of this square pattern, slowly rotating
in the prograde direction, was later confirmed numerically
by [29]. In the case of convection lacking the up-down
symmetry, either due to temperature-dependent viscosity or
non-Boussinesq effects, theory predicts that the hexagonal
pattern is the primary instability [30,31] (which is also the case
without rotation). In this paper, the cell pattern is imposed to
be either squares or hexagons, for which the corresponding
velocity fields are analytically known in the Boussinesq
approximation [32]. While we do not self-consistently solve
the momentum equation in this study, the previous discussion
gives some justifications for the existence of square and
hexagonal patterns in rotating plane-layer convection. Note
that such steady patterns might not be relevant to liquid metals
and planetary dynamos since the very low Prandtl number
implies that the bifurcation to convection is time dependent
in that case. However, the mechanism discussed in this paper
might still be relevant to more realistic dynamos, provided that
the topological magnetic pumping plays an important role.

In the next section, we describe the model and the numerical
approach used to solve the induction equation with a prescribed
velocity field in three dimensions. A mean-field model is
then derived and the associated results are discussed in
Sec. III. Sections IV and V are devoted to the results from
direct numerical simulations of the dynamo driven by square
and hexagonal patterns, respectively. Finally, we explore
the effect of changing the magnetic boundary conditions in
Sec. VI.

II. DESCRIPTION OF THE MODEL

We consider the evolution of a plane-parallel layer of
incompressible fluid, bounded above and below by two im-
penetrable, stress-free walls, a distance d apart. The geometry
of this layer is defined by a Cartesian grid, with x and y

corresponding to the horizontal coordinates. The z axis points
vertically downwards. The layer is rotating about the z axis,
with a constant angular velocity � = � ẑ. The horizontal size
of the fluid domain is defined by the aspect ratios λx and λy so
that the fluid occupies the domain 0 < z < d, 0 < x < λxd,
and 0 < y < λyd. The physical properties of the fluid, namely,
the kinematic viscosity ν and magnetic diffusivity η, are
assumed to be constant.

The velocity field is imposed to be a cellular flow corre-
sponding to the onset of Boussinesq convection in a rotating
layer. In particular, we consider the solutions first obtained by
Veronis [32]. We focus here on the particular cases of square
and hexagonal patterns. The velocity field associated with the

square pattern is
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where T is the Taylor number defined as T = 4�2d4/ν2 and a

is is the most unstable wave number in the large Taylor number
limit given by [33]

a = (
1
2π2T

)1/6
. (4)

The second terms in the right-hand side of Eqs. (1) and (2) are
O(1), whereas the first terms vary like T −1/6. For large Taylor
numbers, which is the focus of this paper, we therefore expect
the second terms to be dominant.

The velocity field associated with the hexagonal pattern is
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where L = 4π/(3a). The same remark applies for this velocity
field. At large Taylor numbers, we expect the second term on
the right-hand side of Eqs. (5) and (6) to be dominant.

In addition to the beautiful drawings one can find in
[32], which were reproduced in [33], we illustrate both
of these velocity fields on Fig. 1. Note that the flows in
Fig. 1 correspond to T = 108. The vertical component of
the velocity is shown along with arrows representing the
horizontal components in the horizontal plane z = 0.25. We
also plot streamlines initiated close to the top boundary. The
symmetry between the up and down flows in the case of
the square pattern is apparent, whereas a clear difference is
observed in the case of the hexagonal pattern. Note that at
a particular depth and for large Taylor numbers, the square
pattern flow is nearly identical to the Roberts flow [5,6] defined
by ux = cos x sin y, uy = − sin x cos y, and uz = cos x cos y.
However, and contrary to the Roberts flow, the flows described
by Eqs. (1)–(3) and (5)–(7) are not maximally helical. The
relative kinetic helicity, defined by

H(z) = 〈u · ∇ × u〉
〈u2〉1/2〈(∇ × u)2〉1/2

, (8)
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FIG. 1. (Color online) Left: vertical component of the velocity in a horizontal plane located at z = 0.25. Bright and dark colors correspond
to positive and negative values, respectively. The horizontal velocity field is shown with arrows. Right: streamlines which color depends on
the time spent in the flow (the darker, the longer). The starting points of the streamlines are initiated regularly in a small horizontal square grid
whose size is equal to the size of a convective cell. Top: square pattern. Bottom: hexagonal pattern. The Taylor number is T = 108 in both cases.

is presented on Fig. 2, where 〈· · · 〉 denotes the horizontal
average over x and y. We plot the results for the square
pattern in thick lines and for the hexagonal pattern in thin
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FIG. 2. (Color online) Horizontally averaged relative kinetic
helicity as defined by Eq. (8). The results are shown for various Taylor
number T . The thick lines correspond to the square pattern, whereas
the thin lines correspond to the hexagonal pattern. For T > 108, both
patterns converge toward the same helicity profile.

lines. For T > 108, both flows converge towards the same
helicity profile. These high Taylor number flows are nearly
Beltrami (i.e., ∇ × u = u) for z ≈ 0.28 and 0.72. Although
the volume-averaged helicity is zero, these flows lack mirror
symmetry and are therefore good candidates for a mean-field
type dynamo. It is indeed known that, at infinitely large
Taylor numbers, rotating convection can sustain a large-scale
saturated magnetic field, both in the Boussinesq [24] and in
the anelastic [34] approximations. Note that we focus on flows
for which T � 108 in the following.

