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It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media
strongly depends on the history and initial condition of the system. However, when the steady-state regime is
reached and both drainage and imbibition take place at the pore level, the influence of the evolution history
and initial preparation is an open question. Here, we present an extensive experimental and numerical work
investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our
experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network
of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, his-
tograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous
medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.
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I. INTRODUCTION

Understanding the physical mechanisms underlying mul-
tiphase flow in porous media is crucial to a wide variety of
industrial and environmental problems, such as oil recovery,
CO2 transport and storage, or groundwater management. At
the macroscopic scale, the flow of immiscible fluids in a porous
material is described by specifying the relations between
global quantities such as flow rate, pressure gradient, or
fluid saturation. At the pore scale, this flow is governed by
the competition between capillary, viscous, and gravitational
forces. Understanding the link between the two levels of
description requires relating the position and shape of the
interface(s) between the two phases to the values of the
macroscopic variables. From an experimental point of view,
two-dimensional model porous media providing direct pore-
scale visualization of the flow structures are ideal tools to
study multiphase flow mechanisms and their relations with
global quantities in controlled, laboratory-scale situations.
Over the past decades, microchannel networks etched in
transparent plates [1] or prepared using molding techniques
[2] and porous Hele-Shaw cells consisting of a layer of
beads between two parallel plates [3] have become classical
tools, to which improvements have been constantly proposed
[4,5]. Experimental observations have been explained through
extensive numerical simulations based on network models
[6–10] and lattice Boltzmann methods [11–17], statistical
models [18–20], and differential equations [21]. Most of
the research in this area has been focused upon transient
phenomena, i.e., drainage or imbibition—arising when one
phase displaces the other in a porous medium. The relation
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between macroscopic flow parameters, fluid morphology, and
the stability of the interface between the two phases has been
thoroughly observed [3,4] and successfully modeled [18,19].

In this article, we deal with steady-state flow, where
many questions are yet to be answered. In the steady-state
regime, two phases are injected simultaneously into the porous
medium and one observes that one or both are fragmented
and transported in the form of clusters of various sizes,
forming a complex flow pattern with multiple interfaces.
After a characteristic time, the system reaches a steady state
in which the macroscopic flow variables fluctuate around
constant values. The usual distinction between drainage and
imbibition is irrelevant to describe steady-state two-phase
flow, in which both processes occur simultaneously. New
approaches are thus needed to understand this regime. In an
effort to bring new insight, experimental and numerical studies
have investigated the relations between macroscopic flow vari-
ables, and different models have been proposed to relate them
to pore-scale flow mechanisms: Payatakes and co-workers
carried out detailed experimental, numerical, and theoretical
studies of steady-state two-phase flow, with emphasis on the
determination of relative permeabilities [1,9,10,22–25]. The
steady-state characteristics of macroscopic flow properties
have also been investigated numerically by Knudsen and
Hansen [26]. A power-law relation between pressure and
steady-state flow rate has been observed experimentally by
Tallakstad et al. in a two-dimensional (2D) system [27,28],
and by Rassi et al. in a 3D system [29]. Very recently, the
relation between the steady-state flow rate and pressure drop
has been derived analytically for two-phase flow through single
capillaries [30] and through porous media [27,28,31] and also
supported by extensive numerical simulation. Distributions
of nonwetting or wetting clusters in the steady state have
also been studied experimentally by Tallakstad et al. [27,28]
and numerically by Ramstad and Hansen [32], and critical
exponents were measured. It is worth noting, though, that
the comparison of experimental and numerical results is
not always straightforward, due to the different boundary
conditions used in the two cases. Yet from the point of
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view of statistical physics, the existence of a genuine steady
state is very promising for building a thermodynamiclike
theoretical description of the system. In that context, it is
crucial to determine whether the steady state is independent
of the history of the process, or in other words, whether
it is a real state in a thermodynamic sense [33]. It is well
known that when drainage and imbibition occur successively,
the relative permeabilities become history dependent and the
pressure-saturation curves display a hysteresis [34,35], the
underlying pore-scale mechanisms of which are known. In
addition to the well-known magnetic and elastic systems, such
history dependence and hysteresis has also been observed in
different flow processes like hydrodynamic heat flow [36] and
particle flow through random media [37]. However, in the
case of two-phase flow through porous media, it is not trivial
to predict whether such a hysteresis will come into play in
the steady-state situation when drainage and imbibition occur
simultaneously. It was proposed that a thermodynamiclike
description for simultaneous two-phase flow in porous media
can be sketched [33] if the flow was history independent.

Here, we present an extensive experimental and numerical
study in order to investigate the history independence of
the steady state in a 2D configuration. Our experimental
system consists of a porous Hele-Shaw cell of relatively high
porosity in which we simultaneously inject air and a viscous
water-glycerol solution, thus exploring the regime of high
viscosity contrast. We then compare steady states obtained for
a given flow rate with different initial conditions. We model
the system by a network of disordered pores transporting two
immiscible fluids. From pressure measurements and analysis
of the statistical properties of the flow patterns, we observe no
history dependence for the steady state.

