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We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell.
Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as “the wall.”
The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow
consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane.
From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action
if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating.
We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine
their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the
wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion
of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as
the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by
high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the
magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the
wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for
dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of
the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall
thickness.
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I. INTRODUCTION

Many planets and stars have observable surface magnetic
fields that are generated by hydromagnetic dynamo action in
their deep interior, where the motions of a conducting fluid, ei-
ther ionized plasma or liquid metal, maintain the magnetic field
against ohmic diffusion. In such systems, the conducting fluid
is typically surrounded by an electrically insulating medium
that plays no role in the dynamo process. In the last decade,
a number of laboratory experiments have been constructed
to study dynamo action in either turbulent or laminar flow
regimes. Most of these experiments use liquid sodium and
drive flows by mechanical forcing at the boundaries. So far,
three experiments have successfully generated magnetic field
by fluid motions [1–3]. Of these successful experiments, the
von Kármán sodium (VKS) experiment offers the closest
approximation to a natural dynamo, in the sense that a large
scale magnetic field is generated by a relatively unconstrained,
highly turbulent flow driven by the counter-rotation of two
impellers. However, at the experimental parameters attainable,
dynamo action is only observed when the impellers are made
of soft iron, and not when they are made of stainless steel. Iron
has a higher magnetic permeability than steel, and so these
results imply that magnetic boundary conditions play a crucial
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role in the VKS experiment, and possibly in other problems
involving magnetohydrodynamics (MHD). Understanding the
effect of magnetic boundary conditions is therefore essential to
interpreting the results of upcoming dynamo experiments, such
as the plasma experiment in Madison, Wisconsin [4], and the
spherical-Couette liquid sodium experiment in College Park,
Maryland [5].

Motivated by the above, in this paper we use numerical
simulations to investigate the effect of magnetic boundary
conditions on dynamo action produced by an axisymmetric
laminar flow driven by an azimuthal boundary forcing in
spherical geometry. This geometry is particularly relevant to
the Madison plasma experiment. Here, we consider only the
case where the azimuthal boundary forcing is antisymmetric
with respect to the equatorial plane, in which case an
axisymmetric poloidal circulation is also established with a
single meridional cell in each hemisphere. The ability of a
flow with these symmetry properties to maintain a magnetic
field was first established by Gubbins [6], who found that
the critical magnetic Reynolds number (the minimum ratio
of the magnetic diffusion and induction time scales required
for dynamo action) was about 50. Subsequent studies (e.g.,
Refs. [7–10]) confirmed that the most readily generated
magnetic field for this type of flow is an equatorial dipole.
These studies were all kinematic, in the sense that the velocity
field was prescribed, rather than determined dynamically
and self-consistently. This allowed the structure of the flow,
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including the ratio of its poloidal and toroidal components, to
be varied arbitrarily. In a more realistic model for which the
flow is driven by viscous drag at a rotating outer boundary, the
ratio of poloidal to toroidal flow is not an adjustable parameter,
but rather is determined by the dynamics of the system, and is
a function of the Reynolds number (the ratio of the viscous
diffusion time scale to the boundary forcing time scale).
Self-consistent numerical simulations are therefore required
to determine the dynamo properties of these laminar shear
flows.

Using fully dynamical (i.e., nonkinematic) spherical sim-
ulations and an azimuthal boundary forcing thought to be
achievable in the Madison plasma experiment, Spence et al. [4]
obtained a dynamo for a magnetic Reynolds number of about
300 when using electrically insulating boundary conditions,
which assume that electric currents vanish everywhere outside
the fluid. However, simulations run with the same boundary
forcing and magnetic Reynolds number failed to produce a
dynamo when perfectly electrically conducting boundary con-
ditions were used (Forest, private communication). This result
was somewhat unexpected, because in numerical simulations
run with different types of shear flows, notably in turbulent
regimes, increasing the conductivity of the outer wall is usually
favorable to dynamo action (e.g., Refs. [11–15]). In an attempt
to bridge the gap between the two idealized limits of true
physical boundaries used in Spence et al., Khalzov et al. [16]
used the same flow, but applied boundary conditions derived
in the “thin-wall limit” in which the outer wall thickness h

tends to zero, but either the integrated conductivity hσ or
the integrated permeability hμ remains finite (see Roberts
et al. [14] and detailed discussion later in this paper). They
found that varying hσ has no effect on the value of the critical
magnetic Reynolds number for dynamo action, contrary to
what might have been expected from the results of Spence et al.
However, as hσ is increased the growth rate of the magnetic
field tends to zero. Increasing hμ has a positive effect on the
dynamo action as the critical magnetic Reynolds decreases by
about 35% for hμ → ∞ compared to its value for hμ → 0.

The purpose of the present paper is to unify and interpret
these previous results, and to reach a full understanding of
the role of the wall in fully dynamical dynamo simulations

using the same laminar flow as in Spence et al. [4]. Rather
than employing an approximation for the effect of the metallic
wall on the magnetic field, we here include a wall of finite
thickness in the computational domain, which allows us to
vary independently the wall thickness, electrical conductivity,
and magnetic permeability.

After outlining our numerical model in Sec. II, we present
the results of simulations performed for various values of
the wall thickness, electrical conductivity, and magnetic
permeability. We provide a physical interpretation for the effect
of the wall properties on the dynamo mechanism. In Sec. IV
we describe a new magnetic boundary condition derived in the
thin-wall limit, which generalizes those of Roberts et al. [14]
and Khalzov et al. [16], and which further elucidates the effects
of the wall on the dynamo.

II. NUMERICAL MODEL

We use the same three-dimensional, fully nonlinear nu-
merical code that was described in detail by Guervilly and
Brummell [15]. Here we describe only the mathematical
details of the model, and refer the reader to Guervilly
and Brummell for more details on the numerical algorithm.
Figure 1(a) presents a three-dimensional (3D) schematic view
of the model. The domain is spherical, and consequently
we express all fields in spherical coordinates (r,θ,φ), with
r the radius, θ the colatitude, and φ the azimuthal angle or
longitude. An electrically conducting, incompressible fluid
fills the spherical shell between an inner radius ri and an
outer radius ro. The fluid has viscosity ν, density ρ, electrical
conductivity σf , and magnetic permeability equal to that of
the vacuum, μ0. The fluid properties are assumed to be
uniform and are kept fixed throughout this study. The fluid
is surrounded by an outer spherical shell or “wall” of finite
thickness h and has uniform electrical conductivity σw and
uniform magnetic permeability μw.