The purpose of this paper is to study the kinematic dynamo
properties of these flows by solving the induction equation

∂ B
∂t

= ∇ × (u × B − η∇ × B) , (9)

where u is the prescribed steady velocity field given by
Eqs. (1)–(3) or (5)–(7), and B is the magnetic field. Both
u and B are solenoidal. We now dimensionalize lengths with
the layer depth d, so that the dimensionless depth is unity.

In the horizontal directions, all variables are assumed to be
periodic, with the same periodicity as the flow. The upper and
lower boundaries are assumed to be impermeable and stress
free, which implies that ux,z = uy,z = uz = 0 at z = 0 (the
upper boundary) and z = 1 (the lower boundary). We choose
appropriate conditions for perfectly conducting boundaries,
which implies that Bz = Bx,z = By,z = 0 at z = 0 and 1. We
also explore in Sec. VI the effect of the magnetic boundary
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conditions by considering the case of a vertical field at the
boundaries (the magnetic permeability of the boundaries is
infinite), setting Bx = By = Bz,z = 0 at z = 0 and 1.

The induction equation (9) is solved using a modified
version of the mixed pseudospectral and finite difference code
that was originally described by [35]. Due to periodicity in the
horizontal direction, horizontal derivatives are computed in
Fourier space using fast Fourier transforms. In the vertical
direction, a fourth-order finite differences scheme is used,
adopting an upwind stencil for the advective terms. The
time stepping is performed by an explicit third-order Adams-
Bashforth technique, with a variable time step. The resolution
goes up to 256 Fourier modes in each horizontal direction and
480 grid points in the vertical direction. A poloidal-toroidal
decomposition is used for the magnetic field in order to ensure
that the field remains solenoidal.

III. MEAN-FIELD MODEL

In this section, we derive a reduced model based on mean-
field theory. The analysis performed here is closely related
to the asymptotic analysis by Soward [24] of a convectively
driven magnetic dynamo in an incompressible medium, in
a plane layer with strong background rotation. Soward [24]
derived a set of nonlinear equations governing the evolution
of this dynamo, and stable periodic solutions are shown to
exist. Our approach is, however, much simpler as we focus on
the kinematic problem only. This simplification allows us to
extend the analysis to higher order than in [24], revealing new
interesting behaviors.

It is well known that, for large Taylor numbers, the
horizontal scale of the motion at the onset of the instability
is of order T −1/6. The parameter ε is therefore classically
introduced [24] and is related to the Taylor number T through

ε = T −1/6. (10)

We then assume that the horizontal gradients are much
larger than the vertical ones by introducing the substitution
(∂x,∂y) → ε−1(∂x,∂y) ≡ ε−1∇h. We further assume that u =
O(1) and that the magnetic field can be decomposed as
B(z,t) + ε

1
2 b, where B is the spatial average of the magnetic

field over horizontal coordinates, whereas b is the remaining
fluctuating part, which has zero horizontal average. The time
derivative scales as ∂t → ε

1
2 ∂t . If 〈. . .〉 denotes the horizontal

average over x and y, the mean induction equation can be
written as

∂t B = ẑ × ∂

∂z
〈u × b〉 + 1

λ

∂2 B
∂z2

, (11)

where λ = O(1) = ε1/2RL
m and RL

m = Ud/η is the large-scale
magnetic Reynolds number and U is a characteristic velocity.
The velocity field u will be defined later, but for now, we just
assume that ∇2

hu = −u, and that 〈u〉 = 0, which is verified
by both square and hexagonal patterns [see Eqs. (1)–(3) and
(5)–(7)]. We define the small-scale magnetic Reynolds number
(based on the small horizontal scale of the motion) as RS

m =
ε

1
2 λ. For a mean-field dynamo to operate, RL

m should be large
whereas RS

m should be small, the product of these two being a

constant [8]. The equation for the fluctuating magnetic field is
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We now expand the fluctuating magnetic field as b = b0 +
ε

1
2 b1. At leading order, Eq. (12) gives

0 = B · ∇hu + 1

λ
∇2

hb0. (13)

Hence, b0 = λB · ∇hu. The mean electromotive force is, at
first order,

E0 ≡ 〈u × b0〉 = λ 〈u × (B · ∇h)u〉 . (14)

At the next order, Eq. (12) gives

0 = ∇h × (u × b0 − 〈u × b0〉) + 1

λ
∇2

hb1, (15)

and the correction to the mean electromotive force is

E1 ≡ 〈u × b1〉 = − 〈∇2
hu × b1

〉 = − 〈
u × ∇2

hb1
〉

= λ2 〈u × ∇h × [u × (B · ∇h)u]〉 . (16)

To simplify this expression, consider two vector fields P and
Q. Then,

〈P × ∇h × Q〉x =
〈
Qx∇h · P − Qj

(
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)〉
. (17)

By taking P = u, the first term in the right-hand side of
Eq. (17) is O(ε) and can therefore be neglected. Thus, the x

component of E1 is
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〉
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The z component is irrelevant as it will disappear when the curl
is taken in the mean equation, so we assume E1 is horizontal.
This is a result of the fast rotation considered here [36]. Then,
clearly E1 is perpendicular to B so that E1 = V × B, where

V = λ2 ẑ
〈
u × ∂u
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〉
(20)

= 3λ2 ẑ
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∂ux
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− ∂ux

∂x
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)〉
. (21)

V is a pumping velocity, and corresponds to the off-diagonal
terms of the classical α tensor of mean-field electrodynamics.