II. EXPERIMENTAL SETUP

We use a two-dimensional, transparent, porous Hele-Shaw
cell. This experimental setup, shown on Figs. 1 and 2, has been
described in detail in [27] and we recall its main features here.
The porous medium consists of a random monolayer of glass
beads, 1 mm in diameter, spread between the sticky sides of
two sheets of contact paper. Its lateral boundaries are sealed
with silicon glue. Attached on top of this layer, a Plexiglas plate
with etched flow channels allows injection and evacuation of
fluids into and from the porous matrix. A pressure cushion
(see [27] for details) placed below the porous medium and a
thick glass plate on top prevent the system from bending when
the pressure increases as fluids are injected. Clamps placed all
around the setup maintain all the layers together. This way,
we obtain a porous medium of constant thickness a = 1 mm,
length L = 85 cm, and width W = 42 cm in which the beads
remain immobile. The porosity φ and absolute permeability κ0

of the medium are found experimentally to be φ = 0.63 and
κ0 = 1.95 × 10−5 cm2 [27].

We use the same fluid pair as Tallakstad et al. [27], namely,
air as the nonwetting phase and a viscous water-glycerol
solution (15–85% in mass) as the wetting phase. The latter
is dyed in black with 0.1% Negrosine to obtain a good
contrast on the experimental images (see Fig. 3). As pointed
out by Tallakstad et al., the use of air as one of the phases
introduces more complexity in the two-phase flow problem
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FIG. 1. (Color online) Sketch of the experimental setup: The 2D
porous matrix consists of a disordered monolayer of glass beads
spread between two sheets of contact paper. The boundaries are
sealed with silicon glue. The upper part of the system consists
of a Plexiglas plate with drilled inlet and outlet flow channels. A
pressure cushion and a thick glass plate placed below and above the
porous matrix ensure the overall rigidity of the system and maintain
its thickness constant. Clamps maintain all the layers together. A
lightbox illuminates the system from below and a digital camera is
placed above to record images of the flow structure.

for two reasons: First, it yields a high viscosity contrast with
the glycerol solution, and second, its compressibility gives
rise to rapid bursts or avalanches [27]. However, from an
experimental point of view, it has the huge advantage of
allowing us to reuse the same porous model for all experiments.
Indeed, it can easily be flushed out, making it possible to
obtain reproducible initial conditions. Therefore, we find it
fully convenient for the present study. As shown on Fig. 2,
the two phases are injected simultaneously, using the same
syringe pump, from 15 syringes (seven of air and eight of
water-glycerol solution), each connected to one of the 15 inlet
nodes of the porous model. We have checked experimentally
that the results in terms of history dependence of the steady
state are not modified if the two fluids are mixed in a T
junction before entering the model. In the following, we
denote by Q the total flow rate, while Qw = (8/15)Q and
Qnw = (7/15)Q denote the wetting and nonwetting flow rates,
respectively. To account for small temperature variations due
to the heat released by the lightbox (see Fig. 1), we monitor
the temperature of the wetting phase at the outlet of the model.
The viscosity μw of the wetting phase is deduced accordingly
using the empirical formula given in [38]. In the series of
experiments presented here, the measured temperatures are
in the range 24.4–29.3 ◦C, giving 0.083 > μw > 0.062 Pa s.
The viscosity of air being μnw ≈ 1.9 × 10−5 Pa s, the viscosity
ratio M = μnw/μw of the order of 10−4 in all experiments.

With this setup, the total flow rate Q and the fractional
flow Fw = Qw/Q are controlled flow variables. The volumes
of wetting and nonwetting fluids present in the porous matrix,
Vw and Vnw, are free to vary with time. Thus, the saturations
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FIG. 2. (Color online) Sketch of the experimental setup with the
injection system. The two phases are contained in 15 syringes, each
connected to one of the 15 inlet nodes of the porous model (seven
syringes of air represented in white and eight syringes of water-
glycerol solution in black). The same syringe pump is used to inject
both phases simultaneously. The dotted lines give the dimensions
of the area studied by image analysis (note that proportions are not
respected).

Sw = Vw/V and Snw = Vnw/V , where V is the total pore
volume, are free to fluctuate. The flow is characterized by
the capillary number

Ca = μwQw

γA
, (1)

where μw is the wetting phase viscosity, Qw is the total wetting
fluid flow rate, γ ≈ 6.4 × 10−2 N/m is the interfacial tension
between the two phases [27], and A = Waφ is the cross
section of the porous matrix. In the present experiments, we
have explored the range 3.33 × 10−6 � Ca � 1.13 × 10−4.
The highest experimental value of Ca is set by the maximum
pressure that the porous model can hold. However, as we
will see in Sec. IV, we have also explored higher values of
Ca in numerical simulations, namely, 1.92 × 10−5 � Ca �
7.0 × 10−2. In this range, we always measure a significant
pressure drop in the wetting phase, showing that we are in a
flow regime in which viscous effects cannot be neglected.

