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Steady and transient thin-jet flow of a viscoelastic fluid
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Steady and transient two-dimensional thin-jet flow of a viscoelastic is examined theoretically. The influence
of inertia, elasticity, and gravity is emphasized. The fluid is assumed to emerge from a vertical channel and to
be driven by a pressure gradient and/or gravity. The boundary-layer equations are generalized for a viscoelastic
thin film obeying the Oldroyd-B constitutive model. In contrast to the commonly used depth-averaging solution
method, the strong nonlinearities are preserved in the present formulation as the viscoelastic boundary-layer
equations are solved by expanding the flow field in terms of orthonormal shape functions. It is found that
elasticity and gravity have the most profound effect on the steady state as well as the transient behavior of the
viscoelastic film. The initial conditions strongly determine the stability of the film, which for all transient cases
examined were shown to be stable despite the presence of initial instabilities.
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I. INTRODUCTION

This study examines theoretically the steady and transient
flow of a viscoelastic fluid free-surface jet emerging from a
vertical channel. The focus of related studies has mainly been
on steady jet flow since it is the long-term behavior of the flow,
after transient effects have subsided, that is generally important
in polymer processing. In contrast, when irregularity and
instability occur, it is usually the initial stages of development,
long before the flow may (or may not) reach steady state, which
can be traced to the origin of the instability. The time taken
for a fluid to reach steady state is also of importance. Because
polymeric fluids exhibit different relaxation times, they will
therefore display a different transient response.

The present study examines the intricate interplay between
inertia and viscoelastic effects in the presence of gravity, which
is of fundamental importance given the significant qualitative
role that elasticity plays in this case. In general, inertia has
been neglected in most of the studies on viscoelastic jets
since polymeric liquids behave like creeping flow in practice.
However, there are applications such as fiber spinning [1], film
casting [2] and high-speed extrusions [3] in which inertia is
significant. Shah and Pearson [4] showed that inertia plays an
important role in fiber spinning as it enhances flow stability.
Inertia becomes particularly important in modern high-speed
film casting [2], and coating [5] flows. The stabilizing role of
inertia was also demonstrated experimentally in film casting
and fiber spinning by Seyfzadeh et al. [6], and Doufas and
McHugh [7], respectively, suggesting that inertia affects the
stability region of these processes.

The literature abounds with modeling and simulation stud-
ies on laminar Newtonian jet flow (see, for instance, Chang [8]
for a review), and, to a much lesser extent, on non-Newtonian
jet flow. Berdaudo et al. [9] examined the free-surface flow
of a viscoelastic fluid emerging from various geometries.
Their work focused on the die-swell phenomenon, preceded
by confined convergent two-dimensional and axisymmetric
geometries, using the finite-element method, and neglecting
inertia. Therein, a summery of computational studies can be
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found. Kang and Chen [10] studied creeping gravity-driven
non-Newtonian films in the presence of the surface tension
effect. Using a boundary-layer (BL) or thin-film approach,
Tome et al. [11] examined the transient die swell and buckling
of planar jets for Newtonian and generalized Newtonian fluids.
Surface tension jet breakup of non-Newtonian fluids has also
been examined, both experimentally by Christanti and Walker
[12] and theoretically by Bousfield et al. [13]. The transient
response resulting from the spreading of surfactant on a thin
weakly viscoelastic film was also examined theoretically by
Zhang et al. [14].

For viscoelastic jets, the main focus in the literature has been
on die swell for creeping flow. Tieu and Joseph [15] considered
surface tension driven flow, and Tran-Cong and Phan-Thien
[16] examined the creeping flow extrusion of a viscoelastic
fluid from triangular and square dies. The importance of
gravity was demonstrated by Liang et al. [17], who carried out
flow visualization and measurement for steady viscoelastic jet
issuing from a capillary and from an orifice under gravity. Their
experiments revealed that, depending upon the elasticity level
of the fluid, the jet width may increase, decrease, or remain
unchanged downstream, at least within a certain distance
from the exit. In this case, the interplay between gravity
and elasticity dictates the jet behavior. In their experiments,
Middleman and Gavis [18] observed that the viscoelastic jet
expands for low ejection velocities. The expansion reaches a
maximum with increasing flow rate. However, the expansion
begins to weaken as the flow rate is increased further, and
the viscoelastic jet ultimately contracts when inertia becomes
significant. In their study, however, they used only a power-law
model to represent the fluid properties, which does not allow
a direct quantitative comparison with the results of the present
study. A similar interplay between inertia and elasticity is
also responsible for the delayed die swell phenomenon, which
appears to be caused by some inertial mechanism related to
the change in flow type from subcritical to supercritical [19].
Delayed swell was captured theoretically in a recent study
by Saffari and Khayat [20] using the method of matched
asymptotic expansions for the flow near channel exit.

Generally, the numerical treatment of transient free-surface
flow remains challenging. The problems associated with
frequent remeshing and mesh resizing required for the rapid
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spatiotemporal variations in the flow field can make unsuitable
conventional solutions schemes such as finite-element and/or
difference methods. The flow of a thin film is commonly
described using a BL approach. Typically, an ad hoc sim-
plification of the BL solution is achieved using a self-
similar parabolic flow profile [21,22]. This amounts to depth-
averaging the BL equations, which, in the limit of creeping
flow of a Newtonian fluid, leads to an exact formulation. The
self-similar behavior is not expected to hold in the presence
of high inertia or strong normal stress effects. The solution of
the BL equations remains essentially as difficult to obtain as
that of the Navier-Stokes equations for a Newtonian film [23].
The depth-averaging method leads to a second-order accurate
solution in time, yielding plausible results, but raises doubt
in the presence of strong convective (and upper convective)
nonlinearities due to the semiparabolic assumption [23,24].
The numerical computation of viscoelastic fluid jets presents
additional difficulties, which are usually due to the lack of
convergence and stability of the complex numerical scheme
handling nonlinearities of inertial, elastic, and geometrical
nature. The hybrid type of governing equations (elliptic and/or
hyperbolic), geometrical singularities such as reentrant corner
or die induced stress singularities, add to the numerical
challenges.

Using a spectral approach, Khayat and co-workers ex-
amined extensively highly nonlinear flows, in the presence
of inertia and elasticity, of thin films over rigid substrates
of arbitrary shape. The planar flow of a Newtonian film
was considered over stationary [25,26] and moving [27]
substrates. The coating of shear-thinning [28] and viscoelastic
[29] fluids were examined for a planar substrate as well
as an axisymmetric substrate [30]. In the present study, the
same spectral approach is adapted to a generalized thin-film
formulation for a free-surface jet. The system is first mapped
onto a rectangular domain, followed by the expansion of
the velocity field in terms of orthonormal basis functions.
The Galerkin projection is used to derive the equations that
govern the coefficients of expansion, which are then integrated
numerically. This formulation is similar to the one adopted by
Khayat and Kim [30] for viscoelastic coating flow, and by
German and Khayat [5] for thin-jet flow of a Newtonian fluid.
Unlike the depth-averaging method, the spectral methodology
proposed becomes particularly suited for the early onset of
wave propagation near the channel exit in the presence of
strong normal-stress effect.

II. PROBLEM FORMULATION AND SOLUTION
PROCEDURE

In this section, the governing equations are introduced,
including the scaled conservation and constitutive equations,
as well as the boundary and initial conditions for a viscoelastic
thin fluid jet. Also included in this section is the solution
procedure.

A. Governing equations, boundary, and initial conditions

The fluid examined in this study is assumed to be an
incompressible polymeric solution represented by a single
relaxation time and constant viscosity. The fluid properties

include the density ρ, viscosity μ, surface tension coefficient
σ , and relaxation time λ. The solution viscosity μ = μs + μp

comprises the Newtonian solvent viscosity μs and polymeric
solute viscosity μp. Regardless of the nature of the fluid, the
continuity and momentum conservation equations must hold.
For an incompressible fluid, the conservation equations are

∇ · U = 0, ρ(U,T + U · ∇U) = ∇ · � + ρg, (2.1)

where U is the velocity vector, g is the gravitational accel-
eration, T is time, ∇ is the gradient operator, and � is the
stress tensor. A subscript following a comma denotes partial
differentiation. There are two components making up the
deviatoric part of the stress tensor, a Newtonian constituent
(solvent), and a polymeric constituent (solute) T. The stress
tensor is then expressed as

� = −P I + μs(∇U + ∇UT ) + T, (2.2)

where P is the hydrostatic pressure, and T denotes matrix
transposition. The polymeric constitutive equation for T is
taken to correspond to an Oldroyd-B fluid and is written in the
form [31]

λ(T,T + U · ∇T − T · ∇U − ∇UT · T) + T

= μp(∇U + ∇UT ). (2.3)

The equation for a Maxwell fluid is recovered in the limit
μs → 0 in Eqs. (2.1)–(2.3), and the limit μ → μs leads to the
Navier-Stokes equations. The problem is now examined using
a Cartesian coordinates in the plane.

