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We numerically investigate the inverse energy cascade range of two-dimensional Navier-Stokes turbulence.
Our focus is on the universality of the Kolmogorov’s phenomenology. In our direct numerical simulations,
two types of forcing processes, the random forcing and the deterministic forcing, are employed besides the
systematically varied numerical parameters. We first calculate the two-dimensional Navier-Stokes equations and
confirm that results in the quasi steady state are consistent with the classical phenomenology for both types of
forcing processes. It is also found that the difference in forcing process appears after the inverse energy cascade
range reaches the system size; the dipole coherent vortices emerge and grow only when the random forcing is
adopted. Then we add a large-scale drag term to the Navier-Stokes equations to obtain the statistically stationary
state. When the random forcing is used, the scaling exponent of the energy spectrum in the stationary state starts
to differ from the predicted −5/3 in the inverse energy cascade range as the infrared Reynolds number Red

increases, where Red is defined as kf /kd with the forcing wave number kf and the large-scale drag wave number
kd . That can be interpreted as a transition phenomenon in which the local maximum vorticity grows like an order
parameter caused by excitation of strong coherent vortices. Strong coherent vortices emerge and grow after the
quasi steady state and destroy the scaling law when Red is over a critical value. These coherent vortices are not
due to the finite-size effect, unlike the dipole coherent vortices. On the other hand, when the deterministic forcing
is adopted, strong coherent vortices are hardly seen and the −5/3 scaling law holds independently of Red . We
examine the cases of the combination of both types of forcing processes and find that formation of such coherent
vortices is sensitive to the mechanism of the external forcing process as well as the numerical parameters. Several
types of large-scale drag terms are also tested and their insignificant influence on these qualitative properties is
revealed.

DOI: 10.1103/PhysRevE.88.053009 PACS number(s): 47.27.De, 47.27.E−

I. INTRODUCTION

One of the most important achievements in two-
dimensional Navier-Stokes turbulence studies is the
Kraichnan-Leith-Batchelor (KLB) theory developed in
Refs. [1–3]. In this theory, Kolmogorov’s phenomenology
for three-dimensional turbulence is applied to homogeneous,
isotropic, and statistically (quasi-)stationary two-dimensional
forced turbulence. As the vorticity of each fluid parcel is
conserved in the inviscid case, both energy and enstrophy are
inviscid invariants in the two-dimensional system. Under these
two constraints, Kraichnan [1], based on Fjørtoft’s work [4],
first predicted the existence of two different scaling ranges:
the inverse energy cascade range, where energy, injected by
external forcing at intermediate scales, transfers to ever larger
scales, and the direct enstrophy cascade range, where injected
enstrophy transfers from forcing scales to smaller scales.
From dimensional analysis, k−5/3 and k−3 (with a possible
logarithmic correction [5]) scaling laws are predicted for the
energy spectrum in the inertial subranges of both inverse and
direct cascade ranges, respectively.

To verify the KLB theory, many theoretical and mathemat-
ical analyses [6–14], numerical simulations [9,15–39], and
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laboratory experiments [29,30,40–42] have been performed.
These theoretical and mathematical works primarily consider
constraints on the forcing to be consistent with the KLB
dual cascade picture. For typical classes of the deterministic
forcings, by assuming that a statistically steady state is reached,
such constraints are obtained, outside of which the energy
spectrum differs from k−5/3 and k−3 separated by the forcing
wave number [6,8]. However, one must bear in mind that the
assumption of the statistical steadiness is not made in the origi-
nal KLB argument. In the random forcing cases [7,13,14], mo-
ments of the vorticity and the invariant measure has been stud-
ied as well as the constraints. To our knowledge, theoretical
comparison between the two types of forcing is not very com-
mon, perhaps due to difference of the theoretical and mathe-
matical tools. In this paper, we do this comparison numerically.

In the above-mentioned previous simulations and experi-
ments, the k−5/3 scaling [16,18,20,22,23,28,30,33,34,40,41]
and the k−3 scaling [19,26,27,35] have been confirmed
independently. Recently, both scaling laws have also simul-
taneously observed in laboratory experiments [29,42] and
numerical simulations [32,36,38], even though the scaling
ranges cannot be so wide in such studies. In Refs. [32,36],
the k−3 scaling is asymptotically achieved as the Reynolds
number increases.

However, the departure from the k−5/3 scaling in the
inverse energy cascade range is also recognized in some
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numerical studies [9,20–22,24,25,31,37,39]. In such cases,
strong coherent vortices are usually observed in vorticity
field and they are supposed to be the cause of this departure
[20–22,24,25,31,37,39]. The mechanism of the formation of
such coherent vortices has not been well understood and
there seems to be no general agreement on the conditions
for emergence of these strong coherent vortices. It is stated in
Refs. [31,37,39] that when the direct enstrophy cascade range
is well resolved, strong coherent vortices emerge and the k−5/3

scaling is destroyed. On the other hand, the k−5/3 scaling is
obtained with a relatively wide direct enstrophy cascade range
in Refs. [32,36]. It is also demonstrated in Refs. [37] that
high resolution in the inverse energy cascade range causes
the emergence of strong coherent vortices. In Ref. [22], the
importance of employing the appropriate large-scale drag
formulation to obtain the statistically stationary structureless
turbulent flow field that holds the k−5/3 energy spectrum
is illustrated by using a specially devised large-scale drag.
Nevertheless, relatively wide k−5/3 scaling range is achieved
with a hypodrag term in Ref. [34].

The KLB theory outlines the universal features which
should be independent of the details of energy input and output
mechanism. Under circumstances where a lot of data supports
the KLB theory, it has been usual to adopt only one type
of forcing process in each previous numerical study. However,
previous numerical simulation results imply that the formation
of strong coherent vortices, which causes the departure from
the k−5/3 scaling law, is not a universal phenomenon. Thus,
it should be tested if the forcing mechanism can influence on
the formation of coherent vortices and the k−5/3 scaling law,
and, if so, how it does. The fact that the type of forcing process
modifies the slope of scaling in the enstrophy inertial subrange
was shown in Ref. [38]. In this study, we use two typical types
of forcing process. In each case, we investigate the conditions
for formation of strong coherent vortices and the departure
of the k−5/3 scaling law by varying numerical parameters to
mainly control the resolution in the inverse energy cascade
range. We will show that formation of strong coherent vortices
can be described as a transition phenomenon for the change in
the numerical resolution in the inverse energy cascade range
and that highly depends on the type of forcing process.