Our analysis of steady-state flow and its history dependence
relies on two kinds of information: measurements of the
pressure inside the model, and pictures of the flow pattern. We
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FIG. 3. (Color online) (a) Example of steady-state image (2400 ×
3800 pixels): The flow pattern is made of air clusters (gray) of various
sizes surrounded by the viscous liquid (black). (b) Zoom: The high
image resolution makes it possible to distinguish glass beads (bright
gray), air clusters (gray), and viscous liquid (black). These three
phases yield three “peaks” on the grayscale image histograms, as
illustrated by (c). The height of the peaks contains information about
the saturation of the system.

measure the pressure P (t) in the wetting phase as a function
of time t using flow-through pressure sensors (SensorTechnics
26PC0100G6G) placed at three different points of the model
as indicated on Fig. 2. The porous model is lit from below
using a lightbox, and images of the flow structure are recorded
regularly using a Nikon D200 digital reflex camera giving
2592 × 3872 pixel images with a spatial resolution of 8 ×
8 pixels/mm2. Before further processing, images are cropped
to remove boundaries, leaving us with 2400 × 3800 pixels on
the final images. Figure 3(a) shows an example of a steady-state
image. The area of the imaged zone (see Fig. 2) is large enough
to contain many air clusters of various sizes. As illustrated
by Fig. 3(b), the high image resolution makes it possible to
distinguish glass beads, air clusters, and viscous liquid. Each
of these phases gives rise to a peak on the grayscale image
histogram [see Fig. 3(c)]. The heights of these peaks contain
information about the proportions of wetting and nonwetting
fluids in the system, and thus about the saturations Sw and Snw.
In all experiments, the smallest air clusters observed have sizes
comparable with the pore size.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Principle of the experiments

We investigate the history dependence of steady-state flow
by comparing steady states obtained at the same flow rate but
with different initial conditions. For this, we have performed
experiments in which the flow rate is modified twice, as
illustrated by Fig. 4(a). The porous model is initially filled
with the wetting phase only. Then both phases are injected
simultaneously at a fixed flow rate Q1. Once the system has
reached a steady state (ss1), we abruptly change the flow rate
to a different value Q2 and wait until a new steady state is
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FIG. 4. (Color online) Temporal variation of imposed and mea-
sured experimental variables for a typical experiment (Expt. 3; see
Table I): (a) Temporal variation of the imposed flow rate (1/15) Q for
one syringe. (b) Ratio of the total injected fluid volume to the available
pore volume, computed from the imposed flow rate using Eq. (2).
(c) Corresponding pressure drop measurements �Pi [black (upper)
line] and �Pm [red (lower) line]. Plateaus characterize the different
steady states (ss). The sudden drop around t = 75 h is an experimental
artifact due to the refilling of the syringes, as explained in the text.
Steady states obtained before and after refilling are distinguished
using the subscripts a and b.

established (ss2). Finally, we change the flow rate back to its
initial value Q1 and let the system evolve towards a third
steady state (ss3). We have used different pairs {Q1,Q2},
listed in Table I, to obtain different magnitudes and signs
of �Q = Q1 − Q2. We compare ss1 and ss3 using three
criteria: The average pressure drop across the system, the fluid
saturations, and the size distribution of the air clusters.

From the pressures measured at the inlet, middle, and
outlet of the system, we compute the pressure drops �Pi(t) =
Pinlet(t) − Poutlet(t) and �Pm(t) = Pmiddle(t) − Poutlet(t) (see
Fig. 2). Figure 4(c) shows a plot of these quantities for a typical
experiment. After a transient characterized by a linear increase,
both pressure drops stabilize and fluctuate around constant
average values. This behavior is identical to what has been
observed previously [27] and defines steady state 1 (ss1). The
fluctuations of �P in steady state reflect the dynamics of the
nonwetting clusters—transport, mergings, and snapoffs—as

TABLE I. Experimental parameters and corresponding measure-
ments. Q1 and Q2 refer to the total imposed flow rates (i.e., for 15
syringes). χinlet and χoutlet are computed from the measured pressure
drops according to Eq. (3). Note that experiments Expt. 1 and
Expt. 6 are performed using the same parameters, illustrating the
reproducibility of the results.

Experiment Q1 (ml/h) Q2 (ml/h) χinlet χmiddle

Expt. 1 6.15 61.1 0.91 0.31
Expt. 2 61.1 6.15 0.96 0.93
Expt. 3 6.15 156 1.89 1.12
Expt. 4 156 6.15 2.86 2.31
Expt. 5 15.0 30.5 0.67 0.04
Expt. 6 6.15 61.1 0.19 0.04

the system explores different configurations [27,28]. Image
analysis shows that this steady-state dynamics preserves both
the average saturation and the average size distribution of the
clusters (see Sec. III B). Immediately after we change the flow
rate to the value Q2 > Q1, both pressure drops display a very
rapid increase, and a new steady state (ss2), characterized by
higher values of �P , is quickly established. When we change
the flow rate back to Q1, we observe again a rapid variation
of the pressure drops towards a third plateau defining steady
state 3 (ss3).