We now specialize to velocity fields that mimic that found
by Veronis [32]. Let us write the velocity field as

u = (∇hφ × ẑ) cos πz + φ ẑ sin πz. (22)

In the case of the square pattern, we can choose

φ = cos x cos y. (23)
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Note that the resulting flow is not solenoidal, but the correction
necessary to recover Eqs. (1)–(3) is O(ε) and so can be
neglected here. In that case, the pumping velocity V is zero
and the mean electromotive force reduces to its first order term

E0 = − 1
2λB sin πz cos πz, (24)

so that the equation to solve is
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= −1

2
λ ẑ × ∂
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λ
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Note that the equation does not depend on ε, but we require
ε 	 1.

In the case of the hexagonal pattern, we can choose
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Again, this flow is not solenoidal, but the correction necessary
to recover Eqs. (5)–(7) is also O(ε). In that case, the pumping
velocity does not vanish, and Eq. (21) can be rewritten after
some algebra as

V = 3λ2 ẑ sin(πz) cos2(πz)

〈
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16
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A similar calculation for the mean electromotive force at first
order gives

E0 = − 3
2λB sin πz cos πz. (29)

Finally, the equation to solve is
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16
λ2ε1/2 ∂

∂z
[B sin(πz) cos2(πz)] + 1

λ

∂2 B
∂z2
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Note that Eq. (30) involves a term depending on our small
parameter ε. This is the only additional term at that order, and
such a term is exactly zero in the case of the square pattern
[see Eq. (25)]. Higher order terms are neglected as they do not
provide further insights into the problem, and are similar for
both flows.

We now look for a solution of Eqs. (25) and (30).
The horizontally averaged magnetic field [Bx(z,t),By(z,t)]
is written in the form B(z)eσ t , where σ is the complex
growth rate. The functions Bx and By are represented by their
discretized values at the Gauss-Lobatto collocation nodes

zi = cos

(
iπ

N

)
, 0 � i � N (31)

where N is the Chebyshev truncation order. Each differential
equation is then represented at each of the collocation nodes,
using the first and second Chebyshev collocation derivative
matrices. The boundary conditions are represented at the two
boundary points z = 0 and 1, again using the Chebyshev

collocation derivative where needed. The following results
are derived using a Chebyshev truncation order of N = 256.
The generalized eigenvalue problem associated with Eqs. (25)
and (30) can be written as

M B = σP B, (32)

where M is the matrix associated with the discretized linear
operators, P is the matrix associated with the boundary
conditions, and B is a vector containing the variables Bx and
By at the collocation points. We recall here that the boundary
conditions correspond to a perfectly conducting medium at
z = 0 and 1, which imposes Bx,z = By,z = 0.

This generalized eigenvalue problem is solved for M and P

using the following method. First, the matrix P is transformed
in an upper-diagonal matrix. We then reduce the pair of real
matrices (M,P ) to a generalized upper Hessenberg form using
orthogonal transformations. The eigenvalues are finally com-
puted using the double-shift QZ method. These different steps
are performed using the relevant routines from the Linear Al-
gebra PACKage library. We then select the eigenfunction associ-
ated with the largest real eigenvalue Re(σ ), with the additional
constraint that the total horizontal magnetic fluxes are zero:∫ 1

0
Bx(z)dz = 0 and

∫ 1

0
By(z)dz = 0. (33)

This constraint must be respected at all times due to
the combination of horizontal periodicity and perfectly
conducting boundary conditions at z = 0 and 1.

Let us first discuss the results associated with the square
pattern and Eq. (25). The only relevant parameter is here λ,
which is related to the large-scale magnetic Reynolds number
by RL

m = ε−1/2λ. In the following, we vary λ between 1 and
12. The real and imaginary parts of the eigenvalues are plotted
on Fig. 3. The critical value of λ for dynamo action appears
to be λcrit ≈ 6.335. Using the same scaling as in [24], this
corresponds to �crit = λ2

crit/(8π ) ≈ 1.597, which is consistent
with the value quoted in the same paper (see p. 623 of [24]).
The imaginary part of the growth rate is always positive with
a maximum at λ = 6.93, slightly after the onset for dynamo,
and decays to zero at large λ. We therefore expect the dynamo
to be oscillatory at onset. The eigenfunctions for Bx are also
shown on Fig. 3 for various values of λ. Note that dynamo
action is confined in the upper and lower halves of the domain,
where the relative helicity and the mean electromotive force are
extremal. The eigenfunctions are antisymmetric with respect
to the mid-layer, as it is the case for the relative helicity (see
Fig. 2) and the mean electromotive force [see Eq. (24)]. As
λ is increasing, the small-scale magnetic Reynolds number
RS

m = ε
1
2 λ increases until mean-field theory is not applicable

anymore. As the Taylor number increases for a fixed λ, ε and
RS

m decrease so that the range of applicability of mean-field
theory increases. From this model, we can derive a minimal
Taylor number for large-scale dynamo to occur. By assuming
that RS

m = ε
1
2 λ = 1 and using the critical value of λ, one finds a

limit Taylor number of T ≈ 4 × 109. Below this value, mean-
field theory is not applicable at the onset of the mean-field
dynamo, so that we can not conclude as to its existence.