The flow of the viscoelastic jet emerging from a channel is
schematically depicted in Fig. 1 in the (X, Z) plane. The X

axis is a line of symmetry and lies in the vertical (streamwise)
direction, and the Z axis is in the horizontal (transverse)
direction. The domain of the fluid is represented by �(X, Z,
T ), with the (half) jet thickness denoted by Z = H (X, T ). The
channel exit coincides with X = 0, and the (symmetric) flow
is examined in the (X, Z) plane, with Z = 0 corresponding to
the line of symmetry. The flow is induced by either a pressure
gradient inside the channel and/or gravity, but for this study,
the emphasis will be on pressure-driven flow. The streamwise
and transverse scale lengths are chosen to be the length of

FIG. 1. Schematic illustration of two-dimensional jet flow emerg-
ing from a vertical channel.
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the jet L and the channel half width H0 respectively. For
both Newtonian and non-Newtonian thin films, there are four
main dimensionless parameters. These are, namely, the aspect
ratio ε, the Reynolds number Re, the Froude number Fr, and
the capillary number Ca. Explicitly written, these take the
following form:

ε = H0

L
, Re = ε

ρU0H0

μ
,

(2.4)

Fr = U0√
gL

, Ca = μU0

σ
,

where the mean velocity in the channel in the absence of
gravity U0 is taken as the reference velocity. Additional to
these parameters are the similarity parameters for a viscoelastic
fluid, which include the Deborah number De, the solvent-to-
solute viscosity ratio Rv, and the solvent-to-solution viscosity
ratio a:

De = λU0

L
, Rv = μs

μp

, a = μp

μ
= 1

Rv + 1
. (2.5)

In this study, the fluid film is assumed thin, with ε � 1.
Thus, ε is taken as the perturbation parameter in order to
reduce the formulation to that of the boundary-layer type. The
scaling of the velocity vector (U , W ), pressure P , position
coordinates (X, Z), and time T is the same as for a Newtonian
thin layer, leading to the following nondimensional variables:

x = X

L
, z = Z

H0
, t = U0

L
T, u = U

U0
,

(2.6a)

w = W

εU 0
, h = H

H0
, p = Lε2

μU0
P.

As to the polymeric normal and shear stress components
(TXX,TZZ,TXZ = TZX), one may generally set

τxx = Lεα

μU0
TXX, τzz = Lεγ

μU0
TZZ,

(2.6b)

τxz (τzx) = Lεβ

μU0
TXZ (TZX) .

Note that the stress tensor is symmetric. The constants, α, β,
γ are determined by ensuring that the terms in the conservation
and constitutive equations balance. Similarly to Newtonian
flow, the thin-film or boundary-layer equations are derived
from the dimensionless form of conservation and constitutive
equations (2.1)–(2.3), excluding terms of O(ε2) and higher. In
this case, the equations reduce to

u,x + w,z = 0, (2.7a)

Re(u,t + uu,x + wu,z)

= −p,x + aRv u,zz + ε2−ατxx,x + ε1−βτxz,z + Re

Fr2 ,

(2.7b)

p,z = ε2−γ τzz,z + ε3−βτxz,x, (2.7c)

De[ε−α(τxx,t + uτxx,x + wτxx,z − 2τxxu,x)

− 2ε−1−βτxzu,z] + ε−ατxx = au,x, (2.7d)

De[ε−β(τxz,t + uτxz,x + wτxz,z) − ε1−ατxxw,x

− ε−1−γ τzzu,z] + ε−βτxz = aε−1u,z, (2.7e)

De[ε−γ (τzz,t + uτzz,x + wτzz,z − 2τzzw,z)

− 2ε1−βτxzw,x] + ε−γ τzz = 2aw,z. (2.7f)

In order to ensure proper coupling between velocity and
stress, the polymeric stress terms (similarly to the pressure
gradient term in the Newtonian BL formulation) must survive
in the x-momentum equation (2.7a). In this case, the exponents
α and β should be set equal to 2 and 1, respectively.
Consequently, this ensures the survival of all the terms in
the normal stress equation (2.7d) for τXX. This results in
the streamwise normal stress component τXX not to depend
strongly on the streamwise elongation term u,X, which should
be the case for a shear dominated (boundary-layer) flow.
However, this stress component remains significant due to the
nonlinear coupling with shear effects. With α and β set, the
survival of the terms in the shear stress equation (2.7e) for τXZ

and normal stress equation (2.7f) for τZZ can be achieved by
setting γ = 0. The z-momentum equation (2.7c) now shows
that p,z ∼ O(ε2). This demonstrates that the pressure gradient
in the transverse direction is negligible, which is consistent
with the limit of a Newtonian jet flow. Hence, assuming no
body forces exist in the transverse direction, the pressure is
a function of the streamwise direction and time only. The
conservation and constitutive equations reduce to

u,x + w,z = 0, (2.8a)

Re(u,t + uu,x + wu,z) = −p,x + aRv u,zz

+ τxx,x + τxz,z + Re

Fr2 , (2.8b)

De(τxx,t + uτxx,x + wτxx,z − 2τxzu,z − 2τxxu,x) + τxx = 0,

(2.8c)

De(τxz,t + uτxz,x + wτxz,z − τxxw,x − τzzu,z) + τxz = au,z,

(2.8d)

De(τzz,t+ uτzz,x+ wτzz,z− 2τxzw,x− 2τzzw,z) + τzz = 2aw,z.

(2.8e)

These equations are exactly the same (with the addition of
inertia, Newtonian solvent and gravity) as those derived by
Renardy for BL flow of a Maxwell fluid [32]. It is emphasized
that the scaling (2.6b) suggests that, for a thin film, not
all stress components are of the same order of magnitude.
Indeed, assuming De � O(1) and neglecting terms of O(ε)
and higher, it is not difficult to show that, if the same stress
scale is adopted in (2.6b), upon setting α = β = γ = 0, then
no polymeric stress contribution survives in the momentum
equation (2.7b). In this case, Eq. (2.7d) indicates that τxz � 0,
leading, in turn, to τzz � a

De from both (2.7e) and (2.7f).
Clearly, this result is unacceptable except in the Newtonian
limit (a → 0). The streamwise normal stress component τxx

remains undetermined to leading order in the BL formulation.
Similarly, upon setting α = β = γ = 1, adopting H0 instead
of L as length scale, yields τzz = τxz � 0.

The equations above must be solved subject to the dynamic
and kinematic conditions at the free surface, the symmetry
conditions at z = 0, and the channel exit conditions at x = 0.
The preceding scaling was applied to the dynamic condition
in the normal and tangential directions, resulting in

aRv u,z(x,z = h,t) + τxz(x,z = h,t)

= τxx(x,z = h,t)h,x(x,t), (2.9a)
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p(x,z = h,t) = − ε3

Ca
. (2.9b)

Clearly, surface tension effect is negligible if Ca � O(ε2)
or larger. It will be argued later (see Sec. IV) that this is, indeed,
the case for most polymeric liquids, and surface tension effect
will be neglected from now on. In dimensionless form, the
kinematic condition becomes

w(x,z = h,t) = h,t (x,t) + u(x,z = h,t)h,x(x,t). (2.10)

The flow conditions at the channel exit correspond to the
flow inside an infinite channel. Thus,

u(x = 0,z,t) = 1

2

(
3 + Re

Fr2

)
(1 − z2),

w(x = 0,z,t) = 0,

τxx(x = 0,z,t) = 2aDe z2

(
3 + Re

Fr2

)2

, (2.11a)

τxz(x = 0,z,t) = −az

(
3 + Re

Fr2

)
,

τzz(x = 0,z,t) = 0.

The jet thickness at the channel exit is assumed fixed, so
that

h(x = 0,t) = 1. (2.11b)

Finally, the symmetry conditions are:

w(x,z = 0,t) = u,z(x,z = 0,t) = τxz(x,z = 0,t) = 0.