Because experiments are performed at slow flow rates,
and to obtain enough statistics on the measurements, they
must typically run for several days. Indeed, the quality of the
statistics is determined by the ratio Npv(t) of the total volume
of fluids injected into the system to the total pore volume of
the porous matrix, namely,

Npv (t) = Q (t) t

WLaφ
, (2)

where Q denotes the total flow rate, t denotes time, and W , L,
a, and φ are the width, length, thickness, and porosity of the
porous matrix, respectively. Figure 4(b) shows Npv, calculated
from the imposed flow rates as a function of time, for a typical
experiment. In all the experiments presented here, the dura-
tions of the steady states correspond to the injection of 0.3 to
1.4 pore volumes into the system. As a consequence, it is nec-
essary to refill the syringes one or several times in the course
of an experiment. This is systematically performed using the
following protocol: The outlet and inlets of the model are
closed and the syringe pump is stopped immediately. The re-
filling process takes approximately 20 min. Because the vents
used to close the model are not perfectly airproof, the pressure
in the system relaxes towards atmospheric pressure during
this process, explaining the sudden drop of �P observed
on Fig. 4(c). However, by looking at the pictures recorded
throughout the process, we have checked that this does not
affect the flow structure, which remains immobile over the
duration of the refilling procedure. Furthermore, we observe
that once the syringe pump is restarted, �P retrieves its initial
value after a delay originating from the compressibility of
air. Thus this refilling procedure does not affect the results
of the experiments. In the following, when necessary, we
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FIG. 5. (Color online) Measured pressure drops �Pi [black
(upper) line] and �Pm [red (lower) line] for the six experiments listed
in Table I. The labels ss1, etc. on the plots indicate the different steady
states. Note that because these various steady states are obtained with
different flow rates, their lengths are different in time. However, the
duration of each steady state always corresponds to the injection of 0.3
to 1.4 times the pore volume of the system. The lack of data between
the 25th and 75th hours for Expt. 5 corresponds to the interruption of
the experiment for pure convenience reasons. We do not expect this
interruption to affect the results, based on the comparison between
ss1b and ss3.

distinguish steady states obtained before and after refilling
using the subscripts a and b, respectively [see Fig. 4(c)].

B. History independence of pressure drops

Figure 5 shows the temporal evolution of the pressure drops
�Pi and �Pm for the six experiments listed in Table I. In all
cases, we observe a behavior similar to what has been described
in the previous section, namely, rapid variations of �P upon
changes of flow rate between plateaus characterizing steady
states. Most importantly, we observe that whatever the value
and sign of �Q, the pressure drops are similar in ss1 and ss3.
This suggests that the steady-state pressure drop �Pss depends
only on the imposed flow rate and not on the history of the
system. Note also that for a given flow rate, �Pss values are
reproducible from one experiment to the next, regardless of
how steady state has been reached.

To obtain a quantitative indication of this history indepen-
dence, we compute average steady-state pressure drop values
〈�Pss〉 over the duration of each steady state; thus over periods
of time corresponding to the injection of 0.3 to 1.4 pore
volumes in the system, as already indicated earlier. For each
experiment, we compare the variation of 〈�Pss〉 between ss1

and ss3 to the fluctuations of �Pss within these two states. For
this we compute the ratio

χ =
∣∣∣∣∣

〈
�Pss1

〉 − 〈�Pss3〉
0.5

[
σ
(
�Pss1

) + σ
(
�Pss3

)]
∣∣∣∣∣ , (3)

where 〈· · · 〉 represents a temporal average over the duration
of a steady state and σ (�Pss1 ) ≈ σ (�Pss3 ) are the standard
deviations of �Pss in ss1 and ss3. The values of χ computed
from the inlet and middle pressure drops for the different
experiments are reported in Table I. As can be observed, almost
all of these values are smaller than 1. Slightly higher values are
observed in Expt. 3 and Expt. 4. However, our experimental
temperature data suggest that temperature-induced viscosity
fluctuations most likely explain this fact. Indeed, the largest
temperature variations both between ss1 and ss3 and within
ss1 or ss3 occur for these two experiments. Therefore, we find
that within the precision of our measurements, the steady-state
pressure drop values are history independent.