An angular velocity profile varying with latitude, �(θ ),
is prescribed in the wall. We impose impenetrable and
no-slip boundary conditions at the inner edge of the wall,
r = ro, so the viscous stress exerted by the wall drives an
axisymmetric azimuthal flow in the fluid. The radial and
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FIG. 1. (a) 3D view of the model. The gray areas represent the inner core and the outer wall. (b) Azimuthal velocity imposed at r = ro with
Uw = 1.
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latitudinal components of the velocity are set to zero in the
wall. Since the wall has a fixed shape, and is impenetrable to
the fluid, it is convenient to think of it as solid even though it
is not in solid body rotation. Our differentially rotating wall
allows us to approximate the boundary driving in various
laboratory experiments, such as in the upcoming Madison
plasma experiment. We note that our numerical model differs
somewhat from that of Khalzov et al. [16]. In particular, in
their model, the boundary condition for the magnetic field
assumes that the outer wall is at rest in the laboratory frame.
For reasons discussed in Sec. IV, the additional complexity of
the wall properties in the model of Khalzov et al. [16] leads to
some differences between their results and ours.

For the azimuthal velocity of the wall, we choose the same
latitudinal profile as Spence et al. [4],

uφ(r,θ ) = Uw
r

ro

∑
k

Ck sin(kθ ) for

(1)
ro < r < ro + h,

where the constant Uw is a characteristic forcing velocity and

C2 = −0.4853, C4 = −0.5235,
(2)

C6 = −0.0467, and C8 = 0.1516.

The other coefficients Ck in Eq. (1) are all set to zero. The
azimuthal velocity at r = ro is plotted in Fig. 1(b) for Uw = 1.
The azimuthal velocity is antisymmetric about the equator and
is mostly localized at midlatitudes.

Within the fluid we solve the incompressible MHD equa-
tions:

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u + 1

ρ
J × B, (3)

∇ · u = 0, (4)

∂B
∂t

= ∇ × (u × B) − ∇ × 1

σ
∇ × B

μ
, (5)

∇ · B = 0, (6)

where u is the velocity, p is the pressure, B is the magnetic
field, J = ∇ × (B/μ) is the electric current density, and with
σ = σf and μ = μ0 in the fluid.

Within the wall, we solve only the magnetic induction
equation [Eq. (5)] using the prescribed velocity in the wall
[Eq. (1)] and with σ = σw and μ = μw.

The region outside the wall, r > ro + h, is assumed to be a
perfect vacuum, for which σ = 0 and μ = μ0. In this region,
the field is determined analytically by solving ∇ × B/μ0 =
0, so that, numerically, the vacuum is treated as a boundary
condition at r = ro + h.

For numerical convenience, we impose a solid inner core
at the center for r � ri with ri = 0.05ro. The inner core is
held at rest and has the same electrical conductivity and
magnetic permeability as the fluid. We solve the magnetic
induction equation within the inner core with zero velocity.
The boundary conditions for the velocity at r = ri are no-slip
and impenetrable.

The equations are solved in nondimensional form. The
length is scaled by the outer radius of the fluid ro, the velocity
by the forcing velocity amplitude Uw, the time by ro/Uw,

and the magnetic field by Uw(ρμ0)1/2. The dimensionless
parameters for the fluid are the magnetic Prandtl number:

Pmf = μ0σfν, (7)

and the Reynolds number, which is the ratio of the viscous
time scale r2

o /ν to the forcing time scale ro/Uw:

Re = Uwro

ν
. (8)

All of the simulations presented here have Pmf = 1 and Re =
300. The dimensionless parameters for the wall are the relative
wall thickness ĥ = h/ro, the relative conductivity σr = σw/σf ,
and the relative magnetic permeability μr = μw/μ0.

At the fluid-wall interface, and at the wall-vacuum interface,
the electrical conductivity and magnetic permeability are
discontinuous, leading to the following matching conditions
for the normal and tangential components of B and J:

B+ · er = B− · er , (9)

(B/μ)+ × er = (B/μ)− × er , (10)

J+ · er = J− · er , (11)

(J/σ )+ × er = (J/σ )− × er , (12)

where the superscripts − and + indicate, respectively, values
immediately inside and outside the interface.

We use a poloidal-toroidal representation for the velocity
and magnetic fields in order to enforce the divergence-free
conditions [Eqs. (4) and (6)]. For the magnetic field, we define
poloidal and toroidal scalar potentials BP and BT such that

B = ∇ × ∇ × (BPr) + ∇ × (BTr). (13)

The spherical components of the magnetic field are then

Br = 1

r
L2BP, (14)

Bθ = ∂

∂θ

1

r

∂

∂r
rBP + 1

sin θ

∂BT

∂φ
, (15)

Bφ = 1

sin θ

∂

∂φ

1

r

∂

∂r
rBP − ∂BT

∂θ
, (16)

where the angular Laplacian operator L2 is defined as

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (17)

Note that the toroidal magnetic field has no radial component.
The boundary conditions [Eqs. (9) and (10)] at r = ro imply

that

BP(r+
o ) = BP(r−

o ), (18)

BT(r+
o ) = μrBT(r−

o ), (19)

∂rBP

∂r

∣∣∣∣
r+

o

= μr
∂rBP

∂r

∣∣∣∣
r−

o

. (20)

It is sometimes convenient to also represent the elec-
tric current density J in terms of poloidal and toroidal
scalar potentials JP and JT, which are related to BT
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and BP by

JP = BT

μ
, (21)

JT = 1

r2
L2

BP

μ
− 1

r

∂

∂r

1

μ

∂rBP

∂r
. (22)

The boundary conditions (11) and (12) then become

JP(r+
o ) = JP(r−

o ), (23)

JT(r+
o ) = σrJT(r−

o ), (24)

∂rJP

∂r

∣∣∣∣
r+

o

= σr
∂rJP

∂r

∣∣∣∣
r−

o

. (25)

We note that the poloidal (toroidal) field is produced by the
toroidal (poloidal) current, and that the toroidal electric current
∇ × (JTr) has no radial component.

We expand the poloidal and toroidal scalars in spherical
harmonics Ym

l in the angular coordinates, where l represents
the latitudinal degree and m the azimuthal order:

BP(r,θ,φ,t) =
lmax∑
l=0

mmax∑
m=0

bp
m
l

(r,t)Ym
l (θ,φ), (26)

BT(r,θ,φ,t) =
lmax∑
l=0

mmax∑
m=0

bt
m
l (r,t)Ym

l (θ,φ), (27)

and similarly for the poloidal and toroidal scalars of the
velocity.