(2.12)

In this formulation it is assumed that no external force
or pressure acts on the fluid surface. For a surface-pressure-
driven flow the reader is referred to Kriegsmann et al. [33].
Also, since the pressure p does not depend on z, the pressure
must vanish everywhere in order to satisfy the zero-pressure
condition (2.9b). For this reason, the axial pressure gradient
term of (2.8b) will no longer be included. The initial conditions
for transient flow will be discussed later.

B. Solution procedure

Traditionally, for Newtonian thin-film flow, the equations
are solved by imposing a semiparabolic profile for the velocity,
and depth-averaging the equations across the thickness. The
strong nonlinear effects originating from inertia and normal
stress for a viscoelastic fluid make this approach unfeasible.
The solution process is obviously difficult due to the explicit
z dependence of the velocity and stress components. The
formal handling of the transverse flow expansion is carried out
similarly to past studies by Khayat and co-workers [25–30,34].
The spectral approach follows closely and generalizes the work
of Zienkievicz and Heinrich [35] as the transverse velocity
component is not neglected, and the change in surface height
over time is included. The spectral methodology used has been
extensively validated by Khayat and co-workers for the flow of
thin jets and films. The validation is based on comparison with
the finite-element solution and existing literature as well as
assessment of higher-order modes, convergence and stability
for inelastic [26–28,34] and viscoelastic [29,30] fluids. Only
an outline of the solution procedure will be given next.

In order to apply the spectral approach, the flow domain
is first mapped onto a rectangular domain. All flow variables
are then expanded in terms of polynomial shape functions
in the transverse direction. The Galerkin projection is then
applied in order to generate the equations that determine the
expansion coefficients. A Lagrangian time-stepping implicit
finite-difference method is coupled with a fourth-order Runge-
Kutta integration solution approach in the flow direction in
order to determine the expansion coefficients. The present
formulation is quite involved and will only be summarized
in this paper. System (2.8) is reduced to a transient one-
dimensional problem formulation by an expansion of the
velocity and stress components in terms of orthonormal modes
in the transverse direction. The following mapping is used:

χ (x,z,t) = x, ξ (x,z,t) = z

h(x,t)
, τ (x,z,t) = t, (2.13)

with ξ ∈ [0, 1]. The orthonormal shape functions φi(ξ ), θ i(ξ ),
ψi(ξ ) for the streamwise velocity u, normal stress component
τXX, and shear component τXZ as well as the normal stress
component τZZ are shown as follows:

u(χ,ξ,τ ) =
M∑
i=1

Ui(χ,τ )�i(ξ ),

τxx(χ,ξ,τ ) =
M∑
i=1

Qi(χ,τ )θi(ξ ),

(2.14)

τxz(χ,ξ,τ ) =
M∑
i=1

Si(χ,τ )θi(ξ ),

τzz(χ,ξ,τ ) =
M∑
i=1

Ri(χ,τ )ψi(ξ ),

where M represents the number of modes and the unknown
coefficients are Ui(x,t), Qi(χ ,τ ), Si(χ ,τ ), and Ri(χ ,τ ). In
addition to the condition of orthonormality, the shape functions
must also satisfy various boundary conditions. Some of these
conditions are not obvious. One condition is the limit of
Newtonian film flow being recovered for this viscoelastic
formulation as Rv → ∞. One major difficulty for viscoelastic
flow, as opposed to a Newtonian flow, is that the shear stress
does not simply and necessarily vanish at the free surface. This
becomes apparent when examining condition (2.9a), and also
noting that there do not exist separate boundary conditions on
shear and normal stresses. This, however, can be remedied by
satisfying condition (2.9a) as well as recovering the Newtonian
limit by simply setting the shear and normal stresses equal to
zero at the free surface. Hence, assuming orthonormality, the
following conditions apply for φi :

〈φiφj 〉 = δij , φ′
i(ξ = 0) = φ′

i(ξ = 1) = 0, (2.15a)

which satisfy conditions (2.12). Here, δij is the Kronecker δ,
and 〈〉 denotes the integration over the interval ξ ∈ [0, 1]. Note
that a prime denotes total differentiation. For θ i , the normal
and shear stress (τXX, τXZ) are taken to vanish at the free
surface. In addition, to the symmetry conditions (2.12), it is
not difficult to see that the vanishing of τXX at z = 0 is a
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condition that satisfies equation (2.8c). Thus,

〈θiθj 〉 = δij , θi(ξ = 0) = θi(ξ = 1) = 0. (2.15b)

The boundary conditions for �i are not as obvious. Nothing
for certain can be said about τzz at either the free surface or line
of symmetry. In this case, the corresponding shape function
is assumed to satisfy only the condition of orthonormality,
namely

〈ψiψj 〉 = δij . (2.15c)

Explicit form of the shape functions is given here for the
first modes:

φ1(ξ ) = 2

√
35

13

(
ξ 3 − 3

2
ξ 2

)
, θ1 (ξ ) =

√
30(ξ 2 − ξ ),

(2.16)
ψ1(ξ ) = 1.

The transverse velocity component, w, is determined by
integrating the continuity equation (2.8a) to give

w(χ,ξ,τ ) =
M∑
i=1

[h,χ (ξφi − ϕi)Ui − hϕiUi,χ ], (2.17)

where ϕi(ξ ) = ∫ ξ

0 φi dξ . The insertion of expression (2.17)
into the governing equations allows the elimination of w. Using
expression (2.17), condition (2.10) becomes

h,τ + h

M∑
i=1

Ui,χ 〈φi〉 + h,χ

M∑
i=1

Ui 〈φi〉 = 0. (2.18)

As long as the boundary and orthonormality conditions are
satisfied, it is found that any number of arbitrary modes
can be introduced. However, reasonable accuracy is achieved
using M > 3. The expansion coefficients are obtained upon
substitution of expansions (2.14) along with (2.17) and (2.18)
into Eqs. (2.8). These equations are then multiplied by the
appropriate shape function and integrated over the interval
ξ ∈ [0,1]. This results in a system of 4M + 1 partial differential
equations in the (χ ,τ ) domain. These equations are then solved
using a Lagrangian implicit finite-difference discretization
scheme accompanied by a fourth-order Runge-Kutta integra-
tion method in the x or χ direction.

III. RESULTS

The formulation and numerical implementation above are
now used to study the flow of a thin viscoelastic jet emerging
from the channel as illustrated schematically in Fig. 1. Both
steady and transient flows are examined. The physical domain
of the fluid is assumed to extend from x = 0 to x → ∞,
but the computational domain will be restricted to x ∈ [0, 1].
The influence of fluid elasticity is investigated at a moderately
low Reynolds number in order not to make inertia completely
dominant. The interplay amongst inertia, elasticity, and gravity
will be emphasized. The flow of a Newtonian fluid is also
examined for reference.

A. Steady Newtonian jet flow

The influence of inertia on steady jet flow is first examined
for a Newtonian fluid by varying the Reynolds number from
Re ∈ [10, 50] while assuming negligible gravity (Fr → ∞).

FIG. 2. Influence of inertia on steady-state Newtonian jet thick-
ness (a), and surface transverse velocity (b) in the absence of gravity
(1/Fr = 0), for range Re ∈ [10, 50].

The flow is illustrated in Fig. 2 with the height of the free
surface hS(x) and the transverse velocity at the free surface
wS(x, z = h) plotted against x for a given Reynolds number.
Since mass is conserved, the (average) steady streamwise
velocity is simply the inverse of the film height, and is therefore
not shown. The film profiles in Fig. 2(a) show a monotonic
response of the jet thickness, with a strong contraction in film
height close to the channel exit. This contraction is weakened
by inertia. The curves in the figure suggest, as expected,
that for Reynolds number, the jet thickness remains constant
with x, with plug-flow conditions reached almost immediately
downstream from the channel exit. The contraction in height
is accompanied by a sharp drop in transverse velocity [see
Fig. 2(b)], which reaches a minimum at a location close to
the channel exit that is essentially independent of inertia. Note
that plug flow conditions (hs → const, ws → 0) are reached
far downstream from the channel exit at any Reynolds number.