We now discuss the results associated with the hexagonal
pattern and Eq. (30). We vary the parameter ε between 0 and
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FIG. 3. (Color online) Results from the mean-field equation (25) corresponding to the square pattern. Left: real and imaginary parts of
the growth rate σ versus λ. Right: eigenfunctions Bx(z) for λ = 6.38 (just above the onset of dynamo action), λ = 12.2, and λ = 20.1. The
eigenfunctions have been normalized so that

∫ 1
0 |Bx(z)|dz = 1.

5 × 10−2, which corresponds to T = ∞ and T = 6.4 × 107,
respectively. Note that in the case ε = 0, the pumping velocity
is zero, and Eqs. (25) and (30) are identical apart from the
numerical coefficient in front of the mean electromotive force.
The parameter λ is varied between 1 and 10.

We show on Fig. 4 the evolution of Re(σ ) with λ for
different ε. When ε = 0, the only remaining term in Eq. (30)
is the α effect so that a mean-field dynamo is expected at
sufficiently large λ as in the square pattern case. This is indeed
observed and dynamo action is observed for λ > 3.66. As ε

increases, the real part of the growth rate Re(σ ) decreases,
up to the point where no mean-field dynamo is observed

for approximately ε ≈ 0.025, which corresponds to a critical
Taylor number of approximately T ≈ 4 × 109. Below this
critical value, no large-scale dynamo is possible. Note that
this reduction in the growth rate only happens at sufficiently
large values of λ. The imaginary part of the growth rate is
monotonously increasing as λ is increasing (not shown). On
Fig. 4, we also show as a dashed curve the location where the
small-scale magnetic Reynolds number RS

m = ε1/2λ is equal to
unity, which defines the upper limit of validity of mean-field
theory. The reduction in the growth rate, and the eventual
disappearance of any mean-field dynamo action for sufficiently
large ε, is well within the range of validity of the model. For
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FIG. 4. (Color online) Results from the mean-field equation (30) corresponding to the hexagonal pattern. Left: real part of the growth rate
σ versus λ for different ε. The dashed curve corresponds to the location of RS

m = ε1/2λ = 1. Points above this line are beyond the domain of
validity of mean-field theory. Right: eigenfunctions Bx(z) for ε = 0.0192 (T = 2 × 1010) and two different values of λ. The eigenfunctions have
been normalized so that

∫ 1
0 |Bx(z)|dz = 1. The case λ = 6.21 is a dynamo [Re(σ ) = 1.67] whereas the case λ = 8.32 is not [Re(σ ) = −19.39].
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RS
m > 1, small-scale dynamo action might be possible, and

the current mean-field approach is irrelevant. The reason why
dynamo action is less efficient as ε increases can be understood
by looking at the eigenfunctions for the horizontally averaged
magnetic field. We show in Fig. 4 the eigenfunctions associated
with Bx for a fixed value of ε = 0.0192 which corresponds to
T = 2 × 1010. The results are shown for λ = 6.21 and 8.32. In
the first case, the pumping velocity is weak so that the resulting
eigenfunction is not symmetric with respect to z = 0.5 but
there is still a strong mean field in one of the two regions of high
helicity. Dynamo action is in that case possible (see the left
part of Fig. 4). For λ = 8.32, however, the pumping velocity
is dominant and the magnetic flux is advected vertically, away
from the region of efficient α effect, and dynamo action
disappears. Note that the pumping velocity is directed upward
along −ẑ [see Eq. (28)]. While the flow is more complicated
in our case due to the presence of rotation, our results are
qualitatively similar to those presented by [25] (see their Fig. 4
for example). Of course, the mean-field model is only valid
when the small-scale magnetic Reynolds number ε1/2λ is small
compared to unity, so that small-scale dynamo might still be
possible at larger values of Rm. It is, however, not possible to
address this aspect of the problem with the current model. Note
also that this simple model does not take into account turbulent
diffusion terms or other O(ε) corrections, but as will become
apparent in the following, it is enough to capture the essential
properties of the kinematic dynamo action in such flows.

IV. SQUARE PATTERN

In addition to confirming the predictions of the reduced
mean-field model, the purpose of this section is to explore the
large magnetic Reynolds number regime, for which mean-field
theory is not applicable. The induction equation (9) is now
fully solved in three dimensions using the numerical scheme
described in Sec. II. We focus in this section on the flow
defined by Eqs. (1)–(3) and corresponding to a square pattern.
From the mean-field model described in the previous section,
we expect a large-scale dynamo at onset. We consider three
different Taylor numbers: T = 108, 1010, and 1012. These

TABLE I. Summary of the parameter values for different Taylor
number T . ε is equal to T −1/6. a is the most unstable horizontal
wave number at onset. λx and λy are the aspect ratios of the
numerical domain. The superscripts S and H correspond to square
and hexagonal patterns, respectively. In the case of the hexagonal
pattern, we have λH

y = √
3λH

x .