As is usual with numerical studies of two-dimensional
Navier-Stokes turbulence, a large-scale drag term is added
to the Navier-Stokes equations in this study to dissipate
the energy transferred from the forcing scale and attain a
statistically stationary state. However, this additional term
of course can influence statistical features not only in large
scales but also in the inverse energy cascade range. To see
the influence of the drag term, the Navier-Stokes equations
(without any large-scale drag term) are also calculated in this
study. It is reported in Refs. [18,20,33] that strong dipole
coherent vortices emerge and grow after the inverse energy
cascade range reaches the system size when no drag term is
added. We reproduce this dipole structure and compare it with
the coherent structures observed when a large-scale drag term
is added. We also employ several types of large-scale drag
terms to check the influence of them.

The rest of this paper is organized as follows. In Sec. II, we
show our numerical method and parameters. The numerical
results are presented and discussed in Sec. III. The results for

two types of forcing processes without any large-scale drag
terms are shown in Sec. III A. A statistically stationary state
is attained for both types of forcing processes by adding the
first-order hypodrag term in Sec. III B. Statistical features in
such states with various numerical parameters are shown in
this subsection. To see the effect of the forcing processes, a
combination of two types of forcing processes is examined
in Sec. III C. Several types of large-scale drag terms are also
tested in Sec. III D. Section IV contains a brief discussion of
the results in Sec. III and conclusions.

II. NUMERICAL METHOD

In our direct numerical simulation study, the two-
dimensional Navier-Stokes equations are solved by using
the pseudospectral method with the 2/3 dealiasing rule in
a doubly periodic square domain of each side length 2π .
The fourth-order Runge-Kutta method is employed for time
integration. In practice, the vorticity equation in Fourier space,

∂ω̂(k,t)

∂t
+ [ ̂(u · ∇)ω](k,t)

= −(νk2h + dk−2q )ω̂(k,t) + f̂ (k,t), (1)

is integrated with the incompressible condition (∇ · u(x,t) =
0), whereˆdenotes the Fourier transform, u is the fluid velocity,
ω (= −∇ × u|z) the vorticity, ν the hyperviscosity coefficient,
h the hyperviscosity exponent, d the hypodrag coefficient, q

the hypodrag exponent, and f the forcing term. The large-scale
drag term, the second term on the right-hand side of Eq. (1), is
added to the Navier-Stokes equations in this study to dissipate
the energy transferred from small forcing scales and obtain
a statistically stationary turbulent flow field. Note that this
term is dropped by reducing d to zero in Sec. III A to see the
influence of it.

The forcing term is band-limited in Fourier space; the
forcing wave range is kf − �k � k � kf + �k for a small
constant �k (< 0.01kf ). As mentioned before, two types
of forcing processes are employed in this study. One is the
white-in-time random forcing process (here denoted as fR for
brevity), which is

f̂ (k,t)

=
⎧⎨
⎩

√
εink

2
f

�t nf

(
ξR

k + iξ I
k

)
if |k| ∈ [kf − �k,kf + �k],

0 if |k| /∈ [kf − �k,kf + �k],

(2)

in Eq. (1). Here ξR
k and ξ I

k are both independent, zero-
mean, unit variance, Gaussian random variables which are
independent for every k at every time step, �t is a time step,
and nf is the number of the spectral modes in the forcing range.
A control parameter εin is supposed to be an energy input rate.
We have confirmed that the short-time averaged energy input
rate is equal to εin from the results of the energy budget in each
simulation. This type of forcing is widely used in the previous
studies [16,18–22,26,31,37,39] and strong coherent vortices
are formed in some cases. The other one is the deterministic
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forcing process (here denoted as fD), which is

f̂ (k,t) =
{

εin|k|2
nf ω̂∗(k,t) if |k| ∈ [kf − �k,kf + �k],

0 if |k| /∈ [kf − �k,kf + �k],
(3)

in Eq. (1). Here ω̂∗ denotes the complex conjugate of ω̂. With
this forcing, a relatively wide k−5/3 scaling range is achieved
without coherent vortices in Ref. [34]. The same [27,30,34]
and a similar type of forcing [9,28,43] are used in previous
studies. The attractive aspect of this formulation is that it
provides a constant energy input rate εin at every time step.

The initial condition is a homogeneous zero vorticity field
when fR is used. On the other hand, a random vorticity field
with a small variance is prepared as an initial state when fD

is used, since the forcing term cannot be calculated when the
vorticity is zero. This random vorticity field consists of Fourier
modes generated with independent Gaussian distributions and
scaled to give the energy spectrum

E(k,0) =
{

e0 if |k| � kf + �k,

0 if |k| > kf + �k,
(4)

for a small constant e0 (= 1.0 × 10−8) as in Ref. [34]. Here
the energy spectrum E(k,t) is defined as

E(k,t) ≡ 1

δk

∑
k�|k′|<k+δk

1

2
|û(k′)|2, (5)

for small δk (= 1).
Numerical parameters in our main simulations are listed in

Table I. We employ 5122, 10242, 20482, and 40962 for the num-
ber N2 of spatial grid points in the calculation domain. While
the energy input rate εin is fixed at 0.1, the forcing wave number
kf is set in proportion to N . To concentrate the computational
resources on the inverse energy cascade range, the eighth-order
hyperviscosity (h = 8) is used and the localized forcing scale
is set in the vicinity of the viscous range. Consequently, the
direct enstrophy cascade range is not resolved well.

The hyperviscosity coefficient ν is varied to obtain an
approximately constant energy transfer rate εtr in these
simulations. It is empirically found that to have almost the
same εtr with fixed εin, the viscous wave number kν defined
as (εin/ν

3)1/(6h−2) should be proportional to kf and N . We
also use various numerical parameters for a large-scale drag
term, d and q, to see the effect of the drag term; however, it
is revealed that these parameters influence little on εtr. Note
that the ratio of energy transfer rate εtr to energy input rate
εin is denoted as the inverse-cascade strength in Ref. [28] and
treated as the key quantity to attain the k−3 scaling of energy
spectrum in the enstrophy cascading range. It is also stated in
Ref. [9,28] that the k−5/3 inverse cascading range is realizable
even for small εtr/εin. In all simulations shown in Table I,
εtr/εin = 0.18 ± 0.01.

III. RESULTS

A. Without any large-scale drag term

We begin with calculating the Navier-Stokes equations
(without any large-scale drag term) to set a baseline for
simulations with a large-scale drag term. On the basis of the
KLB theory, there would be a quasi steady state [1], where

TABLE I. Numerical settings in each simulation are listed below:
N 2 is the number of spatial grid points, f the type of forcing process,
εin energy input rate, kf the forcing wave number, h the hyperviscosity
exponent, ν the hyperviscosity coefficient, q the hypodrag exponent,
and d the hypodrag coefficient.