Further insight on the role of inertia is inferred from Fig. 3,
where the jet thickness is plotted against Re at the location
xm of minimum wS or maximum downward flow. The flow
response is obviously monotonic with respect to Re. The inset
in Fig. 3 indicates that hS(xm) grows like 3.2 × 10−4 ln(Re).
The figure shows that the flow is strongly dependent on inertia
for small Reynolds number. In fact, as Re → 0, the jet tends to
infinitely contract near x = 0, collapsing onto an infinitely thin
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FIG. 3. Jet thickness for a Newtonian jet as function of inertia.
(inset shows semilog scale) at the location xm of minimum.
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filament. In this limit, wS → −∞ (not shown). This behavior
is exactly opposite to that encountered for a wall jet [25–30]
(a jet exiting a channel and flowing over a rigid plate as in a
coating flow). In that case, the film thickness grows infinitely
in the limit Re → 0, indicating that the film accumulates near
the channel exit, resisting flow. This contrast in flow behavior
has a dramatic fundamental and practical consequence if one
views the flow of the jet film as equivalent to the (slipping)
flow of a thin film over a fully lubricated plate. This becomes
particularly relevant in the case of polymeric film flow over
a flat plate where slippage can occur, and the flow behaves
like a symmetric free jet rather than a wall jet. The difference
between the two situations originates from the difference in
boundary conditions, namely stick as opposed to slip at z = 0,
and is worth further consideration (see the following).

The formulations for both free and wall jet flows are given in
Appendix A. In the absence of inertia (Re → 0), and if the stick
condition is assumed, then the conservation of momentum
equation in (A1) along with the dynamic condition in (A3)
admit us(x,z) = 0 as solution for x > 0 and z ∈ [0, 1]. This
leads to a significant elongational effect as the flow is forced
to transition from Poiseuille to free jet flow, with us,x < 0
at the channel exit, which in turn induces a correspondingly
significant jump in wS , resulting in hs,x(x = 0) > 0 or film
expansion according to the kinematic condition in (A3). On
the other hand, if the slip condition is used, then the solution
to the problem is given by us(x,z) = 1 for x > 0, leading to
us,x > 0 and hs,x(x = 0) < 0, resulting in film contraction.
The difference in flow between free and wall jets is further
underlined shortly for viscoelastic jets.

The overall flow is depicted from Fig. 4 for Re = 10. The
contours of the stream function (streamlines and flow field)

0.0

0.2

0.4

0.6

0.8

1.0
0.79
0.73
0.68
0.63
0.58
0.52
0.47
0.42
0.37
0.31
0.26
0.21
0.16
0.10
0.05

0.0

0.2

0.4

0.6

0.8

1.0
1.44
1.35
1.27
1.18
1.09
1.01
0.92
0.83
0.75
0.66
0.57
0.49
0.40
0.31
0.23

x
0 0.25 0.5 0.75 1

0.0

0.2

0.4

0.6

0.8

1.0
0.07
0.01

-0.05
-0.12
-0.18
-0.24
-0.31
-0.37
-0.43
-0.50
-0.56
-0.62
-0.69
-0.75
-0.81

z

(b)

(c)

(a)

z
z

FIG. 4. Flow pattern and velocity distribution (a), streamwise
(b), and transverse (c) velocity contours in the absence of gravity
(1/Fr = 0) for a Newtonian jet (Re = 10).

and the streamwise and transverse velocity components are
shown in Figs. 4(a)–4(c), respectively. As expected, the flow
is predominantly in the streamwise direction with plug-flow
conditions prevailing for approximately x > 0.75. The strength
of transverse flow is essentially confined to the free surface
near the channel exit. The strong elongational flow, which is
particularly evident near x = 0, is accompanied by a strong
variation of the transverse flow with z. Note the upward flow
near x = 0.

Finally, the issue of thickness monotonicity for a Newtonian
jet is important, as surface waviness is prohibited in this case.
This is in sharp contrast to viscoelastic jet flow, which displays
extrema as will be seen shortly. Surface monotonicity is proven
in the theorem in Appendix B, which states that for steady
Newtonian thin film, an extremum cannot occur at the film
surface.

B. Steady viscoelastic jet flow

The effect of elasticity can be examined by varying either
the viscosity ratio or the Deborah number. In the current work,
only De is varied and Rv is set equal to 1, unless otherwise
specified. Figure 5 displays the profiles of the jet surface
[Fig. 5(a)] and transverse velocity [Fig. 5(b)] at moderately
low Reynolds number (Re = 10) in the absence of gravity. The
corresponding profiles of the steady components of the shear
stress averaged over the jet thickness, 〈τ s

xz(x)〉, and the trans-
verse normal stress at the jet surface, τ s

zz(x,z = h), are also
included in Figs. 5(c) and 5(d), respectively. For De < 0.1445,
the flow is qualitatively of Newtonian character. Figure 5(a)
shows that elasticity generally enhances the contraction near
the channel exit. In contrast to a Newtonian jet, which shows
a monotonic decrease in thickness, the viscoelastic jet tends
to thicken at a location downstream of the channel exit (x >

0.125). The jet thickness [Fig. 5(a)] exhibits a minimum close
to the channel exit and a maximum further downstream. As
De increases, the location of the minimum becomes closer to
x = 0, and the location of the maximum shifts further down-
stream. The jet thickness tends to asymptotically converge to
a constant level far downstream from the channel exit. In this
case, plug flow conditions are reached regardless of the value
of De, similarly to a Newtonian jet [Fig. 2(a)]. Figure 5(b)
shows that the wS profiles reflect a strong downward flow
just upstream of the thickness minimum location, exhibiting a
minimum at a location that is not strongly affected by elasticity.
An overshoot is also observed in wS similarly to the free
surface profile. The waviness, which is typically expected for
the flow of viscoelastic films, is more evident here from the wS

than from the hS profiles. The shear stress in Fig. 5(c) exhibits a
minimum and a maximum similarly to the transverse velocity.
For low De the shear stress exhibits a mild variation with
streamwise position. In contrast, Fig. 5(d) shows a significant
buildup in normal stress at the jet surface, with τ s

zz(x,z = h)
reaching a maximum near x = 0, coinciding with the minimum
in transverse velocity. The buildup level is strongly influenced
by elasticity. However, normal stress effect decays with
distance to vanish essentially at the same location regardless of
the level of elasticity. In comparison, the buildup in shear stress
occurs further downstream, with a weak minimum near the exit
[Fig. 5(c)]. Generally, Figs. 5(c) and 5(d) indicate that the flow
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FIG. 5. Influence of elasticity on steady-state jet thickness (a),
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transverse normal stress at the surface (d), in the absence of gravity
(1/Fr = 0), for De ∈ [0.1445, 0.1465], Re = 10, and Rv = 1.

is dominated by elongation as opposed to shearing, which is
reflected by the large magnitude of τ s

zz(x,z = h) relatively to
that of 〈τ s

xz(x)〉. Indeed, even if the scaling for both the normal
and shear stress components is taken the same in (2.6b), normal
stress effect remains one order of magnitude, O(ε−1), larger.
The relative strength of the normal to shear stress components
will be examined in detail below.

It is important to note the narrow range of Deborah numbers
considered in Fig. 5, De ∈ [0.1445, 0.1465], reflecting the
strong influence of and sensitivity to elasticity. The reason
behind the dramatic response for small increments of the
Deborah is not intuitively obvious. It is safe to assume that
this response has its origin in the nonlinear upper convective
terms in the stress equations, and is not likely due to numerical
instability since the behavior of flow and stress is qualitatively
coherent as De increases. Indeed, the flow kinematics, which is
particularly illustrated in Fig. 5(b), suggests that the singularity
is strongly enhanced with slight increase in De, as reflected by
the deepening of the minimum of the transverse velocity. The
increase in the velocity gradient unavoidably entrains the sharp

buildup in normal stress. That the severe shearing near the exit
is at the origin of the sensitivity of the flow response to elas-
ticity (and inertia—see Fig. 8 below) is further demonstrated
by comparing the flows of free and wall jets. Indeed, previous
studies by Khayat and co-workers on wall jet flow all indicate
that the response is much less sensitive to narrow variations
in De [29,30] and Re [25–28]. As demonstrated above, the
shear rate near the channel exit is much smaller for a wall jet
than for a free jet as the flow retains most of its Poiseuille
character upon exiting in the former case. The discontinuity
in u at the surface of a wall jet is much stronger for a free
jet, making both the elongation rate as well as the shear
rate—see Eq. (A5)—sufficiently significant for the dramatic
stress response depicted in Figs. 5(c) and 5(d) to occur.