C. History independence of saturation
and nonwetting cluster-size distributions

Pressure measurements suggest that the observed steady
state depends only on the imposed flow rate. However, these
measurements do not give us detailed spatial information.
Thus, we now analyze the images of steady-state flow patterns.
As explained earlier (see Fig. 3), the flow structure consists
of clusters of the nonwetting phase, air, surrounded by the
wetting viscous water-glycerol solution. As air clusters are
transported through the porous medium, they are fragmented or
merged, giving many different realizations of the flow pattern.
However, within a steady state, the saturation and the size
distribution of air clusters remain constant on average [27].
Thus, as we did for pressure drops, we compute average steady-
state saturations and cluster-size distributions and compare
their properties in ss1 and ss3. To obtain good statistics on these
quantities, we have chosen the frame rates so that successive
images sample different realizations of the flow pattern. All
averages are computed over series of images, typically 100,
spanning a time range corresponding to the injection of 1/5 of
the pore volume at the minimum.

As explained in Sec. II, the grayscale histograms of the
raw images give us a direct indication of the proportions
of the two phases in the system, and thus of saturation (see
Fig. 3). Figure 6 shows average steady-state histograms for
the six experiments listed in Table I. It is clear on all these
graphs that the histograms corresponding to ss1 and ss3 can
be distinguished from those corresponding to ss2: Indeed, as
expected, the saturation depends on the flow rate, as reflected
by different air and liquid “peak” heights on the histograms.
However, histograms are similar in ss1 and ss3, suggesting
that the steady-state saturation is also history independent. It
is important to note that histograms are directly obtained from
raw images without prior processing, which excludes eventual
artifacts due to image processing. However, they do not give us
any information about the spatial repartition of the two phases
in the system.

To obtain this information, we process the images to
identify air clusters and compute their size distributions.
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FIG. 6. (Color online) Grayscale image histograms averaged over
steady-state images for the six experiments listed in Table I. Note
that no image processing has been applied before obtaining these
histograms. Data for steady states ss1, ss2, and ss3 are represented in
black (©), blue (�), and red (�), respectively.

Image processing is performed using IMAGEJ [39]. Raw
images are thresholded to obtain binary (black and white)
images on which we run a standard particle analysis
algorithm1 to identify air clusters and measure their sizes
n [40]. From steady-state images, we compute the normalized
probability density functions of n, i.e., nonwetting cluster size
distributions 〈p(n)〉, where 〈· · · 〉 represents an average over
a series of ≈100 images.

Figure 7 shows the distributions 〈p(n)〉 computed for the
six experiments listed in Table I. These distributions typically
display a power-law-like behavior with a cutoff at large cluster
sizes [27,28]. As mentioned by Tallakstad et al. [27], the
obtained distribution is affected by threshold values, which
must thus be carefully chosen using visual inspection. Here,
we focus on the variations of the distribution with the history
of the system. Therefore, the most important requirement
is that the image processing procedure is used consistently
throughout one experiment. To avoid possible bias due to
variations of illumination in the room, the experimental setup
is isolated behind a dark curtain. The camera exposure time
and aperture are the same for all experiments, and we use
the same thresholding parameters, carefully chosen by visual

1We use the “Particles4” IMAGEJ plugin [40].
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FIG. 7. (Color online) Average cluster size distributions 〈p(n)〉
computed from steady-state images. Data for steady states ss1, ss2,
and ss3 are represented in black, blue, and red, respectively. Different
symbols refer to averages performed over different series of 100
images, namely, ©,• for images in ss1a , +,× in ss1b, �,♦ in ss2 �,�
in ss3a , and �,� in ss3b.

inspection, for all experiments. This allows us to compare
images obtained in ss1, ss2, and ss3 for a given experiment and
from one experiment to another in a meaningful way. As we
observed for the histograms, it is possible to distinguish the
ss1 and ss3 distributions from those corresponding to ss2 (see
Fig. 7). This is coherent with the results of previous studies
indicating that distributions are shifting towards higher cluster
sizes when the flow rate is decreased [27,28]. However, the ss1

and ss3 distributions are similar, meaning that the steady-state
nonwetting cluster-size distributions are history independent.
We have checked that whereas varying the threshold values
affects the distributions, typically by shifting them towards
lower or higher cluster sizes, it does not modify the results in
terms of history independence.

The experimental boundary conditions required that the
controlled flow variables were the total flow rate and the
fractional flows. In the next section, we turn to numerical
simulations to further investigate the history dependence of
the steady state for different boundary conditions, as well as
higher Ca values and different viscosity ratios M .