Our numerical code evolves the quantities bp
m
l

(r,t), etc.,
using a second-order finite difference scheme on an irregular
radial grid. For further details see Guervilly and Brum-
mell [15]. For the laminar flow simulations presented here, the
numerical resolution has been taken as 300 radial points in the
fluid, between 20 and 50 radial points in the wall depending on
the wall parameters, and 10 radial points in the inner core. The
spherical harmonic expansion is truncated at lmax = 64 and
mmax = 12. For the laminar flow considered here, the kinetic
and magnetic energy spectra in l and m are well resolved at
this resolution, and a finer radial resolution does not change the
numerical solution significantly. Each simulation is integrated
in time until the kinetic and magnetic energies reach stationary
values [see Fig. 7(a)].

III. RESULTS

A. General characteristics

The differential rotation �(θ ) of the wall drives an ax-
isymmetric azimuthal velocity in the fluid through viscous
drag at r = ro. The differential rotation also establishes an
axisymmetric poloidal circulation consisting of one meridional
cell in each hemisphere with inward radial flow in the
equatorial plane. In the absence of a magnetic field, this
flow is hydrodynamically stable for Re � 500 [4]. All of the
simulations presented in this paper have Re = 300, so we
expect the flow to be predominantely steady and axisymmetric
(although the Lorentz force from the magnetic field can
drive some nonaxisymmetric flow). The flow from a typical
simulation is illustrated in Fig. 2, which displays contours

FIG. 2. Axisymmetric flow in a meridional plane for Re = 300.
Left half: Azimuthal velocity, where black indicates a positive value,
and gray a negative value. Right half: Poloidal streamlines, with
direction of circulation indicated.

of the azimuthal velocity and streamlines of the poloidal
circulations in the meridional plane.

An axisymmetric flow cannot maintain an axisymmet-
ric magnetic field [17], but can potentially maintain a
nonaxisymmetric magnetic field. In fact, with Re = 300 and
Pmf = 1, and for certain choices of magnetic boundary con-
ditions, the flow maintains a steady magnetic field for which
BP and BT are both dominated by the spherical harmonics of
degree l = 1 and order m = 1. The (l,m) = (1,1) poloidal field
corresponds to an equatorial dipole. This field configuration
is common to all the dynamo cases presented here. Figure 3
shows a 3D view of the magnetic field lines for the dynamo
case (ĥ,σr,μr) = (0.1,10−3,1), which we refer to as “Case
D” hereafter. Similar magnetic field configurations have been
obtained in previous numerical simulations using this type of
axisymmetric shear flow (e.g., Refs. [10,18,19]).

Before considering the effect of changing the wall
properties in the next sections, we first discuss the dynamo
mechanism.

FIG. 3. (Color online) Magnetic field lines in the fluid (black and
gray lines) for the dynamo simulation at (ĥ,σr,μr) = (0.1,10−3,1).
Gray and black lines start from points at r = ro where the radial
magnetic field is positive or negative, respectively. The mesh shows
the outer sphere at r = ro. The magnetic field lines are not plotted in
the wall or vacuum.
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FIG. 4. Bullard and Gellman diagram [20] for the flow considered here. (a) Action of the toroidal flow (dashed arrows) and the poloidal flow
(solid arrows) on the different components of an m = 1 magnetic field, decomposed into poloidal and toroidal parts (bp and bt, respectively)
and odd and even degrees l (subscripts o and e, respectively). Straight arrows indicate transfers between different magnetic components, and
closed arrows indicate rearrangement of a magnetic component. (b) Possible loops for the dynamo mechanism.

Using the selection rules described by Bullard and Gell-
man [20], the action of a laminar flow on the different
components of the magnetic field, as expressed by Eq. (5),
can be deduced from its symmetry properties. We represent
the velocity field in terms of poloidal and toroidal scalars,
up

m
l

and ut
m
l . The north-south symmetry properties of our

predominantly axisymmetric (m = 0) flow imply that only
the spherical components of the velocity with even degree
l are nonzero. Moreover, we find in all our simulations that
the magnetic field is dominated by its m = 1 components.
For simplicity, we therefore consider only the action of the
components of the velocity with even degree l and m = 0 on
the m = 1 poloidal and toroidal magnetic fields. To simplify
the notation in the rest of the paper, we omit the superscript m

for the spectral coefficients.
The selection rules partition the magnetic field into two

orthogonal families: (bp
c
o,bp

s
e,bt

c
o,bt

s
e) and (bp

s
o,bp

c
e,bt

s
o,bt

c
e),

where the subscripts o and e denote odd and even degrees
in l, respectively, and the superscripts c and s denote the real
and imaginary parts of the spectral coefficients [i.e., cos(φ)
and sin(φ)], respectively. Which family dominates the solution
depends only on the initial conditions for the magnetic field.

Figure 4(a) shows schematically how the poloidal and
toroidal components of the velocity, upe and ute, respectively,
act on one of the orthogonal m = 1 magnetic families accord-
ing to the selection rules. A similar diagram can be drawn for
the orthogonal family. All potential dynamo mechanisms can
be represented by closed paths, or “loops,” in this diagram.
Moreover, any dynamo loop must involve both poloidal and
toroidal magnetic field. It is then immediately clear from
Fig. 4(a) that the toroidal flow (dashed arrows) alone cannot act
as a dynamo, since then there would be no mechanism for the
generation of poloidal magnetic field from toroidal magnetic

field. The simplest possible dynamo loops, i.e., those involving
just two or three steps, are drawn in Fig. 4(b). We consider
only the loops that contain the equatorial dipole (in the set
bp

c
o) because the dynamo field is dominated by this component

in all our simulations.
To determine which of the dynamo loops in Fig. 4(b) most

likely represents the essential part of the dynamo mechanism,
we have performed a series of numerical experiments in which
all magnetic components in one of the quadrants shown in
Fig. 4(a) is artificially suppressed throughout the simulation.
That is, one of the sets bpo, bpe, bto, or bte is held at zero for
all time (where the subscripts o and e imply all of the odd and
even l coefficients respectively but for the m = 1 mode only).
Figure 5 shows time series of the magnetic energy from Case
D alongside corresponding time series from the experiments
where the coefficients bpe and bto were suppressed. When the
spectral coefficients bpe are suppressed, the flow still maintains
a dynamo, and the magnetic energy in the kinematic dynamo
phase actually grows more rapidly than for the full MHD
simulation (see further discussion in Sec. III B2). On the other
hand, when the spectral coefficients bto are suppressed, the
dynamo fails. These results, though not conclusive, suggest
that bto is necessary for the dynamo mechanism, whereas bpe
is not. Of the four loops shown in Fig. 4(b), only Loop B is
consistent with these observations. This loop has three steps:
(1) the shearing of the equatorial dipole into toroidal field of
odd degree by the differential rotation, ute, (2) the twisting
of toroidal field of odd degree into toroidal field of even
degree by ute, and (3) the regeneration of the equatorial dipole
from the toroidal field of even degree by upe. We emphasize
that this loop description is an idealization of the dynamo
mechanism, because the components not contained in Loop
B are nevertheless present in the full simulation, and must
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FIG. 5. Times series of the magnetic energy in the cases where
either the coefficients bpe or the coefficients bto of the m = 1 magnetic
field are suppressed, compared with that for the full MHD simulation
in Case D. All the cases have similar wall parameters. A global
magnetic diffusion time is τη = Rm = 300.