Name N 2 f εin kf h ν q d

AR1 5122 fR 0.1 124 8 7.95 × 10−34 — 0
AD1 5122 fD 0.1 124 8 7.95 × 10−34 — 0
BR1 5122 fR 0.1 124 8 7.95 × 10−34 1 0.2
BR2 5122 fR 0.1 124 8 7.95 × 10−34 1 2.0
BR3 5122 fR 0.1 124 8 7.95 × 10−34 1 2.5
BR4 5122 fR 0.1 124 8 7.95 × 10−34 1 4.0
BR5 5122 fR 0.1 124 8 7.95 × 10−34 1 5.0
BR6 5122 fR 0.1 124 8 7.95 × 10−34 1 10
BD1 5122 fD 0.1 124 8 7.95 × 10−34 1 0.2
BD2 5122 fD 0.1 124 8 7.95 × 10−34 1 2.0
BD3 5122 fD 0.1 124 8 7.95 × 10−34 1 10
CR1 10242 fR 0.1 249 8 1.82 × 10−38 1 2.5
CR2 10242 fR 0.1 249 8 1.82 × 10−38 1 7.5
CR3 10242 fR 0.1 249 8 1.82 × 10−38 1 25
CR4 10242 fR 0.1 249 8 1.82 × 10−38 1 30
CR5 10242 fR 0.1 249 8 1.82 × 10−38 1 35
DR1 20482 fR 0.1 498 8 4.50 × 10−43 1 50
DR2 20482 fR 0.1 498 8 4.50 × 10−43 1 100
DR3 20482 fR 0.1 498 8 4.50 × 10−43 1 150
DR4 20482 fR 0.1 498 8 4.50 × 10−43 1 175
DR5 20482 fR 0.1 498 8 4.50 × 10−43 1 180
DR6 20482 fR 0.1 498 8 4.50 × 10−43 1 190
DR7 20482 fR 0.1 498 8 4.50 × 10−43 1 200
ER1 40962 fR 0.1 997 8 1.13 × 10−47 1 2.0
ED1 40962 fD 0.1 997 8 1.13 × 10−47 1 2.0
FR1 5122 fR 0.1 124 8 7.95 × 10−34 0 0.01
FR2 5122 fR 0.1 124 8 7.95 × 10−34 0 0.02
FD1 5122 fD 0.1 124 8 7.95 × 10−34 0 0.01
FD2 5122 fD 0.1 124 8 7.95 × 10−34 0 0.02
GR1 20482 fR 0.1 498 8 4.664 × 10−43 0 0.02
GR2 20482 fR 0.1 498 8 4.664 × 10−43 0 0.05
GD1 20482 fD 0.1 498 8 4.664 × 10−43 0 0.02
HR1 5122 fR 0.1 124 8 7.95 × 10−34 2 400
HR2 5122 fR 0.1 124 8 7.95 × 10−34 2 750
HR3 5122 fR 0.1 124 8 7.95 × 10−34 2 800
HD1 5122 fD 0.1 124 8 7.95 × 10−34 2 750
ID1 20482 fD 0.1 498 8 4.664 × 10−43 2 20
JR1 5122 fR 0.1 124 8 7.95 × 10−34 8 4.0 × 1014

JR2 5122 fR 0.1 124 8 7.95 × 10−34 8 6.0 × 1014

JD1 5122 fD 0.1 124 8 7.95 × 10−34 8 4.0 × 107

KD1 20482 fD 0.1 498 8 4.664 × 10−43 8 4.0 × 107

the scaling range called inertial subrange is observed, before
the inverse energy cascade range reaches the system size.
In the inertial subrange of inverse energy cascade range, energy
should transfer scale-locally toward large scales at a constant
rate εtr and the energy spectrum E(k) should take the form

E(k) = CKεtr
2/3k−5/3, (6)

where CK is the dimensionless universal constant called the
Kolmogorov constant.

In this subsection, the results of AR1 and AD1 in Table I
are presented. Two types of forcing processes, fR and fD , are
used independently in each simulation. Time evolution of the
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FIG. 1. (Color online) Time evolution of total kinetic energy in
AR1 and AD1. Lines for AR1 and AD1 are indistinguishable due to
overlap. Time scale TL(≡ εin

−1/3(2π )2/3) is about 7.3 in both cases.

total kinetic energy, defined as

K(t) ≡
∑

k

1

2
|û(k,t)|2, (7)

is shown in Fig. 1. In both cases, the total kinetic energy
grows linearly with time after the initial stage (t � TL), where
the time scale TL defined as εin

−1/3(2π )2/3 is 7.3. This linear
growth of total kinetic energy, K(t) ∝ 0.018t , is observed for
a long time period, which is at least over 60TL.

The quasi steady state is observed in both cases in an
intermediate time region, TL � t � 3TL. In this time region,
the energy peak wave number kp goes down toward lower
wave numbers and the k−5/3 energy spectrum is observed for
kp � k � kf as shown in Fig. 2.

The energy flux function, defined as


E(k,t) ≡
∑
|k′|<k

1

|k′|2 Re[ω̂∗(k′,t) ̂(u · ∇)ω(k′,t)], (8)

in this time region is also shown in Fig. 3. Energy conservation
following the Navier-Stokes equations (with using hypervis-
cosity) is expressed with this function as follows:

∂

∂t

∫ ∞

k

E(k′,t)dk′ = 
E(k,t)

− 2ν

∫ ∞

k

k′2hE(k′,t)dk′ +
∫ ∞

k

F (k′,t)dk′, (9)
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FIG. 2. (Color online) Snapshots of energy spectrum at t =
20,15,10,5, and 0 (from top to bottom) in AD1.
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FIG. 3. (Color online) Snapshots of energy flux function at t =
20,15,10, and 5 (from left to right) in AD1.

where F (k,t) is the energy input rate by the external forcing.
Since F (k,t) is nonzero only for kf − �k � k � kf + �k and
the value of 2νk2hE(k,t) is very small for k � kf , the growth
rate of the kinetic energy at intermediate or large scales is
estimated as follows:

∂

∂t

∫ k′

k

E(k′′,t)dk′′ ∼ 
E(k,t) − 
E(k′,t), (10)

for k < k′ < kf . As shown in Fig. 3, 
E(k,t) gives a negative
constant −εtr with some fluctuation in the k−5/3 energy
spectrum range. The constant value εtr is approximately 0.018
and obviously coincides with the growth rate of total kinetic
energy.

These facts imply that only a small part of kinetic energy
input by the external forcing is transferred at a constant rate εtr

to large scales around the energy peak wave number kp, which
goes down toward lower wave numbers in time. Because of
the closeness between the forcing range and the viscous range,
the most part [∼0.82 (= 1 − εtr/εin)] of injected energy is
dissipated in the viscous range. In the original inverse energy
cascade theory [1], most of the input energy supposed to
be carried down toward the lower wave number; however,
this cascading process observed in our simulations is qualita-
tively consistent with the theory. Almost the same results have
been obtained in the previous numerical simulations [18,20].
There is no distinct difference in both cases, fR and fD , in the
quasi steady state.