IV. THE NETWORK MODEL

The two-dimensional experimental porous medium is
modeled by a network of tubes oriented at 45◦ with respect
to the overall flow direction. The tubes (or links) intersect
at the vertices (or nodes) of the network with coordination
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Overall flow direction

FIG. 8. Illustration of the network formed by tubes that are
connected to each other through nodes where the dashed lines
intersect. One single tube is colored gray. Spherical glass beads make
the tubes as hourglass shaped.

number 4. The nodes are considered to have no volume,
so the tubes consist of both the pore and throat volumes.
The network is illustrated in Fig. 8. The disorder due to
the random positions of the glass beads in the experiment
is introduced in the model by choosing the radius r of each
tube randomly from a uniform distribution of random numbers
in the range [0.1l,0.4l], where l is the length of a tube. In
order to incorporate the shape of the pores in between the
spherical glass beads, each tube is considered as hourglass
shaped, which introduces a capillary effect in the system. The
network transports two immiscible fluids, one of which is more
wetting than the other with respect to the pore walls. The fluids
are separated by menisci and we obtain the capillary pressure
pc at a meniscus inside the hourglass-shaped tubes from a
modified form of the Young-Laplace law [41,42],

pc = 2γ cos θ

r

[
1 − cos

2πx

l

]
, (4)

where x is the position of the meniscus and γ is the interfacial
tension between the fluids. θ is the wetting angle and we
consider perfectly wetting conditions, i.e., θ is either 0◦ or
180◦. The flow is driven by maintaining a constant total flow
rate Q throughout the network, which introduces a global
pressure drop. The local flow rate q in a tube with a pressure
difference �p between its two ends follows the Washburn
equation of capillary flow [41,43]

q = − ak

μeff(snw)l

(
�p −

∑
pc

)
, (5)

where k = r2/8 is the permeability for cylindrical tubes. Any
other cross-sectional shape of the tubes will lead only to an
overall geometrical factor. Here a is the cross-sectional area of
the tube and μeff(snw) is the volume average of the viscosities
of the two phases present inside the tube. Hence, it is a
function of the local nonwetting saturation snw in that tube.
The sum over pc runs over all the menisci inside the tube.
The property that the fluid flux through every node will be
zero is used to obtain the local pressures at the nodes. The set
consisting of one Eq. (5) per tube, together with the Kirchhoff
equations balancing the flows in and out at each node, is
then solved using Cholesky factorization or the conjugate
gradient method. The system is then integrated in time using
an explicit Euler scheme. Inside a tube all menisci move with a
speed determined by q. Physical processes like bubble snapoff

and coalescence are introduced in the model, due to which
bubbles can be formed or merged, which changes the number
of menisci inside a link with time. When a meniscus reaches the
end of a tube, new menisci are formed in the neighboring tubes.
In each link, a total maximum number of menisci is allowed to
form. When this number is exceeded, two nearest menisci are
merged, keeping the volume of each fluid conserved. Here, we
have considered a maximum of four menisci in one tube (i.e.,
two nonwetting bubbles), as it is not very likely that a lot of
menisci will form in one pore, as seen from the experimental
observations. Further details of the model and how the menisci
are moved can be found in [41,44].

In order to reach the steady state in the simulation, we
considered two different approaches. The conventional way is
to implement a biperiodic boundary condition (BPBC), where
the links at the outlet row are connected to the inlet links,
so that the network acquires a toroidal topology [26]. In this
case the simulation can go forever, regardless of whether
one fluid percolates or not. However, in order to keep the
flow going, the global pressure gradient is maintained by
considering an invisible cut through the system in terms of the
pressure. Since the system is closed with this boundary condi-
tion, the individual fluid volumes remain constant throughout
the simulation. The nonwetting saturation Snw = Vnw/V is
therefore an independent parameter here, along with the
total flow rate Q, whereas the nonwetting fractional flow
Fnw = Qnw/Q fluctuates over time.

Implementing the biperiodic boundary conditions is of
course impossible in experiments. As described before, in the
experimental setup, two fluids are injected at one edge of
the Hele-Shaw cell through a series of alternate inlets and the
opposite edge is kept open. In this case, the flow rates of the
two fluids can be controlled independently. Thus, the control
parameters are the total flow rate Q and the fractional flow Fnw,
whereas the saturation Snw fluctuates. In order to have a close
emulation of the experimental ensemble, we also implement
open boundary conditions (OBCs) in the simulations, where
the individual flow rates at the inlet links are controlled.
Therefore, with OBCs, the system is open in the direction
of total flow while we consider periodic boundary conditions
in the direction perpendicular to the overall flow.

V. SIMULATION RESULTS

Simulations are performed considering networks of 256 ×
256 links for BPBCs and 128 × 192 links for OBCs. In order to
avoid any traces from the inlets with OBCs, only a 128 × 128
segment of the network towards the outlets is considered for
the analysis (see Fig. 10). Each link has a length of 1mm, which
is equal to the bead diameter used in the experiments. Most
of the simulations are performed for the viscosity ratio M =
1. Three different capillary numbers, Ca1 = 1.92 × 10−5,
Ca2 = 9.15 × 10−3, and Ca3 = 2.88 × 10−2 are considered
for BPBCs. For OBCs, the capillary numbers considered are
Ca1 = 3.2 × 10−3, Ca2 = 3.2 × 10−2 and Ca3 = 7.0 × 10−2.
For OBCs we choose a similar fractional flow Fnw = 0.5 as in
the experiments. With BPBCs, we run the simulation for the
saturation Snw = 0.74 which we find close to the critical point
for the range of parameters we considered here [32]. We will
report only one set of simulations for M = 10−4 with BPBCs
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for a system with 128 × 128 links and Snw = 0.5 with capillary
numbers 5.06 × 10−2 and 1.24 × 10−1, as the conjugate
gradient solver converges very slowly for viscosity-unmatched
fluids, making the simulation very computationally expensive.