The coherence and accuracy of the trends depicted in Fig. 5
are in agreement with experiment. It is worth exploring the
similarity between the current predictions and the experiment
of Liang et al. [17], although the comparison is limited to
the qualitative level. In particular, Liang et al. measured the
profiles of circular jets. Of close relevance to the current
work are the measurements and grey scale images reported
in Figs. 2–7 and Figs. 15 and 16 in [17], which depict the
influence of the Deborah number on the jet profile issuing from
a capillary and an orifice, respectively. Comparison with the
predicted profiles in Figs. 5(a) and 6 confirm that a contraction
exists near the jet exit, which weakens and approaches the
channel (or capillary or orifice) exit as De increases. The
development and increase in maximum jet thickness, as well as
the position where it occurs, also agree with the trends shown
in Figs. 6(a) and 6(b), respectively, from experiment [17].
However, in contrast to experiment, theory suggests that a

0.0

0.2

0.4

0.6

0.8

1.0
0.80
0.75
0.69
0.64
0.59
0.53
0.48
0.43
0.37
0.32
0.27
0.21
0.16
0.11
0.05

0.0

0.2

0.4

0.6

0.8

1.0
1.69
1.59
1.48
1.38
1.28
1.17
1.07
0.97
0.86
0.76
0.66
0.55
0.45
0.35
0.24

x0 0.25 0.5 0.75 1
0.0

0.2

0.4

0.6

0.8

1.0
0.59
0.33
0.08

-0.18
-0.44
-0.70
-0.96
-1.22
-1.47
-1.73
-1.99
-2.25
-2.51
-2.77
-3.02

  z
 

  z
 

(b)

(c)

(a)

z

FIG. 6. Flow pattern and velocity distribution (a), streamwise
(b), and transverse (c) velocity contours in the absence of gravity
(1/Fr = 0) for a viscoelastic jet (De = 0.1465, Re = 10, and Rv = 1).

053005-7



MICHAEL A. HANYK AND ROGER E. KHAYAT PHYSICAL REVIEW E 88, 053005 (2013)

0.0

0.2

0.4

0.6

0.8

1.0
2.84
2.00
1.16
0.31
-0.53
-1.38
-2.22
-3.06
-3.91
-4.75
-5.60
-6.44
-7.28
-8.13
-8.97

0.0

0.2

0.4

0.6

0.8

1.0
1.14
1.33

0.95
0.76
0.57
0.38
0.19

-0.00
-0.19
-0.38
-0.57
-0.76
-0.95
-1.14
-1.33

x0 0.25 0.5 0.75 1
0.0

0.2

0.4

0.6

0.8

1.0
245.03
226.37
207.71
189.05
170.39
151.73
133.07
114.41
95.75
77.09
58.43
39.77
21.11
2.45

-16.21

   
z

(a)

(b)

  z
   

  z

(c)

FIG. 7. Contours of polymeric shear stress (a), streamwise (b),
and transverse (c) normal stresses in the absence of gravity (1/Fr = 0)
for a viscoelastic jet (De = 0.1465, Re = 10, and Rv = 1).

contraction always exists despite its weakening with elasticity.
On the one hand, it is possible that experiment eventually fails
to capture the existence of a weak contraction, especially as
it occurs closer to the capillary or orifice exit. On the other
hand, since the origin of the contraction is inertial, one expects
a contraction to always exist near the exit given the presence
of convection resulting from flow discontinuity.

The onset of waviness in flow variables and jet thickness
is obviously the result of elastic effect. Recall that the
thickness of a Newtonian jet is always monotonic with position
(Appendix B). The nonmonotonicity of a viscoelastic jet is
illustrated by taking a perturbation expansion of the stress
components and assuming De small. If one examines the stress
equations in the vicinity of the free surface, one finds, upon
neglecting terms of O(De2), that Eqs. (2.8c) and (2.8d) lead
to τxx � 2aDe u,2

z and τxz � au,z, respectively. This indicates
that τxx diminishes faster than τxz as the shear rate decreases
upon approach of the free surface. Simultaneously, Eq. (2.8e)
indicates that, to leading order, τzz � 2aw,z. In this case, w,X
can be estimated from the higher-order terms, which, together
with Eq. (2.10), give

h,xx = w,x − u,xh,x

u
� −

uu,xx+2u,2
x

u,z
+ u,xh,x

u
. (3.1)

Consequently, given the small shear rate at the free surface,
the curvature reduces to

h,xx � −uu,xx + 2u,2
x

uu,z
, (3.2)

which illustrates clearly the coupling between shearing and
elongation, and its influence on the shape of the free surface.

Thus, in situations where u,X is large such as close to the chan-
nel exit in the vicinity of the free surface, with u,z simultane-
ously small, h,xx can be large, and an extremum can therefore
exist as shown in Fig. 5(a). Expression (3.2) also shows that,
given the negative shear rate and positive elongation rate, the
concavity is positive, reflecting jet contraction at the channel
exit. Interestingly, this seems to be always the case regardless
of the elasticity level, even in the presence of die swell.

Figure 6 details the flow kinematics for De = 0.1465,
Re = 10, and Rv = 1. The streamlines and flow field are
shown in Fig. 6(a), and the streamwise and transverse velocity
contours are shown in Figs. 6(b) and 6(c), respectively. A
major contrast between the Newtonian and viscoelastic jet
flows is reflected in the flow field (compare Figs. 4 and 6).
For a Newtonian jet, the flow becomes fully developed and
reaches plug flow conditions only far downstream from the
channel exit. In contrast, a viscoelastic jet displays uniform
flow much closer to the channel exit, over a relatively deep
region below the free surface. Thus, while the boundary-layer
region extends over the entire jet thickness for a Newtonian jet,
it remains confined to the core region for the viscoelastic jet.
Moreover, the approximate expression (3.2) for the concavity
correlates well with the free surface shape in Fig. 6. More
particularly, Fig. 6(b) indicates that, close to the channel exit
where the flow is still of Poiseuille character, u,Z < 0 in
the vicinity of the free surface, leading to the formation of
a minimum in accordance with (3.2). Further downstream,
where the maximum in h occurs, u,Z > 0 between the core
region and the free surface. Note, however, that the maximum
in this case is relatively weak, and u,Z is only slightly positive.
Nevertheless, the fact that u,Z is positive is most evident from
Fig. 6(b) just downstream from the free surface depression.
Figure 6(c) indicates that the sharp jump and drop in w

observed at the free surface [see Fig. 5(b)] extends well below
the free surface. The jump and drop occur just downstream of
the free surface minimum and maximum, respectively. Note
that the jump is much more pronounced than the drop. The
corresponding contours for the stress components τ s

xz, τ s
xx ,

and τ s
zz are depicted in Figs. 7(a)–7(c), respectively. Figure 7

indicates that most of the viscoelastic character is concentrated
close to the channel exit where significant elongation and
shearing are present. Figure 7(a) indicates the presence of
sharp variation in τ s

xz close to the free surface and in the jet
core. This is also reflected in Figure 5(c). In particular, a sharp
jump 〈τ s

xz,x〉 � 0 is observed just downstream of the surface
depression. This jump can be estimated from Eq. (2.8d). First
note, however, from Figs. 8(b) and 8(c), that both τ s

xx and τ s
zz are

predominantly positive near the free surface, with τ s
zz � τ s

xx .
Figure 8 suggests that the dominant terms in Eq. (2.8d) lead
to the following estimate for the jump:

τxz,x ≈ 1

u
(τxxw,x + τzzu,z). (3.3)

Interestingly, both terms on the right-hand side of (3.3) are
positive and large. Indeed, Fig. 5 indicates that w,X is positive
and large near the depression. Figure 6(a) suggests that u,Z > 0
at the same location. Note that although u,Z is not large near
the free surface, τzz is very large as Figs. 5(d) and 7(c) suggest.
This buildup in τzz starts at the channel exit where τxz is large,
and is accompanied by a large drop in w as a result of jet
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contraction. The streamwise buildup in τzz close to x = 0 can
be estimated from the dominant terms in Eq. (2.8e), namely

τzz,x ≈ 2

u
τxzw,x. (3.4)

In particular, there is significant elongational flow in the
vicinity of the jet depression, as suggested by the large positive
value of τ s

zz [Fig. 5(d)]. This buildup in normal stress effect,
which is the result of intense shearing as suggested by (3.4),
leads, in turn, to shock formation as discussed later.