influence the dynamo process to some extent. Moreover the
poloidal flow and magnetic diffusion both act to rearrange the
field within each quadrant, without changing the symmetry
properties. However, the loop we identify is consistent with the
schematic of the dynamo mechanism proposed by Nornberg
et al. [21] (see their Fig. 4) for similar flows.

We now examine the effects on the dynamo action resulting
from changing the thickness, ĥ, electrical conductivity, σr, and
magnetic permeability, μr, of the wall. We emphasize that we
fix the magnetic Prandtl number of fluid at Pmf = 1 and the
boundary forcing at Re = 300, and so the magnetic Reynolds
number of the fluid in each case is Rm = 300.

B. Effect of the wall conductivity and thickness

1. Dynamo threshold

First fixing the relative magnetic permeability at μr = 1, we
have run simulations for different values of σr and ĥ, varying
both over several orders of magnitude. Each simulation has
been run for several global magnetic diffusion times, which
means several times the magnetic Reynolds number Rm = 300
in nondimensional units. Figure 6 summarizes where dynamo
and nondynamo states are found in the parameter space (σr,ĥ).
By “dynamo state” we mean that the magnetic energy in the
corresponding simulation grows exponentially from the seed
magnetic field used as initial condition, and then saturates
at a significant steady value for the rest of the simulated
time. For nondynamo cases, any initial field ultimately decays
diffusively. Figure 7(a) shows the time series of the magnetic
energy for two cases representative of these behaviors: the
dynamo case (ĥ,σr) = (0.1,10−3) (Case D) and a nondynamo
(failed) case (ĥ,σr) = (0.1,1) (hereafter called Case F).

It is clear from Fig. 6 that increasing either ĥ or σr is
generally detrimental to dynamo action. For example, the cases
with ĥ = 0.1 and σr � 0.5 are all nondynamos, whereas the
cases with ĥ = 0.1 and σr � 0.3 are all dynamos. This result
is corroborated by Fig. 7(b), which plots the values of the
kinetic and magnetic energies in the fluid in the saturated
phase for the simulations run at ĥ = 0.1 for different σr.
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FIG. 6. Results of dynamo simulations in the (σr,ĥ) space for
μr = 1. The black line is ĥσr = 0.035, and the dashed line indicates
where ĥ is equal to the skin depth, δ̂ ∝ σ−1/2

r [Eq. (28)].

The saturated magnetic energy decreases with increasing σr,
and the dynamo disappears completely above σr = 0.3. In
each dynamo simulation, about three quarters of the saturated
magnetic energy comes from the poloidal field. For σr � 0.01,
the energy of the saturated magnetic field asymptotes to a
limiting value, which is about 4% of the total kinetic energy.
Although the dynamo cases have slightly lower kinetic energy
than the the nondynamo cases, we find the flow structure to be
almost identical in all cases.

When the wall is sufficiently thin (ĥ � 0.1 in Fig. 6) the
dynamo threshold closely follows the line ĥσr = 0.035. For
a thicker wall, the threshold in Fig. 6 becomes significantly
steeper, indicating that the dynamo mechanism is less sensitive
to the wall thickness. For ĥ � 1 the dynamo threshold seems
to asymptote to a limiting value of σr � 0.1.

These results are consistent with those of Spence et al. [4],
who used the same values of Re and Pmf but more idealized
boundary conditions. They obtained a dynamo when the
outer boundary was electrically insulating (σr → 0), but not
when the outer boundary was perfectly conducting (σr → ∞).
However, our results differ from those of Khalzov et al. [16],
who considered the asymptotic thin-wall limit of ĥ → 0 with
ĥσr finite. An explanation for the discrepancy between their
results and ours is presented in Sec. IV.

2. Negative effect of the conducting wall

The negative effect of a thick, highly conducting wall
on dynamo action is explained by the induction of poloidal
magnetic field in the wall. For illustration, Fig. 8 shows the
radial component of the field, Br , in a conical section (r,φ) at
colatitude θ = π/6 for the dynamo case, Case D, and for the
failed dynamo case, Case F. In Case F [Fig. 8(b)] the contours
of Br in the wall spiral in the direction of the wall rotation, as
exhibited by the contour Br = 0, which is plotted as a solid
black line. In Case D [Fig. 8(a)], by contrast, this contour
is almost exactly radial within the wall. Note that the radial
field Br is directly related to the poloidal scalar potential BP

from Eq. (14). Within the wall, the induction of poloidal field
can be written as an advection-diffusion equation for Br [see
Eq. (A2) in Appendix A]. For high wall conductivity σw, and
hence low magnetic diffusivity, the azimuthal advection of the
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FIG. 7. (a) Times series of the magnetic energy in Case D (ĥ,σr) = (0.1,10−3) and in Case F (ĥ,σr) = (0.1,1). (b) Steady saturated state
kinetic energies (top) and magnetic energies (bottom) decomposed into total, toroidal, and poloidal parts for various σr at ĥ = 0.1, μr = 1. The
values of the energies are averaged over the volume of the fluid.

poloidal field by the wall’s differential rotation becomes more
significant, producing the spiral pattern seen in Fig. 8(b). To
show this pattern more clearly, we also plot in Fig. 8(c) a
case with the same wall conductivity as Case F, but with a
thicker wall, ĥ = 0.5. In this simulation, the contour Br = 0
wraps several times around the sphere [Fig. 8(c)]. Because
μr = 1, both Br and its radial derivative are continuous at the
fluid-wall interface [Eqs. (18) and (20)] and so the spiraling
of the poloidal field in the conducting wall is communicated
directly to the fluid.