T ε a λS
x = λS

y λH
x λH

y

108 0.0464 28.11 0.316 0.258 0.447
1010 0.0215 60.56 0.147 0.12 0.207
2 × 1010 0.0192 67.98 0.131 0.107 0.185
1012 0.01 130.48 0.068 0.056 0.096

flows are all characterized by ε 	 1, but we nevertheless keep
all the terms in Eqs. (1)–(3) so that the flow is rigorously
incompressible. This will lead to quantitative differences with
the previously studied mean-field model for which O(ε)
terms were neglected. We consider the case T = 108 as it
is smaller than the critical value of T ≈ 4 × 109 predicted by
the mean-field model for the existence of a self-consistent
large-scale dynamo. It should therefore allow us to study
the behavior of the dynamo as mean-field theory becomes
gradually less and less applicable. The cases T = 1010 and
1012 should be consistent with the mean-field model on a wider
range of parameters. Since the flow is periodic, we restrict
our numerical solution to have the same periodicity by fixing
the aspect ratio to be λx = λy = 2

√
2π/a. We considered

numerical simulations with larger aspect ratios in order to
allow for spatially modulated solutions, but we did not find
any. The corresponding aspect ratios can be found on Table I.
The magnetic field is initialized with a small perturbation with
zero net horizontal flux. We vary the magnetic diffusivity
from η = 10−1 down to η = 5 × 10−5. As the diffusivity is
reduced, we also increase the numerical resolution. For the
case η = 10−1, a resolution of 322 × 48 is sufficient whereas
the case η = 5 × 10−5 requires a resolution of 2562 × 480.

After some transient phase, the magnetic energy is varying
exponentially with time, as expected from the kinematic nature
of this problem. Figure 5 shows the typical horizontal topology

FIG. 5. (Color online) Magnetic energy B2 in a horizontal plane located at z = 0.25. For the sake of clarity, the aspect ratio has been
multiplied by two by plotting four copies of the domain side by side. Bright and dark tones correspond to opposite polarity. From left to right,
η = 10−2 (close to the critical value for dynamo action), η = 10−3, and η = 5 × 10−5 (small-scale dynamo action is possible). The horizontally
averaged magnetic field is oriented in the same direction in all cases.
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FIG. 6. (Color online) Top: growth rate of the magnetic energy
versus λ. The large empty symbols correspond to the full simulations,
whereas the small full symbols correspond to cases where the mean
induction equation (35) is neglected. Bottom: (z), as defined by
Eq. (34), for the square pattern at T = 108, and for different values
of η.

of the magnetic energy after the transient phase, for different
η and for T = 108. As the magnetic diffusivity decreases, the
field tends to be concentrated at the edges of the convective
cells. Note that the vertical structure of the magnetic field is
also becoming more and more complicated as η decreases (not
shown). The growth rate of the total magnetic energy is shown
on Fig. 6 as large empty symbols. For all three Taylor numbers
considered here, we observed dynamo action. For T = 108,
dynamo action is first observed for η ≈ 0.0176, whereas the
critical diffusivity is η ≈ 0.015 for T = 1010 and η ≈ 0.0115
for T = 1012. Note that the fact that the critical value of the
magnetic diffusivity for dynamo action does depend on the
Taylor number, and therefore on ε, is inconsistent with
the mean-field model discussed in Sec. III. This is probably

due to the fact that the values of ε considered here are too large
for the mean-field model to be rigorously applicable.

As the magnetic diffusivity is decreased, the growth rate
increases up to a maximum. This maximum growth rate
is reached at smaller diffusivities as the Taylor number is
increased. After this point, a further decrease in η corresponds
to a decrease in the growth rate. This reduction in the growth
rate was not predicted by the mean-field model since the
growth rate was a monotonic function of λ in that case. Note
that as the Taylor number is increased, the agreement between
the model and the simulations is better since the range of
validity of the mean-field model increases.

Let us now describe the nature of the dynamo action at
onset. Following [16] and [37], it is helpful to define the
quantity

(z) = 〈B〉2

〈B2〉 , (34)

which is the ratio between the magnetic energy contained in
the mean field and the total magnetic energy at a given depth.
Our initial condition corresponds to  = 0 everywhere. For a
small-scale dynamo, this ratio is expected to be very small,
whereas larger values are expected for a large-scale dynamo.
In all cases, we observed an increase in  with time, until the
system reaches its exponential growth for which  is steady.
(z) is presented on the right part of Fig. 6, for the case
T = 108. At onset (i.e., for η = 0.015), the maximum value
of (z) occurs at z ≈ 0.69, which also corresponds to the
maximum of the relative kinetic helicity, as shown on Fig. 2.
For T = 108, the maximum value is  ≈ 0.69, showing the
existence of a dominating mean field across the convective
layer. Note that the magnetic fluctuations are still of the same
order as the mean horizontal field. This is expected since this
Taylor number is not large enough for the mean-field model to
be applicable at the dynamo onset, as discussed in Sec. III. As
the Taylor number is increased, the maximum value of  close
to onset increases, confirming that the kinematic dynamo is
of mean-field type at onset. To compare, similar but turbulent
flows usually produce much smaller values of , typically of
order 10−3 (see, for example, [16] and [37]). As η decreases,
we observe a decrease in , showing that the magnetic field is
now dominated by its fluctuating components. This decrease
in  as the magnetic diffusivity decreases is observed for all
three Taylor numbers considered here.