The interplay between the effects of elasticity and inertia is
now examined. The influence of inertia for a relatively highly
elastic jet flow is illustrated in Fig. 8. The profiles for hS(x),
wS(x,z = h) and τ s

zz(x,z = h) are shown in Figs. 8(a)–8(c),
respectively. Here De = 0.1465 and Rv = 1. The flow is
strongly influenced by inertia, which explains the narrow
range Re ∈ [10,10.1] used. The figure indicates that a very
small increase in Re has the effect of lowering the free
surface maximum to a relatively large degree. In contrast,
the minimum level in the free surface does not appear to vary
considerably with Re. Overall, the jet profiles, velocity, and
normal stress distributions suggest that inertia tends to play
an opposite role to elasticity. Figures 5 and 8 indicate that
a reduction in inertia level or rise in elasticity level for a
viscoelastic jet leads to the emergence of surface waviness
and excessive normal stress level. This rise in normal stress
leads in turn to the formation of sharp gradients in velocity
and shear stress. Thus, at a critical elasticity or inertia level,
these gradients can be sufficiently substantial to cause a
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FIG. 9. Dependence of the critical Deborah number on inertia for
the onset of waviness and shock in the absence of gravity (1/Fr = 0).
Here Re ∈ [0, 10], De = 0.1465, and Rv = 10.

discontinuity or shock in the flow. Of course, velocity gradients
and polymeric stresses are coupled as expressions (3.3) and
(3.4) suggest. However, the variation in wS and the jump in τ s

xz

appear to be primarily responsible for shock formation [see
Figs. 5(b), 5(c), and 8(b)].

Figure 9 depicts the regions of jet waviness and shock
formation in the (De-Re) plane for Rv = 10. Interestingly,
other Rv values, encompassing most of typical viscosity ratios
in practice, seem to give essentially the same picture. For given
Re, if De is small, the jet surface decreases monotonically with
position. As De increases, the jet surface exhibits waviness.
Beyond a critical De value a discontinuity or shock in flow
occurs. The two curves bordering the waviness region are
straight and intersect at the origin. The intersection at the
origin reflects the excessive buildup of normal stress effect
for a viscoelastic jet flowing at low Reynolds number. This
observation is in close correlation with Fig. 5. The slope of the
curves is obviously dependent on the viscosity ratio Rv and, as
expected, increases with Rv. This indicates, expectedly, that a
more dilute fluid solution must have a more elastic polymeric
solute for the jet to become wavy. Interestingly, the range of
waviness is very narrow, and does not seem to depend strongly
on Rv. This illustrates how rapidly the jet surface evolves from
a monotonic to a ruptured film.

The influence of gravity is next examined and is illustrated
for a jet flow at Re = 10, Rv = 1, and De = 0.1465. The
results are shown in Figs. 10–13. The flow in the absence
of gravity (1/Fr = 0) is included for reference. The profiles
in Fig. 10(a) indicate that gravity tends to suppress surface
waviness, as if the jet is drawn at the downstream end. The
extrema in hS tend to weaken and move downstream. The
resulting jet profile under high gravitational effect resembles
closely the Newtonian jet profile [compare the profiles for
1/Fr = 1 in Figs. 10(a) and 10(b) with those for Re = 10
in Figs. 2(a) and 2(b)]. The minima in hS [in Fig. 10(a) and
wS [in Fig. 10(b)] tend to generally weaken with gravity. The
resemblance between the Newtonian jet and viscoelastic jet
under high gravity is only apparent and limited to the jet
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profile. Indeed, Fig. 10(d) reflects further buildup in normal
stress effect as a result of gravity despite the smoothening
of the jet profile. This in turn is confirmed from Fig. 10(c),
where the jump in the averaged polymeric shear stress is
considerably enhanced by gravity. Interestingly, the significant
jump in 〈τ s

xz(x)〉 is accompanied by only a modest increase in
τ s
zz(x,z = h), which is reflected by the decrease in slope as

1/Fr is increased [see Fig. 10(d)]. Although the jet profiles
in Fig. 10(a) seem to suggest that gravity has a stabilizing
effect on jet flow, this again is true only in appearance.
Figures 11 and 12 show clearly the presence of sharp velocity
and stress gradients, which lie beneath an otherwise smooth jet
surface. Both shear and elongation effects appear to be spread
throughout the jet domain, as opposed to being confined to
the region close the channel exit as in Figs. 6 and 7. The
enhancement of elastic effect by gravity is also clear from the
velocity distributions in Fig. 11(a), which should be compared
the velocity profiles in Fig. 4(a) for a Newtonian fluid and
Fig. 6(a) for a viscoelastic fluid with no gravity. Interestingly,
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FIG. 11. Flow pattern and velocity distribution (a), streamwise
(b), and transverse (c) velocity contours in the presence of gravity for
a viscoelastic jet. Here Re = 10, De = 0.1465, Rv = 1, and Fr = 5.

the minimum u (at some z) is much stronger in the presence of
gravity [Fig. 11(a)] than in the absence of gravity [Fig. 6(a)],
although the maximum jet thickness is much weaker in this
case.
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C. Transient jet flow

The transient flow response is now examined by considering
the evolution of the jet between two steady states, which
correspond to two different Reynolds numbers. This would
correspond in practice to the situation where, for instance,
the flow rate inside the channel is changed from one level to
another. One of the major issues concerning viscoelastic flow,
in general, is the stability of the steady state. The current
nonlinear formulation can shed significant insight on this
issue, especially that the calculations can be carried out for
large deviation from the steady state whose stability is being
examined. Another important issue is the time it takes for the
steady state to be reached, assuming it is stable. These issues
are addressed systematically below for both Newtonian and
viscoelastic jets, in the absence and presence of gravity.

The first transient analysis is conducted for a Newtonian
jet. Figure 13 depicts the evolution of the jet as the Reynolds
number is increased from 10 to 100. A three-dimensional
perspective is shown in Fig. 13(a), where h is plotted against
x and t . Figures 13(b) and 13(c) show the projected profiles
for h and w. As expected, for a Newtonian fluid, the transition
between the two steady states is monotonic. More importantly,
the final steady state, corresponding to Re = 100, appears
to be stable. Figures 13(b) and 13(c) show that while the
contraction in h is weakening with time, the minimum in
w is also weakening. It is interesting to note that, while h

tends to take a relatively long time to reach the final steady
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FIG. 13. Transient flow response for a Newtonian jet in the
absence of gravity (1/Fr = 0). The figure shows a three-dimensional
perspective (a) and a projection (b) of the evolution of the jet
thickness, transverse velocity at the free surface (c). The initial and
final steady states correspond to Re = 10 and 100, respectively.

state, w tends towards the final steady state at a much faster
rate initially. This rate can be estimated from Eq. (2.10) and
Fig. 13(b). Clearly, the rate of change in w at the free surface
is given by

w,t (x,h,t) = h,tt (x,t) + u,t (x,h,t)h,x(x,t)

+u(x,h,t)h,tx(x,t). (3.5)

Figure 13(b) indicates that h,t t is relatively small and h,x is
always negative. In addition, this slow growth in time and
small slope in x of h make the second term in Eq. (3.5)
dominant. This term is positive since u,t is negative as a result
of the expansion of the jet between the initial and final steady
states. This leads to w,t (x,h,t) ≈ u,t (x,h,t)h,x(x,t) > 0
as suggested in Fig. 13(c). It is important to observe from
Fig. 13(b) that the transient profiles do not always lie
between the two steady states. This would have been the
case for diffusive flow of a thick jet, which is governed by
parabolic equations (in x). For the present hyperbolic flow,
the disturbance starts near the channel exit as the jet attempts
to “peel away” from the initial steady state, and is not felt
far downstream until much later. The final steady state is
reached first near the channel exit. This is expected since,
in the absence of gravity, the boundary conditions at x = 0
are the same for both initial and final steady states. Finally,
additional calculations (not shown) indicate that any steady
state for a Newtonian jet appears to be always unconditionally
stable regardless of how it is reached. This is not necessarily
the case for a viscoelastic jet as will be seen next.