To investigate the history dependence, we use a procedure
analogous to the experimental one (see Sec. III A): The
simulation is started from the initial condition with a capillary
number setting a constant flow rate Q1. Once a steady state
ss1 is reached, the capillary number is altered to a different
value setting another constant flow rate Q2, and this new
flow rate is maintained until a different steady state ss2 is
reached. Finally, the capillary number is set back to the initial
value and the system is allowed to evolve towards a third
steady state ss3. Each simulation thus involves two different
capillary numbers among Ca1, Ca2, and Ca3, and therefore six
different simulations have been performed for each boundary
condition. The steady states are compared using three different
criteria—the average pressure drop, the distribution of fluid
saturation over the system, and the nonwetting cluster-size
distribution. All the measurements are averaged over 50 to
100 configurations in the steady state and 5 to 10 different
realizations of the network.

Fluid morphologies for a typical simulation in the three
steady states ss1, ss2, and ss3 are shown on Figs. 9 and 10 for
BPBCs and OBCs, respectively. Here the simulation starts
from Ca = 9.15 × 10−3 to reach ss1, then it is altered to
Ca = 2.88 × 10−2 to reach ss2, and then it is again turned back
to the initial Ca = 9.15 × 10−3 to reach ss3. Figures 9 and 10
show the distributions of saturation over the network in these
three steady states in panels (a), (b), and (c) respectively, where
the grayscales from black to white correspond to snw = 1 to 0
inside a link. For BPBCs, it is not possible to see any difference
in the grayscale saturation distributions, as the system is closed

(a) (b) (c)

(d) (e) (f)

Ca = 9.15 × 10−3 Ca = 2.88 × 10−2 Ca = 9.15 × 10−3

FIG. 9. (Color online) Typical steady-state fluid morphology over
the network with BPBCs for M = 1 and Snw = 0.74. The distribution
of nonwetting fluid saturation inside the links in the steady states ss1,
ss2, and ss3 are illustrated in (a), (b), and (c), respectively, and the
corresponding capillary numbers are indicated under each column.
The grayscales from black to white correspond to the non-wetting
saturation from 1 to 0 inside a link. The nonwetting clusters identified
by the Hoshen-Kopelman algorithm are shown by different random
colors in (d), (e), and (f).

(a) (b) (c)

(d) (e) (f)

Ca = 9.15 × 10−3 Ca = 2.88 × 10−2 Ca = 9.15 × 10−3

FIG. 10. (Color online) Steady-state fluid morphology over the
network in OBCs for M = 1 and Fnw = 0.5. The figures are drawn
in the similar way as for BPBCs.

and the total saturation is conserved. However, as we will see,
identifying the clusters allows us to distinguish ss1 and ss3 from
ss2 [see Figs. 9(d)–9(f)]. In OBCs, the saturation distributions
look similar in ss1 and ss3 whereas ss2 shows more nonwetting
saturation than the others. This is consistent with previous nu-
merical studies showing that the variation of saturation with Ca
depends on the viscosity ratio, fractional flow, and other flow
parameters [26]. We then identify the nonwetting clusters using
the Hoshen-Kopelman algorithm [45]. As every link can be oc-
cupied by both the fluids, a clip threshold in the link saturation
is considered to identify the clusters [46]. If a neighboring link
has a nonwetting saturation higher than the clip threshold, the
link is then considered to belong to the same cluster. The clus-
ters are shown in panels (d), (e) and (f) of Figs. 9 and 10 for the
three steady states, where each cluster is drawn in a different
color, chosen randomly. The distribution of the clusters shows
a clear characteristic difference of ss1 and ss3 from ss2 in both
BPBCs and OBCs. The cluster sizes in ss1 and ss3 look very
similar, and they are distinctly different from that of ss2.

The temporal evolution of pressure drops for different
simulations is shown in Figs. 11 (M = 1) and 12 (M = 10−4)
for BPBCs and in Fig. 13 for OBCs. The two different capillary
numbers for each simulation corresponding to ss1, ss2, and ss3

are indicated in the plots. With BPBCs, we measure the global
pressure drop �P over the whole system. With OBCs, we
measure the pressure drops �Pi at the inlet nodes and �Pm at
the middle of the system, with respect to the outlet where the
pressures are averaged over all the nodes in the corresponding
row, in the direction perpendicular to the flow. We observe very
similar behaviors in the pressure curves as in the experiments.
In the case of BPBCs, the system is initialized by filling the
tubes with the fluids randomly at the desired saturation Snw,
which will be constant throughout the simulation. This random
initialization has the advantage of decreasing the simulation
time significantly, since the steady state is reached faster than
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FIG. 11. Global pressure drop �P as a function of time for
BPBCs in different simulations with M = 1 and Snw = 0.74. A rapid
change in �P can be observed as soon as the overall flow rate is
altered. When the flow rate is restored to the initial value, �P settles
back to the initial steady-state value as seen for ss1 and ss3. Other
global parameters like the nonwetting fractional flow Fnw also settle
back to the initial steady-state value as shown in the inset of (d).