The difference between the results of fR and fD appears
after the quasi steady state. Until the end of our simulation of
the quasi steady state, the distribution of vorticity in physical
space is structureless in the sense that the strong coherent
vortices such as shown in Fig. 4 and Fig. 12 are not observed
in both cases. When fD is used, the vorticity field remains
structureless, as demonstrated in Fig. 5 and Fig. 6, even
when t ∼ 60TL, which is the end of the simulation time. On
the other hand, when fR is used, two coherent vortices
of opposite sign illustrated in Fig. 4 and Fig. 6 get to
be distinguishable at t ∼ 8TL, when the energy peak wave
number reaches the fundamental mode (k = 1). The intensity
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FIG. 4. (Color online) Vorticity field in physical space at t =
300 (∼40TL) in AR1.

of their vorticity grows in time after that, while the sizes of
them remain comparable with the forcing scale (∼2π/kf ).

This difference in physical space reveals that the mecha-
nism of the external forcing process has a strong influence on
the vorticity field at least after the quasi steady state. Even
when the capital numerical parameters are fixed, a completely
different vorticity field can be obtained if the forcing process
is changed.

The coherent structure observed in AR1 is consistent
with the results in Refs. [18,20], in which the condensa-
tion process was first studied numerically in detail with
a small-scale white-in-time Gaussian random forcing and
the eighth-order hyperviscosity: The numerical setting is
almost the same with AR1. Similar results are also ob-
served in Ref. [33], in which energy condensation in two-
dimensional turbulence is investigated with a band-limited
stochastic forcing with fixed amplitude and random phase.
As stated in Ref. [33], time growth of the maximum value
of vorticity in AR1 is proportional to

√
t in late simulation

time (t � 50TL).
At the end of the simulation time (t ∼ 60TL), we calculate

the background vorticity field in AR1 filtering out two
coherent vortices in physical space as follows: (i) We pre-
pare the function g(x) = ∑N�

i=1 exp ( − (x − ci)2/2σ 2), where
N� (=2) is the number of the coherent vortices, ci the center
position of i-th coherent vortex, and σ is fixed at the forcing
scale 2π/kf . (ii) The background vorticity field is calculated
as ω(x) − g(x)ω(x), where ω(x) is the original vorticity field.
After this filtering, we return to Fourier space and calculate
the energy spectrum of it. It is found that the energy spectrum
of the background vorticity field shows k−1 scaling in the
intermediate scale range. This result is also consistent with
that in [33].

FIG. 5. (Color online) Vorticity field in physical space at t =
300 (∼40TL) in AD1.

FIG. 6. (Color online) Side view of Fig. 4(fR) and Fig. 5(fD).

B. With the first-order hypodrag term

To attain a statistically stationary state, the first-order
hypodrag term [q = 1 in Eq. (1)] is added as an energy sink
at large scales. Time evolution of the total kinetic energy is
shown in Fig. 7 for d = 0.0, 0.2, 2.0, and 10.0 in both cases,
fR and fD . These simulations correspond to AR1, BR1, BR2,
BR6, AD1, BD1, BD2, and BD3 in Table I. Data for d = 0
(AR1 and AD1) are the same as those in Fig. 1. Since the
influence of the first-order hypodrag term diminishes at high
wave numbers, the effect of it is negligible at the beginning of
calculation and the quasi steady state is also observed even in
these cases. As the energy peak wave number kp goes down
to a lower wave number, the drag effect is intensified mainly
around kp and the total drag effect grows in time. Eventually,
kp is stabilized at a certain wave number (∼2.7kd ), where kd

is the drag wave number defined as (d3/εtr)1/(2+6q). Up to this
simulation time (�3TL), the difference in the results of fR and
fD is hardly seen when the same numerical parameters are
used. Moreover, when a sufficiently large drag coefficient is
set, no distinct difference is observed between the results of
fR and fD throughout the entire simulation.

The statistically stationary state is shortly subsequent to
the quasi steady state when fD is used or when a sufficiently
large drag coefficient is set as illustrated in Fig. 7. In these
stationary states (in BR6, BD1, BD2, and BD3), statistical

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0  200  400  600  800  1000

K
(t)

t

fR
fD

FIG. 7. (Color online) Time evolution of total kinetic energy for
four drag coefficients, d = 0,0.2,2.0, and 10 (from top to bottom)
with fR (AR1, BR1, BR2, and BR6) and fD (AD1, BD1, BD2, and
BD3). Note the overlaps between AR1 and AD1 and between BR6
and BD3. Time scale TL(≡ εin

−1/3(2π )2/3) is about 7.3 in all cases.
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FIG. 8. (Color online) Long-time averaged energy flux functions
in the statistically stationary state in BD1, BD2, and BD3 (from left
to right); d = 0.2,2.0, and 10 with fD .

features such as the energy spectrum and the energy flux
function in adequately small scales [k > kp (∼2.7kd )] are
almost the same with those in quasi steady state in the
simulations AR1 and AD1 (shown in the previous Sec. III A).
The long-time averaged energy flux function gives a constant
value εtr (∼0.018) in the intermediate scale range (see Fig. 8
and Fig. 9) and the k−5/3 scaling law is clearly observed in the
long-time averaged energy spectrum for this scale range (see
Fig. 10 and Fig. 11). The Kolmogorov constant CK evaluated
from these results are comparable with the estimated value,
6.5 ± 1, in the laboratory experiment [41] which has attained
a relatively wide inertial subrange. This value is also consistent
with the previous numerical studies. These results apparently
imply that Kolmogorov’s phenomenology can also prevail
in statistically stationary two-dimensional turbulence with a
large-scale drag term.

However, when fR is used and a small drag coefficient is set,
the total kinetic energy gradually grows after the quasi steady
state as demonstrated with simulations BR1 and BR2 in Fig. 7.
In this second growth process, several strong coherent vortices
as illustrated in Fig. 12 emerge and the intensity of them
increases. A bulge in the energy spectrum also appears and
increases in the intermediate scale range in this time region,
which destroys the k−5/3 scaling. After this long-term second
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FIG. 9. (Color online) Long-time averaged energy flux functions
in the statistically stationary state in BR1, BR2, and BR6 (from left
to right); d = 0.2,2.0, and 10 with fR .
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bottom right); d = 0.2,2.0, and 10 with fD . Inset is a compensated
plot; 〈E(k,t)〉ε−2/3

tr k5/3 vs k. Here, 〈·〉 denotes long-time average.

growth process, a statistically stationary state is eventually
attained even in these cases.