Consider next the transient response for a viscoelastic
jet, evolving between the initial and final steady states,
corresponding to Re = 10 and 100, respectively. Figure 14
shows the evolution of the flow for De = 0.1465 and Rv = 1,
in the absence of gravity, over a time interval t ∈ [0, 1].
Figures 14(a) and 14(b) display the surface profiles while
Fig. 14(c) depicts the evolution of the average polymeric shear
stress. Figures 14(a) and 14(b) show that the transition between
the two steady states in this case is smooth, as the jet profile
evolves in the form of a traveling wave from the initially highly
modulated state (with higher harmonics present) to one that
is of harmonic character (with one dominant wave number).
It is interesting to note that the amplitude of the h wave
remains essentially constant for a relatively long time. In fact,
it appears to grow with time in the initial stages. This growth
is simultaneously accompanied by an enhanced contraction
near x = 0, which is a result of the strong downward flow as
suggested by Eq. (2.10), and signals a temporary instability
of the steady flow at Re = 100. This nonmonotonic dynamic
response of h(x, t) is even more evident from the evolution of
the polymeric shear stress shown in Fig. 14(c). It is interesting
to note that the shear stress tends to retain more closely the
shape of the initial steady state than the surface profiles. The
h-wave amplitude cannot grow indefinitely since the stresses
will eventually relax as a result of inertial effect. However, this
relaxation process is not uniform. Near the channel exit, for
instance, inertia can never be dominant (no matter how large
Re is) since inertia is completely absent inside the channel. As
a result, there is a slight buildup in shear and normal stresses
near x = 0. This initial buildup is the result of the intricate
coupling in the nonlinear upper-convective terms. Consider

053005-11



MICHAEL A. HANYK AND ROGER E. KHAYAT PHYSICAL REVIEW E 88, 053005 (2013)

x
0.00 0.25 0.50 0.75 1.00

-15

-10

-5

0

0 0.1 0.2 0.3 0.4 0.5

x0
0.25

0.5
0.75

1

t

0.75
0.80
0.85
0.90
0.95
1.00
1.05

Re=10
transient
Re=100

-2.0

-1.0

0.0

1.0

2.0
Re=10
transient
Re=100

(a)

(b)

(c)

h(
x,

t)
xz

(x
,t)

〈  
   

   
  

〉

FIG. 14. Transient flow response for a viscoelastic jet in the
absence of gravity (1/Fr = 0). The figure shows a three-dimensional
perspective (a) and a projection (b) of the evolution of the jet
thickness, and average shear stress (c). The initial and final steady
states correspond to Re = 10 and 100, respectively. Here De = 0.1465
and Rv = 1.

first the growth in 〈τxz(x,t)〉. It is not difficult to show that the
dominant terms in (2.8d) lead to

τxz,t ≈ −uτxz,x − wτxz,z + τxxw,x + τzzu,z. (3.6)

Inspection of the steady-state contours and profiles from
Figs. 5–8 indicates that only the first term in expression (3.6)
is positive. However, this term is weak, especially relative
to τzzu,z. Since the normal stress difference is typically
dominated by τzz, a similar estimate of its growth rate can
be obtained from Eq. (2.8e), which gives

τzz,t ≈ −wτzz,z − uτzz,x + 2τzzw,z − τzz

De
. (3.7)

However, the estimate (3.7) is not readily conclusive due
to the strong competition between the first term on the right-
hand side, which is positive near x = 0, and the remaining
negative terms. Further downstream from the channel exit, the
competition is even more intricate. Finally, the stress waves
appear to both travel at the same speed, which is relatively
slower than that of the h wave. The steady state corresponding
to Re = 100 is eventually reached despite its initial (apparent)
instability.

The stability of the steady state is an important issue, of
fundamental and practical implications. Often, flow instability
is encountered in polymer processing. The current problem is
naturally relevant to the extrusion of thin films. It is therefore
crucial, from a practical perspective at least, to gain further
insight into the conditions under which a steady state may or
may not be reachable. Figure 14 above clearly indicates the
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FIG. 15. Transient flow response for a viscoelastic jet in the
absence of gravity (1/Fr = 0). The figure shows a three-dimensional
perspective (a) and a projection (b) of the evolution of the jet
thickness, and average shear stress (c). The initial and final steady
states correspond to Re = 100 and 10, respectively. Here De = 0.1465
and Rv = 1.

existence of temporary instability as the flow evolves from
a highly elastic state to a highly inertial state. Consider next
the evolution of the flow in the opposite direction. Figure 15
depicts the transition between the steady flow at Re = 100 to
the flow at Re = 10. The rest of the parameters remain the same
as in Fig. 14. The jet profile as well as the stresses evolve rather
monotonically toward the Re = 10 state. In contrast to the
reverse transition, the current transient profiles adhere earlier
to the shape of the final steady state (compare the profiles
corresponding to t = 1 in Figs. 14 and 15). Instead, of a
traveling wave, the transition takes the form of a standing wave,
which grows essentially in amplitude only. This is most evident
from the stress wave in Fig. 15(c). There is strong similarity
between the transient profiles and the final steady state at any
time. This is again particularly obvious from the stress profiles.
It is interesting to observe that the shear stress evolves toward
the final state at a much faster rate than the jet free surface,
especially near the exit. The w profiles (not shown here) also
indicate that the transverse velocity component reaches the
final state earlier than h, practically everywhere.

Finally, the transient flow results have been reported so far
in the absence of gravity. Figure 16 shows the flow transition
between the steady states Re = 100 and Re = 10, with the
rest of the parameters remaining the same as in Fig. 15, except
that presently 1/Fr = 0.2. Comparison between Figs. 15 and
16 indicates that the presence of gravity significantly affects
the transition, although the steady states remain qualitatively
unaffected. Gravity tends to cause a rapid detachment of the
transient flow from the initial steady state (Re = 100) in
the early stages, and seems to enhance the already strong
contraction initially near x = 0. In fact, Figure 16(b) shows that
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FIG. 16. Transient flow response for a viscoelastic jet in the pres-
ence of gravity (1/Fr = 0.2). The figure shows a three-dimensional
perspective (a) and a projection (b) of the evolution of the jet
thickness, average shear stress (c). The initial and final steady states
correspond to Re = 100 and 10, respectively. Here De = 0.1465 and
Rv = 1.

all surface profiles approach the Re = 10 state from below. In
contrast, in the absence of gravity, the surface profiles tend
toward the final steady state from above [see Fig. 15(b)].
The shear stress profiles in Fig. 16(c) indicate a significant
stress buildup initially, with normal stress level exceeding
significantly the final steady state (not shown). There are strong
undershoots and overshoots in stress in the early stages, which
tend to subside quickly with time. Therefore, gravity appears
to have a strong destabilizing effect on the jet flow initially.
Interestingly, however, while the steady state in the absence of
gravity is reached essentially at an overall linear rate, the steady
state is reached at a rather exponential rate in the presence of
gravity despite the early destabilization effect of gravity.

IV. DISCUSSION AND CONCLUDING REMARKS

The current study is limited to planar steady and transient jet
flow of a viscoelastic fluid. The problem obviously represents
the flow of a thin viscoelastic sheet of infinite span. In
reality, this corresponds to the flow of a sheet with span
width much larger than its thickness for three-dimensional
or edge effects to be significant. It is also assumed that the
influence of surface tension is negligible as the current work
is focused on the interplay between inertia and elasticity or on
the elastico-inertial range. The influence of surface tension

tends to weaken for a film with dominant inertia and/or
gravity. This has been particularly demonstrated for the flow
of Newtonian films. Lee and Mei [36] examined the formation
of steady solitary waves on inclined Newtonian thin films, and
determined the dependence of the Weber number of different
liquids on the Reynolds number for both small and large angles
of inclination. They found that surface tension effect decreases
strongly with inertia. When cast in terms of the present
similarity parameters, the Lee and Mei results show that
the capillary number behaves roughly like Ca ∼Re2/ε. This
clearly suggests, from (2.8b), that the effect of surface tension
is on the order of ε4/Re2. This argument may be extended to
include turbulent flow of a thin film [37], or the limit of inviscid
flow, such as the formation of tsunamis [38], in which cases,
surface-tension effects are clearly negligible. Omodei [39]
carried out a two-dimensional finite-element simulation of
steady Newtonian jet flow. He found, for example, that the
height of the free surface changes by 8% when the capillary
number changes from 0.83 to infinity at a Reynolds number
(based on channel exit half height) equal to 1, compared to
a change in jet thickness of less than 1% when the Reynolds
number is greater than 10. A further drop in capillary number
is thus required to observe any palpable change in jet height at
moderately large Reynolds number. However, further decrease
in Ca is not realistic according to experiment. See, for instance,
the early study by Goren and Wronski [40] on capillary jet
flow. The capillary number can be large for some (essentially)
Newtonian fluids with high viscosity, such as the flow of
polybutene oils. As an illustration, consider polybutene fluid
with mean viscosity, μ = 80 mPa s, density ρ = 1200 kg/m3,
and surface tension coefficient σ = 50 mN/m. The film is
assumed to move at 12 m/s out of an annulus of 2 mm gap, on
a substrate of radius L = 20 mm. In this case, ε = 0.1, Re = 36,
and Ca = 19.2, making surface-tension effects negligible, and
non-negligible inertia. This value of Ca is within the same order
of magnitude as those encountered in polymer processing, such
as the injection molding of polybutene [41]. Surface tension
effect is found to be also negligible for polymeric solution with
surface tension coefficient in the range 30–40 mN/m as for the
solutions used by Liang et al. [17] in their jet flow experiment.