The structure and evolution of this dominant horizontal
mean magnetic field is shown on Fig. 7 for T = 108. The
horizontal average of Bx is plotted versus depth and time in a
“butterfly” diagram for two different magnetic diffusivities.
The result is normalized in order to compensate for the
exponential growth. At any given time, the structure of the
eigenmode predicted by the mean-field model discussed in
Sec. III is qualitatively recovered (see Fig. 3 for λ = 12.2 and
20.1). As the magnetic diffusivity η decreases, smaller wave-
lengths are observed in the eigenfunction and the frequency
of rotation of the mean field decreases, in accordance with
the mean-field model. Note that for all η, the mean horizontal
field is drifting from the boundaries towards the mid-layer
and is antisymmetric with respect to the mid-layer. At a fixed
depth, this corresponds to a mean horizontal field rotating
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Time (in turover time units)

z

Time (in turover time units)

z

FIG. 7. (Color online) Horizontal average of Bx versus depth
and time. The amplitude of the field is compensated to remove
the exponential growth, and time is scaled in units of the turnover
time λ/Umax where λ is the aspect ratio of the domain and Umax is
the maximum velocity of the flow. The Taylor number is T = 108.
The magnetic diffusivity is η = 5 × 10−3 at the top and η = 5 × 10−5

at the bottom.

around the vertical axis with a given frequency. The sign of
this rotation changes between the upper and lower halves of
the domain. Note that this type of solution is reminiscent of the
dynamo solution for the Roberts flow [6] (but since the helicity
is changing sign across the mid-layer, so is the rotation rate
of the rotating horizontal mean-field), and also shares some
similarities with the numerical solution of [15] which reported
a strong horizontal mean-field rotating with time. This is not
surprising as the Roberts flow is locally very similar to the flow
discussed in this section, and by Stellmach and Hansen [15]
who considered rotating Boussinesq convection at very low
Ekman numbers (i.e., very large Taylor numbers) close to the
onset of convection.

To further investigate the nature of the dynamo action at
onset, we run an additional set of simulations, identical to the
previous ones in most respects. However, instead of solving
the mean induction equation

∂ 〈B〉
∂t

= ez × ∂ 〈E〉
∂z

+ η
∂2 〈B〉
∂z2

(35)

for the horizontally averaged magnetic field, where E =
〈u × B〉 is the horizontally averaged electromotive force,
we artificially constrain these mean magnetic fields to be
zero everywhere in the layer. This approach has already
been used by [38] when studying the transition between
large-scale and small-scale dynamos in the Roberts flow, and
by [37] to measure the α effect generated by rotating turbulent
convection. In these artificial simulations, the only possible
dynamo is of small-scale nature as the mean electromotive
force is neglected. We show on Fig. 6(a) the growth rates of
such simulations as small full symbols. The onset for dynamo

action in this case corresponds to η ≈ 2.8 × 10−4 for T = 108

and η ≈ 1.3 × 10−4 for T = 1010. Note that the critical
magnetic Reynolds number based on the horizontal scale of
motion is now the same for both Taylor numbers. This further
confirms that the previous dynamo action observed for smaller
values of η is of mean-field type since small-scale dynamo
is not possible for that range of parameters. However, as η

decreases, small-scale dynamo eventually becomes possible
and the growth rate of the dynamo then decreases, along with
. This transition between large-scale dynamo and small-scale
dynamo action shares some similarities with what has been
observed for the Roberts flow [38] and for helically forced
flows in spherical shells [39].

V. HEXAGONAL PATTERN

We now consider the hexagonal cells. The flow is defined
by Eqs. (5)–(7). We use a similar approach to the one used in
Sec. IV: the induction equation (9) is numerically solved in
three dimensions as described in Sec. II. We choose three rep-
resentative Taylor numbers: T = 108, 2 × 1010, and T = 1012.
The corresponding parameters can be found in Table I.
The most unstable wave number of the convective motion
a, as defined by Eq. (4), varies between these simula-
tions and the aspect ratios are adjusted accordingly. As
for the simulations in the square pattern, the magnetic
field is initialized with a small perturbation with zero net
flux.

We show on Fig. 8 the magnetic energy in a horizontal
plane located at z = 0.25, for different values of the magnetic
diffusivity η. As for the square pattern, the magnetic field
tends to be expelled from the center of the convective cells.
According to the previous mean-field model described in
Sec. III, the case T = 108 (for which ε = 0.046) is not able to
sustain a large-scale dynamo. On Fig. 9, we present the growth
rate of the magnetic energy versus the magnetic diffusivity. For
T = 108, we indeed observe an increase in the growth rate up
to η ≈ 0.02 followed by a decrease. A small positive growth
rate is obtained at a much smaller diffusivity of η = 5 × 10−5.
This dynamo is of small-scale nature and is characterized by
 ≈ 10−3. Of course, the possibility of small-scale dynamo
action is not predicted by the mean-field model, but the lack of
a large-scale dynamo is however consistent with the prediction
of the mean-field model.