The long-time averaged energy flux functions and the
energy spectra in such statistically stationary states (in BR1
and BR2) are shown in Fig. 9 and Fig. 11, respectively. From
the comparison between Fig. 8 and Fig. 9, it is obvious that
the long-time averaged energy flux function depends little
on the type of forcing process. On the other hand, when
only fR is used, a spectral bulge is formed in the energy
spectrum for a small drag coefficient. The spectral bulge is
more intense for lower drag coefficient and the k−5/3 scaling is
apparently destroyed. Even when the spectral bulge is formed,
the energy peak wave number kp stays at about 2.7kd , where
kp is stabilized at the end of the quasi steady state. The linear
relationship between kp and kd is also pointed out in the
previous studies [24,44].

In such statistically stationary states where the spectral
bulge is formed in the energy spectrum, several strong coherent
vortices with almost the same intensity are observed in physical
space, as shown in Fig. 12 and Fig. 14. The intensity of these
coherent vortices fluctuates little in time. This value depends
on the drag coefficient; it is more intense for small drag
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FIG. 11. (Color online) Long-time averaged energy spectra in
statistically stationary state in BR1, BR2, and BR6 (from top left to
bottom right); d = 0.2,2.0, and 10 with fR . Inset is a compensated
plot; 〈E(k,t)〉ε−2/3

tr k5/3 vs k.
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FIG. 12. (Color online) Snapshot of vorticity field in statistically
stationary state of calculation BR1.

coefficient. The size of these coherent vortices are comparable
with the forcing scale (2π/kf ), which is similar to the dipole
coherent vortices seen in Sec. III A (see Fig. 6). These coherent
vortices are not observed in the fD cases and in the fR cases
with sufficiently large drag coefficients. Vorticity fields in these
cases are structureless, as illustrated in Fig. 13 and Fig. 14.

To see the relation between the strong coherent vortices and
the spectral bulge, we filter out the strong coherent vortices
in an instantaneous vorticity field in statistically stationary
state. The filtering method is the same as used in Sec. III A.
In the energy spectrum of these remaining fluctuations, the
k−5/3 scaling is observed as repeatedly reported in the previous
study [20,31,37]. This energy spectrum is almost the same as
that of the simulation in which fD and the same numerical
parameters are used. It is natural to think that the departure
from the k−5/3 scaling comes from the formation of strong
coherent vortices after the quasi steady state. Note that the
k−1 scaling is obtained in the intermediate scale range when
the dipole coherent vortices are filtered out in the previous
Sec. III A. Thus the difference between the coherent vortices
in this subsection and the dipole vortices is in the energy
spectrum of the background field. The similarities are that
both are formed after the quasi steady state and the sizes of
them are comparable.

Strong coherent vortices are also observed in simulations
CR1, CR2, CR3, CR4, DR1, DR2, DR3, DR4, DR5, and DR6
at higher spatial resolution. They are formed only when fR

and an insufficiently small drag coefficient are used. Radii of
coherent vortices are comparable with the forcing scale in all
simulations if they are formed. More coherent vortices are
observed for higher forcing wave numbers at higher spatial
resolutions. Each intensity of strong coherent vortices in
statistically stationary state is at a comparable level around
the maximum vorticity in each simulation as illustrated in
Fig. 14. The maximum vorticity highly depends on the
numerical parameters such as kf and d.

FIG. 13. (Color online) Snapshot of vorticity field in statistically
stationary state of calculation BD1.

FIG. 14. (Color online) Side view of Fig. 12(fR) and Fig. 13(fD).

To investigate the relation between the strong coherent
vortices and the numerical parameters, we plot the maximum
absolute value of vorticity normalized with the root-mean-
square vorticity (|ω|max/ωrms) in a statistically stationary state
against the infrared Reynolds number Red , defined as kf /kd

according to Ref. [37], in Fig. 15. All the data for fR with q = 1
at the resolution 5122, 10242, and 20482 are shown in Fig. 15.
Obviously there is a critical point around Red ∼ 40 and these
data give a single curve a1(Red − b1)1/2 + 5 for Red � 40,
with (a1,b1) = (3.1,41), as if the supercritical (pitchfork)
bifurcation might occur. This result suggests that not kd but
Red is a key factor for formation of strong coherent vortices.
Note that the infrared region [1,kd ] is enlarged twice and four
times for the same Red when the resolution gets higher from
5122 to 10242 and 20482, respectively. Thus, the shortage of
spectral modes in the infrared region is not the cause of the
formation of strong coherent vortices. That is, strong coherent
vortices are not due to the finite-size effect. When fR is used
with q = 1, the spectral bulge is also observed for Red � 40.
It gets to be more distinguishable as Red increases.

These results imply that a wide k−5/3 scaling range cannot
be observed when fR is adopted, while a wide inertial subrange
can be easily attained when fD is used. To check this, we
employ the maximum spatial resolution 40962 in this study
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FIG. 15. (Color online) Maximum absolute value of vorticity
normalized by root-mean-square vorticity in a statistically stationary
state vs the infrared Reynolds number Red when fR is employed,
kf = 124,249, and 498, and q = 1. Error bars show each of maximum
and minimum values in several realizations. These data can be fitted
onto a single curve a1(Red − b1)1/2 + 5 with (a1,b1) = (3.1,41) for
Red � 40.
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FIG. 16. (Color online) Instantaneous energy spectrum when the
statistically stationary state is nearly attained in ER1 (upper) and long-
time averaged energy spectrum in stationary state in ED1 (lower).

in ER1 and ED1. In these simulations, the forcing wave
number is shifted to a higher wave number in proportion to
the maximum wave number. Both the energy input rate εin and
the energy transfer rate εtr are also fixed as in the previous
cases. The results are what we expected; strong coherent
vortices and a spectral bulge, which destroys the k−5/3 scaling,
are observed for fR , while the structureless vorticity field
with a relatively wide k−5/3 scaling range is attained for fD .
The comparison of the instantaneous energy spectrum when
the statistically stationary state is nearly attained in ER1 with
the long-time averaged energy spectrum in stationary state in
ED1 is illustrated in Fig. 16. Because of a high computational
cost to trace all the energy growing processes after the quasi
steady state, we stop the calculation of ER1 when the stationary
state is nearly obtained.