In terms of the Bullard-Gellman diagram in Fig. 4(a), the
advection of the poloidal field by the toroidal flow of the wall
converts the equatorial dipole bpo into an equatorial quadrupole
bpe, and subsequently into an equatorial dipole of the opposite
sign. We note that advection of poloidal field by toroidal flow is
not part of the dynamo loop [Loop B in Fig. 4(b)] responsible
for maintaining the magnetic field. In fact, this advection seems

to be responsible for the failure of the dynamo in Case F. The
effect of the wall on the equatorial dipole can be interpreted
physically by noting that, as the wall conductivity is increased,
the poloidal field lines become increasingly “anchored” to the
wall. As a result, the counter rotation of the two hemispheres
“tears apart” the magnetic field produced in the fluid, hindering
the dynamo process.

This argument also provides a plausible explanation for
the behavior seen in Fig. 5: for simulations with the same
wall parameters as Case D, the magnetic energy grows faster
during the kinematic phase if the spectral coefficients bpe
are suppressed. Suppressing these coefficients prevents the
advection of the poloidal field by the toroidal flow (in the fluid
and in the wall).

An alternative, but equivalent, physical interpretation con-
cerns the circulation of electric currents within the wall. The
relative motion of the wall and the (stationary) equatorial

(a)σr = 10−3, ĥ = 0.1 (D) (b)σr = 1, ĥ = 0.1 (F) (c)σr = 1, ĥ = 0.5

FIG. 8. Radial magnetic field Br in a conical section (r,φ) at colatitude θ = π/6. The dashed line indicates the fluid-wall interface, and the
solid bold line is the contour Br = 0 (not a magnetic field line).
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Cases D and F. The profiles have been rescaled to have a maximum
value of 1. The shading indicates the wall region.

dipole induces toroidal “eddy” currents in the wall, by a
process analogous to a skin effect. Indeed, the degree of
spiraling in Fig. 8 can be measured in terms of the skin depth,

δ = (m�(θ )σwμw)−1/2, (28)

where �(θ ) is the angular velocity of the wall and m is the
azimuthal order of the dominant magnetic mode (here m = 1).
In dimensionless units, the minimum skin depth is

δ̂ = (Rm σrμr)
−1/2. (29)

This is approximately the radial separation between the two
“spiral arms” of the contour Br = 0. The toroidal eddy
currents, in turn, induce opposing poloidal magnetic field
within the fluid, and the overall effect is to weaken the
equatorial dipole. This is shown clearly in Fig. 9, which plots
radial profiles of the spectral coefficients bp

c
1 (corresponding

to the equatorial dipole) and jt
c
1 [corresponding to the toroidal

electric current responsible for the induction of the equatorial
dipole; cf. Eq. (22)] for Cases D and F. In Case F, the field
decays exponentially with time, and so the profiles have been
rescaled to allow a direct comparison with Case D. We find that
the conducting wall in Case F allows the circulation of toroidal
electric currents that are reversed relative to the currents in the
fluid, thereby reducing the amplitude of the equatorial dipole
plotted in Fig. 9(a).

In Fig. 6 the line ĥ = δ̂ is plotted as the dashed line. For
ĥ < δ̂, the dynamo threshold is determined by the product ĥσr

and not by the ratio ĥ/δ̂. This means that the skin effect can be
significant even if the wall thickness ĥ is significantly smaller
than the skin depth δ̂. Physically, for ĥ < δ̂, the threshold
depends on the amplitude of the opposing toroidal currents,
which is proportional to σr [Eq. (24)] integrated over the wall
thickness. The line ĥ = δ̂ represents the boundary between the
“thin wall” regime just described, and the “thick wall” regime
wherein the threshold becomes independent of ĥ.

Varying σr and ĥ also has consequences for the poloidal
currents, and hence for the toroidal magnetic field. For an
insulating wall (σr = 0), electric currents cannot flow out of
the fluid, and so we must have JP = 0 at r = ro. This implies,
by Eq. (21), that the toroidal magnetic field must also vanish
at r = ro, and so is forced to a rapid decrease in the fluid
region close to the wall. Conversely, for a conducting wall,
currents can leave the fluid and recirculate within the wall,
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FIG. 10. Radial profiles of the spectral coefficients bt
c
1 and bt

s
2 of

the toroidal magnetic field for Cases D and F. The profiles have been
rescaled to have a maximum absolute value of 1.

so the decrease of the toroidal field towards zero does not
have to occur at r = ro but rather at the outer boundary with
the vacuum. In this way, the presence of a thick conducting
wall promotes the generation of toroidal field in the fluid,
by allowing it to match to the vacuum boundary condition
over a larger radial domain and so by shielding the fluid from
the vacuum boundary condition. To illustrate this, Fig. 10
compares plots of the spectral coefficients of the toroidal field
bt

c
1 and bt

s
2 from Cases D and F. The decrease of bt

c
1 and bt

s
2

towards zero is indeed more rapid in the outer part of the fluid
for Case D. However the generation of toroidal field occurs
mainly in the inner part of the domain, and so the influence of
the wall on the toroidal field is rather minor here.

In summary, we find that a thick conducting wall has
competing effects on the generation of poloidal and toroidal
magnetic fields. A conducting wall allows a stronger toroidal
magnetic field to be generated in the outer part of the fluid,
by permitting poloidal currents to flow across the fluid-wall
interface. However, a conducting wall also allows the induction
of toroidal eddy currents in the wall that oppose the generation
of nonaxisymmetric poloidal magnetic field in the fluid. In
our simulations the negative effect of these eddy currents on
the poloidal field outweighs the positive effect on the toroidal
field, and so a conducting wall inhibits dynamo action.

C. Effect of the wall permeability and thickness

1. Dynamo threshold

In this section we fix the relative conductivity of the wall at
σr = 1, and present results from simulations with different
values of μr and ĥ. Figure 11 shows the location of the
dynamo and nondynamo simulations in this parameter space.
In general, either increasing μr or decreasing ĥ is favorable for
dynamo action. For ĥ � 0.1, the dynamo threshold approaches
a line with μr � 5, indicating that the dynamo mechanism
becomes insensitive to the wall thickness. For ĥ < 0.1, the
dynamo threshold does not follow an obvious power law.