Indeed, surface-tension effect is expected to be even less
significant for typical polymeric film flow because of higher
viscosity and lower surface-tension coefficient. In jet flow,
for instance, polymer solution jets generally take longer to
break up than Newtonian jets of comparable (shear) viscosity.
Viscoelastic jets may not form droplets at all [42]. Melt fracture
occurs essentially in the absence of surface tension for elastic
fluids. Even weakly elastic fluids can lead to moderately
large capillary numbers, such as 0.5 and 0.75% polyethylene
oxides moving at a speed of 10 ms − 1, with Ca = 1.2 and
11, respectively. Strongly elastic polyacrlylamide solutions of
0.1 to 0.75% lead to corresponding Ca value in the range
16–600 [43]. Boger fluids, such as the class of fluids considered
in the present study, can also lead to large capillary number
flow [44]. For rimming flow, the scaling analysis of Fomin
et al. [45] also shows that surface-tension effects are negligible
in this case.

Finally, it is important to note that surface tension effect can
be most significant, and is the (desired) driving mechanism
in thin-jet flow, such as the breakup of gas-focused liquid
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microjets [46,47]. This is even the case for viscoelastic jets
where elasticity is shown to enhance jet destabilization [48],
thus, fostering the transition from jetting to dripping [49].
However, the influence of surface tension on jet stability may
not be consistent, especially for co-flowing liquid jet and gas
[50,51].

In conclusion, the symmetric two-dimensional flow of a
thin viscoelastic fluid jet emerging from a vertical channel
is examined in this study. The fluid is modeled following
the Oldroyd-B constitutive model, with the influence of
inertia, elasticity, and gravity investigated for both steady
and transient flows. The thin-film equations are solved by
expanding the flow field and stresses in terms of orthonormal
modes in the transverse direction using the Galerkin projection.
In contrast to the depth-averaging technique, the proposed
method predicts the shape of the free surface, as well as the
velocity and stress components within the fluid.

For a steady Newtonian jet the jet thickness remains
essentially constant with x for large Reynolds number.
However, the flow is strongly dependent on inertia for small
Reynolds number with the jet tending to contract and collapse
onto a thin line as Re approaches 0. The thickness for a
Newtonian jet was shown to vary only monotonically, whereas
a viscoelastic jet tends to thicken downstream of the channel
exit. Steady Newtonian jet flow becomes fully developed
only far downstream from the channel exit. In contrast, a
viscoelastic jet displays uniform flow much closer to the
channel exit and over a relatively deep region below the free
surface. For a steady viscoelastic jet, a reduction in inertia or
a rise in elasticity leads to the emergence of surface waviness
and excessive normal stress. This rise in normal stress leads
to the formation of sharp gradients in the velocity and shear
stress. These gradients can be sufficiently substantial to cause
a discontinuity or shock in the flow. The wavy region that
precedes the onset of shock or jet rupture is very thin, which
illustrates how rapidly the jet surface evolves from a monotonic
to a ruptured film. High gravity viscoelastic jet flow resembles
Newtonian jet flow, but only in appearance and at the free
surface. A buildup in normal and shear stress is present for a
viscoelastic jet below the surface.

Comparison with the measurements and grey scale images
of Liang et al. [17] confirms the accuracy of the theoretical
trends reported in the current study. Closer comparison
between the current theory and experiment is not achievable.
While the current model is two dimensional, the experimental
jet is round, losing axisymmetry (and stability) with increasing
elasticity. In this case, surface tension may be important if
the curvature in the plane normal to the jet is significant. The
relaxation time and viscosity of the fluid used in the experiment
appear to be shear-rate (and temperature) dependent, whereas
theory assumes a fluid of constant properties. Also of signif-
icance is the assumption of Poiseuille flow condition at the
channel exit, which may not be realistic given the developing
character of the flow as it nears the exit (see Ref. [20]).
Finally, the current predictions are based on a boundary-layer
or thin-jet formulation, resulting in additional inaccuracy.

The transient behavior for a Newtonian fluid between two
steady states is smooth and appears to be unconditionally
stable. However, the transient profiles do not always lie
between the two steady states. The flow tends to “peel away”

from the initial steady state and is not felt far downstream
until much later. The amplitude of the surface height wave for
a viscoelastic fluid moving from a low to a high Reynolds
number remains essentially constant for a relatively long
period of time with growth seen in the initial stages. Both
surface and stresses evolve in the form of a traveling wave.
This growth is accompanied by an enhanced contraction near
the channel exit which is a result of the strong downward
flow. This signals a temporary instability of the steady flow,
however the final steady state is eventually reached despite
this apparent instability. In contrast, for the transition from
a high to a low Reynolds number state, the surface profiles
adhere earlier to the shape of the final steady state. Instead of a
traveling wave, the transition between the two states takes the
form of a standing wave, which grows essentially in amplitude
only. Finally, the presence of gravity significantly affects the
transition between the two steady states, however, the steady
states remain qualitatively unaffected. Gravity tends to cause
a rapid detachment of the transient flow from the initial steady
state in the early stages with a significant stress buildup during
the transition.
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APPENDIX A: NEWTONIAN FORMULATION FOR A FREE
JET AND A WALL JET

For both thin free and wall jet flows, the relevant equations
for Newtonian steady-state flow (in the absence of gravity) are
obtained by taking the limit Rv → ∞ of Eqs. (2.8), which
reduce to:

us,x + ws,z = 0, Re (uus,x + wus,z) = us,zz. (A1)

These equations must be solved subject to exit conditions:

us(x = 0,z) = 3
2 (1 − z2), hs(x = 0) = 1, (A2)

dynamic and kinematic conditions:

us,z(x,z = hs) = 0, ws(x,z = hs) = us(x,z = hs)hs,x,

(A3)

and slip or stick condition, depending on whether, respectively,
free or wall jet flow is assumed,

us,z(x,z = 0) = 0 or us(x,z = 0) = 0. (A4)

The relation between the shear and elongation rates at the
free surface is readily available by differentiating the kinematic
condition in (A3), to yield

ws,x(x,z = hs) = us,x(x,z = hs)hs,x(x)

+us(x,z = hs)hs,xx(x). (A5)

Thus, a strong discontinuity in the streamwise flow, as at the
channel exit of a free jet, leads to a significant buildup in
shearing flow.
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APPENDIX B: MONOTONICITY OF NEWTONIAN FILM

Theorem. For steady Newtonian thin film, an extremum
cannot occur in the film thickness.

Proof. If an extremum exists at some location, say xm,
on the free surface of the steady film, with hs(xm) = hm,
then, according to condition (2.9), ws(xm,hm) = hs,x(xm) = 0.
Simultaneously, condition (2.9) leads to the following expres-
sion for the concavity:

hs,xx(xm) = ws,x(xm,hm)

us(xm,hm)
, (B1)

which must not vanish for an extremum to exist. However,
upon differentiating the second equation in (A1) with respect
to z and evaluating it at the free surface, using conditions (A3),
one obtains

Re ws(x,hs)us,zz(x,hs) = us,zzz(x,hs). (B2)

Clearly, since wS(xm,hm) = 0, then us,zzz(xm,hm) = 0. On
the other hand, differentiating Eq. (B2) with respect to x

(along the free surface), and evaluating it at the location of
the extremum, one finds that

Re ws,x(xm,hm)us,zz(xm,hm) = us,zzzx(xm,hm) = 0. (B3)

Therefore, ws,x(xm,hm) or us,zz(xm,hm) must vanish.
However, at the location of an extremum, the conserva-
tion of momentum equation in (A1) gives us,zz(xm,hm) =
Re us(xm,hm)us,x(xm,hm). Consequently, us,zz(xm) cannot
vanish (in the presence of a contraction or an expansion),
except for the trivial case of fully developed uniform (plug)
flow. In this case, only ws,x(xm,hm) must vanish, forcing the
concavity to vanish according to (B3). This proves that the
thickness can only vary monotonically for Newtonian thin
film.
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