At the end of the simulation ER1, we evaluate the maximum
absolute value of the vorticity normalized with the root-mean-
square vorticity (|ω|max/ωrms) and add it to the previous data
in Fig. 17. This value is much smaller than the estimated value
from the fitting function a1(Red − b1)1/2 + 5, where (a1,b1) =
(3.1,41), from the previous data. Judging from the little growth
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FIG. 17. (Color online) Maximum absolute value of vorticity
normalized by root-mean-square vorticity vs the infrared Reynolds
number Red when fR is employed, kf = 124,249,498, and 997(ER1),
and q = 1. Fitting lines for kf /kd � 40, a1(Red − b1)1/2 + 5 (dotted
black upper line), and a2(Red − b2)1/3 + 5 (solid gray lower line)
are estimated with the data for kf = 124,249, and 498, where
(a1,b1) = (3.1,41) and (a2,b2) = (4.7,41).

of this value in final stage, this gap would not be made up for
even if the calculation of ER1 continued.

If the coherent vortices in this subsection have something
to do with the dipole coherent structures mentioned in
the previous Sec. III A, the

√
t growth of the intensity of

the coherent vortices may be prevented by the drag term.
Since the time scale τd at the drag scale 1/kd is estimated
as τd ∼ εtr

−1/3kd
−2/3, the intensity of the coherent vortices

|ω|max/ωrms may depend on
√

τd ∼ εtr
−1/6kd

−1/3 ∼ Re1/3
d .

Here Red = kf /kd . Thus, we also fit the previous data with the
function a2(Red − b2)1/3 + 5 and evaluate (a2,b2) as (4.7,41).
However, the estimated value from this fitting curve is much
smaller than the calculated value at the end of the simulation
ER1, as shown in Fig. 17. While the growth of |ω|max/ωrms

with Red near the critical point Rec
d seems to be expressed

with a1(Red − Rec
d )1/2 + 5, we are not sure how |ω|max/ωrms

depends on Red at much higher Red . Even so, we expect that
the coherent vortices would emerge and destroy the k−5/3

scaling law for high Red when fR is adopted. On the other
hand, much wider inertial subrange would be attained when
fD is employed.

C. Combination of two types of forcing

To bridge a gap between the results of fR and fD , we
examine some cases of the combination of both two types
of forcing process. Here the random forcing ratio rRF to the
total forcing is defined by εR

in/εin, where εR
in and εD

in are energy
input rates for fR and fD , respectively. In the following, the
total energy input rate εin = εR

in + εD
in is fixed. We carried out

simulations changing rRF with using the parameters of BR1
and BR2 in Table I. The infrared Reynolds number Red in
BR1 and BR2 are approximately 137 and 58, respectively.
In Fig. 18, |ω|max/ωrms in each statistically stationary state is
plotted against rRF. The results of the simulations BR6 and
BD3, which correspond to rRF = 1 and 0 when Red = 32,
are also shown in this figure. At a large and fixed value of
Red such that the coherent vortices are formed in the case
of rRF = 1, the coherent vortices also emerge and destroy the
k−5/3 scaling law if rRF is relatively close to 1. Decreasing rRF
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FIG. 18. (Color online) Maximum absolute value of vorticity
normalized by root-mean-square vorticity in statistically stationary
state as a function of the random forcing ratio rRF when Red = 137,
58, and 32. Error bars show each of maximum and minimum values in
several realizations. Dotted black upper line is 35(rRF − 0.2)1/2 + 5
and solid gray lower line is 17(rRF − 0.6)1/2 + 5.
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FIG. 19. Roughly estimated critical infrared Reynolds number
Rec

d against the random forcing ratio rRF.

to a critical value rc
RF, which depends on the fixed value of

Red , the intensity |ω|max/ωrms also decreases. This behavior
can be expressed with the function α(rRF − rc

RF)1/2 + 5, where
(α,rc

RF) is (35,0.2) when Red = 137 and (17,0.6) when Red =
58 as shown in Fig. 18.

From these results, the critical infrared Reynolds numbers
Rec

d when rRF = 0.2 and 0.6 are roughly estimated to be 137
and 58, respectively. As shown in Fig. 15, Rec

d ∼ 40 when
rRF = 1. This dependence of Rec

d on rRF is schematically
shown in Fig. 19. From the result of ED1, Rec

d is at least
over 462 when rRF = 0, although we expect it to be infinite. It
is obvious that including even a small fraction of the random
component to the forcing process can drastically change the
vorticity field and destroy the k−5/3 scaling law when Red is
high.

D. Effect of the order of hypodrag term

Finally, we briefly examine the effect of the order q of
hypodrag term. It is claimed in Ref. [22] that employing
the appropriate large-scale drag formulation is important to
obtain the statistically stationary turbulent flow field that is
structureless and holds phenomenological statistical laws, such
as the −5/3 energy spectrum and the constant energy flux
function in the intermediate scale range. In fact, such a flow
field is obtained in Ref. [22] by using a specially devised
large-scale drag and a small-scale white-in-time Gaussian
random forcing. In our direct numerical simulations, such an
ideal inverse energy cascade flow field is obtained just with
the first-order hypodrag term. Nevertheless, we test influence
on the statistical features of this type of drag term by varying
its inverse-Laplacian order q.

We carried out simulations FR1, FR2, FD1, FD2, GR1,
GR2, GD1, HR1, HR2, HR3, HD1, ID1, JR1, JR2, JD1, and
KD1 in Table I employing q = 0,2, and 8. Strong coherent
vortices are observed only in the simulations GR1, HR1, HR2,
and JR1. The results are quite similar to those with q = 1:
(i) Both the energy spectrum and the energy flux function are
consistent with Kolmogorov’s phenomenology in the inverse
energy cascade range and the vorticity field is structureless
when fD is adopted. (ii) Those also hold for the case of
fR only when the infrared Reynolds number Red is low. (iii)
Strong coherent vortices and a spectral bulge are formed when
f R is used at high Red . Note that the constant energy flux

TABLE II. Numerical settings in simulations LR1 and LD1.

Name N 2 f kf εin h ν q d

LR1 20482 fR 485 0.00016 8 2.651 × 10−44 2 277.103
LD1 20482 fD 485 0.00016 8 2.651 × 10−44 2 277.103

range is narrow when q = 0 as usual [23,24], since the linear
drag (q = 0) affects all scales uniformly as pointed out in
Ref. [25]. Strong coherent vortices cannot be observed at the
5122 resolution when q = 0, while they are seen in GR1 at the
resolution of 20482.

The analytical form in the drag range of the energy spectrum
depends on q and the large-scale bottleneck effect gets to
be prominent for large q. The spectral bump in the energy
spectrum is formed in the vicinity of kp for large q as predicted
with a closure model in Ref. [45]. It is observed for both
types of forcing process. This effect, however, does not change
the k−5/3 scaling in the inertial subrange but just reduces the
width of the k−5/3 scaling range. The critical infrared Reynolds
number Rec

d for fR also depends on q; small Rec
d is evaluated

for large q.
To see the results in another numerical setting, we also

reproduce RUN3 in Ref. [34], where a relatively wide k−5/3

scaling range is attained with fD at the resolution of 20482.
The numerical parameters of this simulation LD1 is shown
in Table II. Clear k−5/3 scaling is observed over one decade
as in Ref. [34], with the inverse-cascade strength εtr/εin is
approximately 0.30. We then replace the forcing process by
fR in the simulation LR1 in Table II. The spectral bulge and
coherent vortices, which are never seen in LD1, are formed
and the k−5/3 scaling is destroyed, as expected. From these
results, we infer that it may be impossible to have a wide k−5/3

scaling range when fR is adopted.