For this Taylor number, the hexagonal pattern is not capable
of sustaining a large-scale dynamo due to the dominating effect
of the pumping velocity. For T = 2 × 1010, there is a range of
parameters for which mean-field dynamo is possible, namely,
0.02 < η < 0.07. As predicted by the mean-field model, for
η > 0.07, the mean-field dynamo is shut down due to an
increasingly efficient pumping velocity. Small-scale dynamo
action might be possible at smaller values of the diffusivity,
although we could not check this numerically due to resolution
constraints. Similar results are obtained for T = 1012, but the
range of magnetic diffusivity for which a large-scale dynamo
is observed increases, as the pumping velocity is only affecting
the dynamo at smaller value of η. Ultimately, for an infinite
Taylor number, the pumping velocity will always be negligible,
so that the hexagonal pattern would be qualitatively similar to
the square pattern, as predicted by the mean-field model. Note
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FIG. 8. (Color online) Magnetic energy B2 in a horizontal plane located at z = 0.25. For the sake of clarity, the aspect ratio has been
multiplied by two by plotting four copies of the domain side by side. Bright and dark tones correspond to opposite polarity. From left to right,
η = 10−2 (close to the critical value for dynamo action), η = 10−3, and η = 5 × 10−5 (small-scale dynamo action is marginal). The local
orientation of the mean field is the same in all cases.

that the reduction in the dynamo growth rate observed for
the square pattern is not predicted by the mean-field model
and is related to small-scale dynamo action, whereas the case
of the hexagonal pattern and the eventual disappearance of
the large-scale dynamo is fully explained by the mean-field
model.

The structure of the eigenmodes is shown as a space-time
diagram on Fig. 10. We observe a qualitatively similar behavior
as in the mean-field model. When dynamo action is possible,
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FIG. 9. (Color online) Growth rate of the magnetic energy versus
λ for three different Taylor numbers in the hexagonal pattern case.
For T = 108, all the growth rates are negative apart from the smallest
value of η which is very close to criticality but the growth rate is
positive.

the mean field is dominant in the lower half of the domain, as
already observed on Fig. 4. At smaller magnetic diffusivity, the
mean field is dominantly advected towards the upper boundary
(the pumping velocity is directed upward) and the dynamo is
effectively shut down.

Time (in turover time units)

z

Time (in turover time units)

z

FIG. 10. (Color online) Horizontal average of Bx versus depth
and time in the hexagonal case. The amplitude of the field is
compensated to remove the exponential growth and time is scaled
in units of the turnover time λ/Umax where λ is the aspect ratio of the
domain and Umax is the maximum velocity of the flow. The Taylor
number is T = 2 × 1010 and the magnetic diffusivity is η = 5 × 10−3

at the top (dynamo action is observed) and η = 3 × 10−4 at the bottom
(no dynamo action).
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VI. EFFECT OF CHANGING THE
BOUNDARY CONDITIONS

Finally, we look at the effect of changing the magnetic
boundary condition. All the previous results have been
obtained for perfectly conducting boundaries for which the
magnetic field lines are horizontal at z = 0 and 1. Instead,
we now assume that the boundaries have an infinite magnetic
permeability so that the magnetic field lines reconnect per-
pendicularly to the boundaries. The magnetic field tangent to
the boundaries vanishes along with the normal current density
and we therefore have Bx = By = ∂zBz = 0 at z = 0 and 1.
Of course, we now have to abandon the constraint of zero
horizontal magnetic flux [see Eq. (33)] since this is not a
conserved quantity using this new set of boundary conditions.

Although the magnetic field topology is now very different,
the growth rate of the magnetic energy is exactly the same
as in the perfectly conducting case, for all the values of η

considered here, and for both the mean-field equations and the
full three-dimensional simulations. This remarkable result is
in fact general and not a specificity of the current model. It
is due to the adjointness property of the induction equation as
discussed by [40–42]. Provided one can reverse the direction of
the flow by an appropriate set of transformations which leave
the boundaries invariant (we call this class of flows reversible
flows in the following), the growth rate of any kinematic
dynamos will be exactly the same whether the boundaries
are made of a perfect electrical conductor or have an infinite
magnetic permeability. A formal demonstration and additional
examples of this rigorous result can be found in [43].

The particular flows considered in this paper are all
reversible so that this general result is applicable in this case.
In the case of the square pattern, a simple horizontal translation
can change u into −u. For the hexagonal pattern, the direction
of the flow is reversed under point reflection with respect to
the mid-layer, effectively changing the sign of all three spatial
coordinates. Using the mean-field model described in Sec. III
but imposing a vanishing horizontal magnetic field at z = 0
and 1 [the conditions (33) are also relaxed since they are only
valid in the perfectly conducting case], the exact same growth
rates as in the perfectly conducting case are obtained. The
associated eigenfunctions are, however, different: they are now
symmetric with respect to the mid-layer.