2. Positive effect of high magnetic permeability

Figure 12 shows the radial component of the magnetic
field, Br , in a conical section (r,φ) at colatitude θ = π/6
for the dynamo case (ĥ,μr) = (0.1,10) in a similar manner
to Fig. 8. The relatively high permeability, μr = 10, implies a
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low magnetic diffusivity in the wall, and leads to spiraling
of the radial magnetic field. However, unlike the case of
large σr, this spiraling in the wall does not necessarily imply
spiraling in the fluid, because the radial derivative of BP is
not continuous at r = ro [Eq. (20)]. Physically, this means
that, whereas large σr anchors the field lines to the wall,
large μr produces a paramagnetic “suction” of the tangential
field components Bθ and Bφ into the wall (e.g., Ref. [22]). In
the limit μr → ∞, the matching condition (10) implies that
the field in the fluid becomes perpendicular to the fluid-wall
interface, independently of any advection within the wall. By
decoupling the poloidal field in the fluid from that in the
wall, a dynamo field can be maintained in the fluid in spite
of strong eddy currents in the wall. Figure 13(a) compares
the radial profiles of bp

c
1 (corresponding to the equatorial

dipole) in the dynamo simulations with (ĥ,σr,μr) = (0.1,1,10)
and (ĥ,σr,μr) = (0.1,10−3,1) (Case D). Although bp

c
1 decays

rapidly within the wall in the case with μr = 10, the profiles
in the fluid are very similar in both cases, showing that the
increase in μr compensates for the increase in σr.

The situation for the toroidal magnetic field is somewhat
similar, as shown in Fig. 13(b). Even though the high
permeability of the wall allows for a much larger toroidal
field in the wall, the field in the fluid is not much affected. In
fact, the toroidal field in the fluid very closely matches that
seen in Case F [Fig. 10(a)] after rescaling appropriately.

In summary, a high magnetic permeability in the wall
effectively decouples the field in the fluid from that in the wall.

FIG. 12. Same as Fig. 8 for μr = 10, σr = 1 and ĥ = 0.1.
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the cases (σr,μr) = (10−3,1) and (σr,μr) = (1,10). Both cases have
ĥ = 0.1. The profiles are normalized against their maximum values
in the fluid.

In our simulations, this decoupling promotes dynamo action,
by preventing the equatorial dipole from being torn apart by
the differential rotation of the wall. High wall permeability
also allows a strong toroidal field to develop in the wall, but
the toroidal field in the fluid is not significantly affected.

IV. ANALYTICAL SOLUTION IN A THIN WALL

Our qualitative explanations for the effects of the wall
properties on the dynamo can be made rigorous in the
asymptotic limit of vanishing wall thickness considered by
Roberts et al. [14] and Khalzov et al. [16]. Taking this limit
also allows a more precise comparison of our results with those
of Khalzov et al. The general form of the thin-wall boundary
conditions is derived in Appendix A, and compared with the
special cases of Roberts et al. and Khalzov et al.

The derivation assumes that the wall thickness h is much
smaller than the characteristic scale of radial variations in the
wall. For the steady dynamo magnetic fields considered here,
and with a prescribed velocity in the wall of the form

u = r sin θ �(θ )eφ, (30)

this assumption requires that h is much smaller than the skin
depth δ given by Eq. (28). The boundary condition for each
spherical harmonic coefficient of the poloidal magnetic scalar
potential, bp

m
l

, at r = r−
o is then

−d ln
(
rbp

m
l

)
d ln r

∣∣∣∣
r−

o

= l + im Rm σrĥAm
l

1 + lμrĥ
, (31)

where Am
l = [�̂BP]ml

bp
m
l

. (32)

Here �̂(θ ) = �(θ )ro/Uw is the dimensionless rotation rate,
and the notation [·]ml represents a particular spherical harmonic
component of degree l and order m.

The first term in the numerator on the right-hand side
of Eq. (31) arises from the vacuum boundary condition at
r = ro + h. The second term in the numerator represents the
contribution from the advection of the poloidal magnetic field
in the wall (or, equivalently, the induction of poloidal field by
toroidal eddy currents in the wall). Because �̂ is antisymmetric
about the equator, �̂BP has the opposite equatorial symmetry
to BP. The advection term therefore couples different degrees
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of the poloidal field, and, in particular, transforms the odd l

degrees into even l degrees, which we showed was detrimental
to dynamo action. Since in all our simulations the poloidal
magnetic field is dominated by the equatorial dipole compo-
nent (l,m) = (1,1), we anticipate that the advection term will
be significant in cases for which σrĥ � 1/Rm � 0.003. In fact,
in Fig. 6 we find that the dynamo threshold roughly follows
the line σrĥ = 0.035, that is σrĥ � 10/Rm, in the parameter
space ĥ < δ̂ for which Eq. (31) is valid.

Equation (31) also demonstrates how a large value of μr

can offset the negative effect of a large value of σr. Indeed, in
the limit μrĥ → ∞ the right-hand side of Eq. (31) vanishes,
implying that the poloidal field lines become perpendicular to
the fluid-wall interface, even if the advection term dominates
the numerator. Figure 11 shows that, for σr = 1, a permeability
of μr = 5 is enough to maintain a dynamo when ĥ � 0.1.
However, note that Eq. (31) is not strictly valid in this regime,
since the wall thickness is larger than the skin depth.

As discussed in the Appendix, the boundary condition (31)
differs from the boundary condition for the poloidal magnetic
field used in Khalzov et al. [16] in two respects. First, in their
model the outer wall is at rest, and so the advection term is
absent. Second, they considered only the kinematic phase in
which the magnetic field grows or decays exponentially, and so
their boundary condition contains an additional ∂bp/∂t term.
The absence of the advection term means that there is no skin
effect in their model, and so the conductivity of the wall has
little effect on the dynamo process in their model.

The boundary condition for the spherical harmonic coeffi-
cients of the toroidal magnetic scalar potential, bt

m
l , at r = r−

o
is

−∂ ln
(
rbt

m
l

)
∂ ln r

∣∣∣∣
r−

o

= 1

σrĥ
, (33)

which is identical to that of Roberts et al. [14]. This explains the
insensitivity of the toroidal field to the permeability of the wall
in our results. For small values of σrĥ we recover the insulating
boundary condition BT = 0, implying no radial currents at
the fluid–wall interface. For finite values of σrĥ, a finite
radial current is permitted to the extent that the current
can recirculate within the wall. Equation (33) imposes that
the radial component of the current is proportional to the

divergence of the angular components, with a constant of
proportionality given by the radially integrated conductivity.

V. CONCLUSIONS AND DISCUSSION

We have performed a series of numerical simulations to
study dynamo action generated by a steady, hydrodynami-
cally stable, laminar axisymmetric shear flow driven by the
counterrotating hemispheres of a spherical shell. We have
studied the effects of varying independently the thickness,
ĥ, electrical conductivity, σr, and magnetic permeability, μr,
of the outer wall on the dynamo action. For certain favorable
magnetic boundary conditions, the flow maintains a magnetic
field consisting mainly of a stationary equatorial dipole and a
toroidal component, both of which have azimuthal symmetry
m = 1.