IV. DISCUSSION AND CONCLUSIONS

Our results show that the k−5/3 scaling law of the inertial
subrange in the inverse energy cascade range is sensitive
to not only the numerical parameters but also the mecha-
nism (deterministic or random) of the forcing process. This
sensitivity is traced to the formation of strong coherent
vortices. These coherent vortices have been observed in many
preceding numerical works [20–22,24,25,31,37,39]. It has also
been repeatedly pointed out [20,21,31,37] that, even in the
cases where the strong coherent vortices destroy the scaling
law, once they are filtered out, the k−5/3 scaling can be
observed in the energy spectrum of the background vorticity
field.

In this study, we employed two types of forcing, the random
forcing fR and the deterministic forcing fD , and found that
strong coherent vortices are formed only when fR is adopted.
The energy spectrum of the background field in these cases
is almost the same as that of the entire flow field when fD is
substituted for fR , in which the k−5/3 scaling law is clearly
observed. These observations lead a following picture: The
inverse energy cascade turbulent flow field with deviation from
the k−5/3 energy spectrum can be decomposed to the coherent
vortices and the background field; the former causes the
deviation and the latter has the k−5/3 energy spectrum. In spite
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of the discrepancy of the energy spectrum, the universality of
the inverse energy cascade phenomenology holds for the latter
in fact. Formation mechanism of such coherent vortices will
shed some light on universality of the inverse energy cascade
state.

To characterize the coherent vortices, a parameter
|ω|max/ωrms is introduced in this study, because the strong
coherent vortices, once they emerge, are long-lived and of the
same size in general. It is found that this parameter grows like
an order parameter in the case of a transition phenomenon
with increase in the infrared Reynolds number Red (≡ kf /kd )
when fR is adopted. With this parameter, we can detect more
precisely when the coherent vortices are formed in a series of
numerical simulations. Taking advantage of this methodology,
we revealed that the finite-size effect is not the cause of the
formation of strong coherent vortices comparing the results
at different resolutions. Strong coherent vortices are formed
when fR is used and Red exceeds a critical value. This is the
case at least when the order q of hypodrag term is 0,1,2, or
8. These results imply that a wide k−5/3 scaling range would
never be observed with f R .

When the deterministic forcing fD is adopted, strong
coherent vortices are hardly seen and the results are consistent
with Kolmogorov’s phenomenology even when Red = 462 at
the highest spatial resolution 40962 in this study. This suggests
that the inertial subrange can be extended with no limit
like in the case of three-dimensional homogeneous isotropic
turbulence. We have verified that the k−5/3 energy spectrum
does not depend on the order q of hypodrag term, even though
the scaling range is shortened for large q by the large-scale
bottleneck effect where the spectral bump is formed in the
vicinity of the energy peak wave number.

From the results of simulations with the combination of
both types of forcing processes with q = 1, it is also found
that even a small fraction of the random forcing process can
cause the formation of strong coherent vortices and destroy
the k−5/3 scaling law when Red is high. We currently do not
have an explanation why only the simulation with fD can be
free from the coherent vortices and completely consistent with
the KLB theory.

Here it is tempting to ask whether the strong coherent
vortices, which are repeatedly observed in many numerical
studies with various settings, can be described by a unified
manner. Our opinion is pessimistic for the following reason.
In our results, the sizes of strong coherent vortices are almost
the same, which is comparable with the forcing scale. This size

distribution of strong coherent vortices seems to be different
from that in the previous results such as shown in Ref. [21].
The growth of the vorticity is due to the forcing because
the nonlinear term in the two-dimensional Navier-Stokes
equations conserves the vorticity. Thus, we expect that the
formation of the strong coherent vortices as follows: First, a
small coherent bell-shaped vortical structure emerges via the
nonlinear effect, and then its amplitude grows by the forcing
and, finally, is saturated by the drag. In this process, energy
may be transferred nonlocally to large scales. This expected
formation process of strong coherent vortices is probably not
a general phenomenon.

In this study, we restrict both the inverse-cascade strength
εtr/εin and the ratio kmax/kf to low values, where kmax is the
maximum wave number. Judging from the results in Refs.
[9,20,31,37,39], this confinement on the parameter space may
have a positive effect on avoiding the formation of coherent
vortices. Tran [9] has shown that, even with the deterministic
forcing process similar to fD , the k−5/3 scaling is destroyed
when εtr/εin is raised. It is also shown in Ref. [31] that
strong coherent vortices are formed and destroy the k−5/3

scaling even in quasi steady state when kmax/kf > 16. Raising
εtr/εin or kmax/kf means the elongation of the dissipation-free
spectral range smaller than the forcing scale. Thus we infer that
a wide dissipation-free spectral range might make it easier for
the strong coherent vortices to emerge.

Even when εtr/εin and kmax/kf are restricted to low values,
our simulation results show that the formation of coherent
vortices highly depends on the external forcing mechanism.
We, therefore, conclude that a more comprehensive investiga-
tion of the formation mechanism of strong coherent vortices
is required to elucidate the universality and robustness of
Kolmogorov’s phenomenology in two-dimensional Navier-
Stokes turbulence. We will leave it for future works.

ACKNOWLEDGMENTS

This work was supported by the Grant-in-Aid for the Global
COE program “The Next Generation of Physics, Spun from
Universality and Emergence” from the Ministry of Education,
Culture, Sports, Science, and Technology (MEXT) of Japan,
and also partially by JSPS KAKENHI Grants No. 22540386
and No. 22340030. The numerical calculations were carried
out on SX8 and SR16000 at YITP in Kyoto University and
SX9 in Tohoku University.

[1] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
[2] C. Leith, Phys. Fluids 11, 671 (1968).
[3] G. K. Batchelor, Phys. Fluids 12, II-233 (1969).
[4] R. Fjørtoft, Tellus 5, 225 (1953).
[5] R. H. Kraichnan, J. Fluid Mech. 47, 525 (1971).
[6] P. Constantin, C. Foias, and O. P. Manley, Phys. Fluids 6, 427

(1994).
[7] G. L. Eyink, Physica D 91, 97 (1996).
[8] C. V. Tran and T. G. Shepherd, Physica D 165, 199 (2002).