In addition, a comparison of the growth rates obtained with
the direct numerical simulations described in Sec. II and for
the two different sets of boundary conditions is shown in
Fig. 11. We compare the magnetic energy growth rates for
the square pattern at T = 108 and for the hexagonal pattern
at T = 1012. For all diffusivities considered here, the growth
rates of the magnetic energy are indeed the same for the two
types of magnetic boundary condition. Interestingly enough,
in the case of the square pattern and with vertical boundary
conditions, we obtain a similar space-time diagram as on
Fig. 7, but the horizontal mean field is rotating in the opposite
direction (see Fig. 12), so that each horizontal component
is drifting from the mid-layer towards the boundaries. The
eigenfunction is also symmetric with respect to the mid-
layer whereas it was antisymmetric in the case of perfectly
conducting boundary conditions, which is consistent with the
results of the mean-field model (not shown). Although the
two eigenfunctions are qualitatively different, the real parts of
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FIG. 11. (Color online) Growth rate of the magnetic energy
versus η. Left: results corresponding to the square pattern at T = 108.
Right: results corresponding to the hexagonal pattern at T = 1012.
In each case, we compare the two types of boundary conditions:
perfectly conducting (i.e., Bx,z = By,z = Bz = 0) and vertical (i.e.,
Bx = By = Bz,z = 0).

the associated eigenvalues are rigorously the same for any
magnetic diffusivity. This result holds for both large- and
small-scale dynamos since it is a property of the general
induction equation for reversible flows.

VII. CONCLUSION

In this paper, we investigated the kinematic dynamo action
in rotating convective flows. By considering the onset of
convection, we were able to select between square and
hexagonal patterns. The flow is then analytically prescribed
and the induction equation is solved numerically. We first
use a reduced model based on a mean-field approach and
we then consider direct numerical simulations of the full
induction equation. For the square pattern, we observe first
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Time (in turover time units)

z

FIG. 12. (Color online) Horizontal average of Bx versus depth
and time in the square pattern at T = 108 and η = 5 × 10−3. The
upper and lower boundaries have an infinite magnetic permeability
so that magnetic field lines are normal to them. The amplitude of
the field is normalized to compensate for the exponential growth and
time is scaled in units of the turnover time.

a dynamo of mean-field type where the mean electromotive
force compensates for diffusion. As the magnetic Reynolds
number increases, a transition towards small-scale dynamo
action is found and the magnetic energy is dominated by its
fluctuating component. This transition also corresponds to a
decrease in the kinematic growth rate of the magnetic energy.

For the hexagonal pattern, the situation is more compli-
cated. Due to the asymmetry between the up and down flows,
an effective pumping velocity appears. This effect corresponds
to the off-diagonal terms in the classical α tensor of mean-field
electrodynamics. While such an effect can be removed in any
vertically invariant flows (such as the Roberts flow), it is not
the case in our plane-layer confined model. It ensues that the
previously observed mean-field dynamo can disappear if the
Taylor number is too small (while being large enough to justify
the small ε regime required by the mean-field model). This is a
surprising example where some of the terms of the α tensor are
actually be unhelpful for dynamo action. For sufficiently large
Taylor number, the pumping velocity becomes negligible and
the results become qualitatively similar to the square pattern: a
large-scale dynamo is observed at onset, whereas small-scale
dynamo action is probably possible at much larger magnetic
Reynolds numbers (although we only numerically observe a
small-scale dynamo for the case T = 108, where no large-scale
dynamo is possible). These conclusions are derived using both
a mean-field model and direct numerical simulations of the full
induction equation with a prescribed velocity field. Note that
the fact that the pumping velocity decreases with the Taylor

number is consistent with the prediction of [26], although they
considered the fully turbulent regime in their case.

Many aspects of this problem remain to be studied. It is
worth mentioning that we focus in this paper on dynamo
solutions having the same periodicity as the background
flow. We considered numerical simulation with larger aspect
ratios in order to allow for spatially modulated solutions, but
we found none that grew more rapidly. A more complete
analysis is, however, required in the general case, as we
can not exclude the possibility of more efficient subharmonic
dynamos at even larger aspect ratios. In addition, the nonlinear
saturation of these dynamos is of interest. This would require
the solution of the momentum equation coupled with the
induction equation. Self-consistently obtaining these square
and hexagonal flows can be challenging in itself. We managed
to produce both square and hexagonal patterns in rapidly
rotating weakly stratified compressible convection, by varying
the horizontal aspect ratio of the numerical domain. The
kinematic dynamo properties of such flows are very similar
to what has been described in this paper, even if the flows
significantly depart from Eqs. (1)–(3) and (5)–(7). Much
remains to be done concerning the nonlinear saturation of
these kinematic dynamos.

As mentioned in the Introduction, the turbulent regime far
from onset is still problematic when it comes to its large-scale
dynamo action capability. We showed that both squares and
hexagons are capable of sustaining a large-scale dynamo,
providing the Taylor number is large enough. An interesting
question is how does this dynamo solution behave as the flow
becomes decorrelated in space and time. It is known that the
mean induction is dramatically reduced as the flow becomes
less spatially correlated [44], and it would therefore be inter-
esting to study how these well-defined mean-field dynamos
behave when the Rayleigh number is increased, introducing
spatiotemporal chaos in the flow. This undergoing study should
fill the gap between mean-field dynamos in simple analytic
flows and turbulent dynamos, where the distinction between
small- and large-scale dynamos is often unclear.
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[27] G. Küppers and D. Lortz, J. Fluid Mech. 35, 609 (1969).
[28] K. M. S. Bajaj, J. Liu, B. Naberhuis, and G. Ahlers, Phys. Rev.

Lett. 81, 806 (1998).
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