The effects on the dynamo action of changing indepen-
dently the parameters of the outer wall are summarized in
Table I. The table emphasizes the effect that each change has
on the main poloidal and toroidal components.

In general, we find that decreasing the wall thickness,
decreasing the wall conductivity and increasing the wall
permeability all promote dynamo action in this system. For
high wall conductivity or permeability, the advection of the
poloidal field by the rotation of the wall can be described
as the induction of toroidal “eddy” currents in the wall by
the poloidal field. For large σr, the eddy currents oppose the
poloidal field in the fluid, in a manner analogous to a skin
effect, and are detrimental to dynamo action. The skin depth,
δ̂, which is proportional to (σrμr)−1/2, determines the transition
between the thick wall regime, ĥ > δ̂, and the thin wall
regime, ĥ < δ̂. In the thick wall regime, the dynamo threshold
becomes independent of ĥ. In the thin wall regime with
homogeneous permeability, the dynamo threshold depends on
the radially integrated conductivity ĥσr. Increasing the wall
magnetic permeability is favorable to dynamo action because
high wall permeability constrains the magnetic field in the fluid
to be normal to the interface with the wall. This effectively
disconnects the fluid from any eddy currents in the wall.

Increasing either the conductivity or the thickness of the
wall allows stronger tangential currents in the wall and, by
continuity, stronger values of the radial current and toroidal
field at the fluid-wall interface. A highly conducting (or thick)

TABLE I. Summary of the effect of the parameters of the outer wall on the generation of the poloidal and toroidal magnetic fields in the
case of the laminar flow considered in this paper, and compared to the results obtained with a similar boundary-driven flow at larger Reynolds
number in Guervilly and Brummell [15]. The + and − symbols indicate whether the effect is favorable or detrimental to the generation of the
field.

Laminar flow (Re = 300) Turbulent flow (Re = 50000)

Poloidal field Toroidal field Poloidal field Toroidal field
m = 1 m = 1 m = 0 m = 0

σr ↗ − + +
Eddy currents Buffer from vacuum Buffer from vacuum

μr ↗ + +
Field normal at r = r−

o Enhance ω effect
ĥ ↗ − if ĥ < δ̂ + +

Eddy currents Buffer from vacuum Buffer from vacuum
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wall thus creates a buffer region between the fluid and the
vacuum outside. However, allowing stronger values of the
toroidal field at the fluid-wall interface is favorable to dynamo
action only if the velocity shear layer, where toroidal field is
produced, is located close to the wall. For the laminar flows
studied here, the shear layer extends across most of the bulk of
the fluid interior, and the positive effect of a thick conducting
wall on the toroidal field generation is outweighed by the
negative effect on the poloidal field generation.

It is interesting to compare our results with those of Kaiser
and Tilgner [11], who studied the dynamo action of a helical
flow surrounded by a (stationary) conducting wall. They
observed the existence of an optimal thickness that minimizes
the critical magnetic Reynolds number. This is because, in their
case, the positive effect of the penetration of radial currents
into the wall (that is, of the buffer region for the toroidal
field) outweighs the negative effect of the eddy currents as
long as the wall is thinner than this optimal thickness. This
is an important difference from our study, where we find that
for walls significantly thinner than the skin depth, the skin
effect still hinders the dynamo action. This difference likely
arises because, in the Kaiser and Tilgner model, there is a
shear discontinuity between the fluid and the wall, and so
a conducting wall significantly enhances the generation of
toroidal field.

Interestingly, the dependence of the dynamo threshold
on the wall parameters for the laminar axisymmetric flows
considered here differs from that found for turbulent flows at
higher Reynolds number but with a similar azimuthal boundary
forcing. As summarized in Table I, in the turbulent case,
increasing σr, μr, or ĥ is favorable for dynamo action [14,15].
However, these turbulent dynamos have a distinctly different
geometry: they are predominantly steady and axisymmetric
(m = 0), whereas the laminar dynamos considered here are
necessarily nonaxisymmetric. This difference is significant,
because an axisymmetric steady field is not subject to a skin
effect. Indeed, Guervilly and Brummell [15] showed that
the only significant effect of the outer wall on the dynamo
action in the turbulent case is to support the generation of a
strong axisymmetric toroidal field, which then feeds the other
components of the dynamo cycle. For large Reynolds numbers,
the velocity shear layer created by the boundary forcing is
narrow and confined close to the wall, and the buffering effect
of a highly conductive or thick wall allows this boundary layer
to create toroidal field very efficiently by the ω effect. A high
wall permeability also enhances the ω effect in the turbulent
case, by promoting a radial field at the fluid–wall interface
adjacent to the shear layer through the same paramagnetic
suction seen in the laminar case.

Ultimately then, the effect of magnetic boundary conditions
in a dynamo model depends on the geometry of the magnetic
field as much as on the physical configuration of the model. In
particular, a highly conducting, differentially rotating bound-
ary tends to promote axisymmetric steady field configurations,
and inhibit nonaxisymmetric configurations. Although this
study was motivated by upcoming dynamo experiments, the
understanding established is relevant also to astrophysical
dynamos. For example, the presence of a differentially rotating
conducting layer in Saturn has previously been invoked as an
explanation for its highly axisymmetric magnetic field [23,24].

In this scenario, the conducting “wall” is a stably stratified
layer of fluid surrounding the deeper convective region in
which the dynamo operates. The differential rotation in this
layer is produced by thermal winds arising from the latitudinal
temperature gradient at the planet’s surface. Stanley [24] found
that the role of the stable layer on the axisymmetry of the
magnetic field depends on the equatorial symmetry of the
thermal winds. This result can be explained using our thin-wall
boundary condition for the poloidal magnetic field [Eq. (31)].
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APPENDIX: THE MAGNETIC BOUNDARY CONDITIONS
IN THE THIN-WALL LIMIT

We consider a spherical wall of thickness h, electrical
conductivity σw, and magnetic permeability μw, separating
a fluid with σ = σf and μ = μf from an external vacuum
with σ = 0 and μ = μ0. In the limit h → 0 we anticipate that
the effect of the wall depends only on the radially integrated
conductivity hσw and permeability hμw [14].

We suppose that the wall is differentially rotating with
angular velocity �(θ ). Within the wall, the magnetic induction
equation (5) then takes the form

∂B
∂t

= ∇ × (�r sin θ eφ × B − ηw∇ × B) (A1)

where ηw = 1/(σwμw).