[9] C. Tran, Physica D 191, 137 (2004).
[10] C. V. Tran and D. G. Dritschel, J. Fluid Mech. 559, 107 (2006).
[11] A. Alexakis and C. R. Doering, Phys. Lett. A 359, 652 (2006).
[12] C. V. Tran, Phys. Fluids 19, 108109 (2007).
[13] S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional

Turbulence, Cambridge Tracts in Mathematics No. 194
(Cambridge University Press, Cambridge, 2012).

[14] P. Constantin, N. Glatt-Holtz, and V. Vicol, arXiv:1304.2022
(2013).

053009-10

http://dx.doi.org/10.1063/1.1762301
http://dx.doi.org/10.1063/1.1691968
http://dx.doi.org/10.1063/1.1692443
http://dx.doi.org/10.1111/j.2153-3490.1953.tb01051.x
http://dx.doi.org/10.1017/S0022112071001216
http://dx.doi.org/10.1063/1.868042
http://dx.doi.org/10.1063/1.868042
http://dx.doi.org/10.1016/0167-2789(95)00250-2
http://dx.doi.org/10.1016/S0167-2789(02)00391-3
http://dx.doi.org/10.1016/j.physd.2003.11.005
http://dx.doi.org/10.1017/S0022112006000577
http://dx.doi.org/10.1016/j.physleta.2006.07.048
http://dx.doi.org/10.1063/1.2793171
http://arXiv.org/abs/1304.2022


TRANSITION OF THE SCALING LAW IN INVERSE . . . PHYSICAL REVIEW E 88, 053009 (2013)

[15] D. K. Lilly, Phys. Fluids 12, II-240 (1969).
[16] U. Frisch and P. L. Sulem, Phys. Fluids 27, 1921 (1984).
[17] M. E. Maltrud and G. K. Vallis, J. Fluid Mech. 228, 321 (1991).
[18] L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352 (1993).
[19] V. Borue, Phys. Rev. Lett. 71, 3967 (1993).
[20] L. M. Smith and V. Yakhot, J. Fluid Mech. 274, 115 (1994).
[21] V. Borue, Phys. Rev. Lett. 72, 1475 (1994).
[22] S. Sukoriansky, B. Galperin, and A. Chekhlov, Phys. Fluids 11,

3043 (1999).
[23] G. Boffetta, A. Celani, and M. Vergassola, Phys. Rev. E 61, R29

(2000).
[24] S. Danilov and D. Gurarie, Phys. Rev. E 63, 020203 (2001).
[25] S. Danilov and D. Gurarie, Phys. Rev. E 63, 061208 (2001).
[26] C. Pasquero and G. Falkovich, Phys. Rev. E 65, 056305 (2002).
[27] S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, Phys.

Rev. Lett. 91, 214501 (2003).
[28] C. V. Tran and J. C. Bowman, Phys. Rev. E 69, 036303 (2004).
[29] C. H. Bruneau and H. Kellay, Phys. Rev. E 71, 046305 (2005).
[30] S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and

Z. Xiao, Phys. Rev. Lett. 96, 084502 (2006).

[31] R. K. Scott, Phys. Rev. E 75, 046301 (2007).
[32] G. Boffetta, J. Fluid Mech. 589, 253 (2007).
[33] M. Chertkov, C. Connaughton, I. Kolokolov, and V. Lebedev,

Phys. Rev. Lett. 99, 084501 (2007).
[34] Z. Xiao, M. Wan, S. Chen, and G. L. Eyink, J. Fluid Mech. 619,

1 (2009).
[35] A. Bracco and J. C. McWilliams, J. Fluid Mech. 646, 517 (2010).
[36] G. Boffetta and S. Musacchio, Phys. Rev. E 82, 016307 (2010).
[37] A. Vallgren, J. Fluid Mech. 667, 463 (2011).
[38] M. M. Farazmand, N. K. R. Kevlahan, and B. Protas, J. Fluid

Mech. 668, 202 (2011).
[39] J. Fontane, D. G. Dritschel, and R. K. Scott, Phys. Fluids 25,

015101 (2013).
[40] J. Sommeria, J. Fluid Mech. 170, 139 (1986).
[41] J. Paret and P. Tabeling, Phys. Rev. Lett. 79, 4162 (1997).
[42] M. A. Rutgers, Phys. Rev. Lett. 81, 2244 (1998).
[43] T. G. Shepherd, J. Fluid Mech. 183, 467 (1987).
[44] K. S. Smith, G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam,

I. M. Held, and G. K. Vallis, J. Fluid Mech. 469, 13 (2002).
[45] W. Bos and J. Bertoglio, J. Turbulence 10, 1 (2009).

053009-11

http://dx.doi.org/10.1063/1.1692444
http://dx.doi.org/10.1063/1.864870
http://dx.doi.org/10.1017/S0022112091002720
http://dx.doi.org/10.1103/PhysRevLett.71.352
http://dx.doi.org/10.1103/PhysRevLett.71.3967
http://dx.doi.org/10.1017/S0022112094002065
http://dx.doi.org/10.1103/PhysRevLett.72.1475
http://dx.doi.org/10.1063/1.870163
http://dx.doi.org/10.1063/1.870163
http://dx.doi.org/10.1103/PhysRevE.61.R29
http://dx.doi.org/10.1103/PhysRevE.61.R29
http://dx.doi.org/10.1103/PhysRevE.63.020203
http://dx.doi.org/10.1103/PhysRevE.63.061208
http://dx.doi.org/10.1103/PhysRevE.65.056305
http://dx.doi.org/10.1103/PhysRevLett.91.214501
http://dx.doi.org/10.1103/PhysRevLett.91.214501
http://dx.doi.org/10.1103/PhysRevE.69.036303
http://dx.doi.org/10.1103/PhysRevE.71.046305
http://dx.doi.org/10.1103/PhysRevLett.96.084502
http://dx.doi.org/10.1103/PhysRevE.75.046301
http://dx.doi.org/10.1017/S0022112007008014
http://dx.doi.org/10.1103/PhysRevLett.99.084501
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1017/S0022112009993661
http://dx.doi.org/10.1103/PhysRevE.82.016307
http://dx.doi.org/10.1017/S0022112010005628
http://dx.doi.org/10.1017/S0022112010004635
http://dx.doi.org/10.1017/S0022112010004635
http://dx.doi.org/10.1063/1.4774336
http://dx.doi.org/10.1063/1.4774336
http://dx.doi.org/10.1017/S0022112086000836
http://dx.doi.org/10.1103/PhysRevLett.79.4162
http://dx.doi.org/10.1103/PhysRevLett.81.2244
http://dx.doi.org/10.1017/S0022112087002738
http://dx.doi.org/10.1017/S0022112002001763
http://dx.doi.org/10.1080/14685240903273873