1. Poloidal magnetic field

The radial component of Eq. (A1) can be written as an
advection–diffusion equation for Br :(

∂

∂t
+ �

∂

∂φ

)
(r2Br ) = ηw

[
∂2

∂r2
− 1

r2
L2

]
(r2Br ), (A2)

where L2 is the angular Laplacian operator defined by Eq. (17).
For convenience we introduce a new variable P = r2Br ; the
matching conditions (18) and (20) then imply that P and
μ−1∂P/∂r are continuous.

Since Eq. (A2) has no explicit dependence on either t or φ,
it is convenient to decompose P spectrally in those coordinates
and then solve for each mode separately. We therefore assume
that P ∝ eiωt+imφ , for some constants ω and m. If we also
assume that the thickness of the wall is much smaller than the
scale of any latitudinal or azimuthal variations within the wall,
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then Eq. (A2) can be approximated as

i
P

δ2
� ∂2P

∂r2
, (A3)

where δ(θ ) is a generalized skin depth

δ(θ ) =
[

ηw

ω + m�(θ )

]1/2

. (A4)

We emphasize that δ depends on colatitude, as well as on
the frequency ω and azimuthal wave number m. We are
interested here in the regime with h � δ, in which case we
can approximate the radial dependence of P within the wall
via Taylor expansion. In particular, we have

P |r=(ro+h)− = P |r=r+
o

+ ∂P

∂r

∣∣∣∣
r=r+

o

h + O(h2/δ2),

(A5)

∂P

∂r

∣∣∣∣
r=(ro+h)−

= ∂P

∂r

∣∣∣∣
r=r+

o

+ ∂2P

∂r2

∣∣∣∣
r=r+

o

h + O(h2/δ2),

(A6)

where the superscripts − and + indicate points immediately
inside and outside a given radius respectively. The second
derivative of P in Eq. (A6) can be inferred from Eq. (A3). We
can then use the fact that P and μ−1∂P/∂r are continuous at
r = r−

o and r = (ro + h)+ [Eqs. (18) and (20)] to relate values
just outside the wall in the vacuum and in the fluid:

P |r=(ro+h)+ � P |r=r−
o

+ μw

μf

∂P

∂r

∣∣∣∣
r=r−

o

h, (A7)

μw

μ0

∂P

∂r

∣∣∣∣
r=(ro+h)+

� μw

μf

∂P

∂r

∣∣∣∣
r=r−

o

+ i

δ2
P

∣∣∣
r=r−

o

h. (A8)

Finally, we use the fact that, within the vacuum, we have[
∂P

∂r

]m

l

= − l

r
[P ]ml , (A9)

where the notation [·]ml represents a particular spherical
harmonic component. From Eqs. (A7)–(A9) and the definition
of δ we deduce the following boundary condition for the fluid
at r = r−

o :

− l

ro

μw

μ0

(
[P ]ml + μw

μf

[
∂P

∂r

]m

l

h

)

� μw

μf

[
∂P

∂r

]m

l

+
[(

iω + im�

ηw

)
P

]m

l

h. (A10)

If the wall is at rest [�(θ ) = 0], then we recover the thin-
wall boundary condition of Khalzov et al. [16]. In general,
it is easiest to implement Eq. (A10) as a dynamic boundary
condition, by replacing iωP by ∂P/∂t . We then have

∂

∂t
[P ]ml + im [�P ]ml

� − l

ro

1

μ0σwh
[P ]ml − 1

μfσwh

(
1 + l

ro

μwh

μ0

)
∂

∂r
[P ]ml .

(A11)

Since the coefficients on the right-hand side of (A11) are both
negative, this boundary condition is well posed.

If the rotation rate of the wall matches that of the fluid next
to the wall, then Eq. (A2) also applies at the surface r = r−

o ,
except with ηw replaced by ηf = 1/(σfμf). In that case, we can
rewrite the left-hand side of (A11) as follows:

ηf

[
∂2P

∂r2
− l(l + 1)

r2
0

P

]m

l

� − l

ro

1

μ0σwh
[P ]ml − 1

μfσwh

(
1 + l

ro

μwh

μ0

) [
∂P

∂r

]m

l

.

(A12)

This almost exactly matches the thin-wall boundary condition
derived by Roberts et al. [14]. However, their boundary
condition includes spurious terms proportional to h2, which
arise because they include O(h2/δ2) terms in the Taylor series
(A5), but not in (A6). Including such higher order terms in
both (A5) and (A6) increases the complexity of the derivation,
but the results presented here are still obtained in the thin-wall
limit h → 0 with σwh and μwh both finite.

For the steady-state dynamos considered in this paper, with
μf = μw/μr = μ0, boundary condition (A11) becomes

−∂ ln[P ]ml
∂ ln r

∣∣∣∣
r=r−

o

�
l + im Rm σrĥ

[�̂P ]ml
[P ]ml

1 + lμrĥ
, (A13)

where ĥ and �̂ are the thickness and angular velocity of the
wall in nondimensional units and Rm = Uwroμ0σf .

2. Toroidal magnetic field

A thin-wall boundary condition for the toroidal field can be
derived by taking the radial component of the curl of Eq. (A1)
and defining T = r2Jr . The derivation then follows the same
lines as in the previous section, with two modifications:

(1) We replace P → T and μ → σ , except in the vacuum,
where σ = 0;

(2) The toroidal equivalent of Eq. (A2) has additional
terms involving the shearing of field lines, which introduces
additional terms into Eq. (A8).

However, because the vacuum has σ = 0, T must vanish
at r = ro + h, and so the toroidal equivalent of Eq. (A7) is
simply

0 � T |r=r−
o

+ σw

σf

∂T

∂r

∣∣∣∣
r=r−

o

h. (A14)

From this we deduce immediately that the boundary condition
for the toroidal field is

∂ ln [T ]ml
∂ ln r

� − 1

σrĥ
. (A15)

This exactly matches the thin-wall boundary condition of
Roberts et al. [14].
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A. Chiffaudel, F. Daviaud, B. Dubrulle, C. Gasquet, L. Marié,
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33, 469 (2003).

[11] R. Kaiser and A. Tilgner, Phys. Rev. E 60, 2949 (1999).
[12] R. Avalos-Zuniga, F. Plunian, and A. Gailitis, Phys. Rev. E 68,

066307 (2003).

[13] R. Laguerre, C. Nore, A. Ribeiro, J. Léorat, J.-L. Guermond,
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