with an initial condition in which the two fluids are completely
segregated. Due to this initial random filling in BPBCs, the
global pressure �P starts from a higher value and decreases
with time due to the formation of clusters. Subsequently,
it reaches the steady state ss1 and �P fluctuates around a
constant average value as seen on Figs. 11 and 12. With OBCs,
the system is initialized by saturating the network completely
with the wetting fluid, and then the simulation is started by
injecting two fluids simultaneously through a series of alternate
inlets. The flow rates of individual fluids are controlled to
obtain the required fractional flow Fnw. Both drainage and
imbibition therefore take place at the pore level, creating new
menisci, which increase the pressure drop with time as seen in
Fig. 13. Away from the inlets, the trace of the injection channels
vanishes, and a steady-state ss1 is attained, and �Pi and �Pm

fluctuate around constant average values. Next, as soon as
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FIG. 12. (Color online) Global pressure drop �P with time for
BPBCs with M = 10−4 and Snw = 0.5.
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FIG. 13. (Color online) Time evolution of global pressure drops
�Pi [black (upper) line] at the inlet and �Pm [red (lower) line] at the
middle of the system for OBCs with M = 1. A rapid change in both
the pressure drops can be observed as soon as Ca is altered, but they
again settle back to the initial value when the flow rate is restored to
the initial one.

the capillary number is changed to a different value, a rapid
change in the pressure drops is observed for both BPBCs and
OBCs, and the new steady state ss2 is reached, characterized by
different constant values in the average pressure drops. When
the capillary number is again altered to the initial value to
reach the steady state ss3, we find that the global pressure drops
change back to the initial average value. Moreover, the global
pressure drops corresponding to the same capillary numbers in
different simulations have the same average value, no matter
from which conditions they have been reached. Other global
flow properties, like the nonwetting fractional flow Fnw with
BPBCs, also change to another steady-state value as Ca is
altered, but again return back to the same initial value as soon
as Ca is turned back to the initial value. This is shown in the
inset of Fig. 11(d).

The global pressure estimates therefore completely support
the experimental observations, i.e., that the steady state
depends only on the imposed flow rate and not on the
initial condition. Now, in order to find detailed microscopic
information in this regard, we measure the distribution of
link saturation over the system. This measurement provides us
with similar information to that from experimental grayscale
image histograms, despite being computed slighly differently.
More precisely, in the experiment, the grayscale of each pixel
is counted, where one pixel corresponds to any one of the
three components—the viscous fluid, air, or the glass beads.
In the simulation, on the other hand, we count the nonwetting
saturation inside each link and compute the histogram of the
link counts. Therefore, one should not try to make a direct
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FIG. 14. (Color online) Histograms of the network links accord-
ing to nonwetting fluid saturation inside the links over the steady-state
configurations for BPBCs with M = 1 and Snw = 0.74. In all the
simulations, the histograms are found to be similar for ss1 [black
(solid) line] and ss3 [red (dash-dotted) line]. Two distinct peaks are
observed for Ca = 9.15 × 10−3, implying that the links are highly
saturated with either the nonwetting or the wetting fluid. The inset of
(e) shows the nonwetting fractional flow Fnw for the corresponding
simulation where Fnw ≈ 0.99 at Ca = 1.92 × 10−5, which is the
reason for the minor variation in the histogram patterns for ss1 and ss3.

match of the histogram patterns from the experiments to the
simulations. The histograms in the three steady states ss1,
ss2, and ss3 in different simulations are plotted on Figs. 14
(M = 1) and 15 (M = 10−4) for BPBCs and 16 for OBCs.
In each simulation, it is very clear that the histograms for
ss1 and ss3 fall on each other, whereas they are distinctly
different from that of ss2. Moreover, the histogram patterns
corresponding to the same Ca in different simulations are
identical. A minor difference in the histograms for ss1 and
ss3 is observed only for Ca = 1.92 × 10−5 with BPBCs. This
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FIG. 15. (Color online) Steady-state saturation histograms for
BPBCs with M = 10−4 and Snw = 0.5.
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FIG. 16. (Color online) Histograms of the links according to the
nonwetting fluid saturation inside the links over the steady-state
configurations for OBCs with M = 1. In all the simulations, the
histograms are found to be identical for ss1 [black (solid) line] and
ss3 [red (dash-dotted) line]. The histograms contain only one peak
around the middle, which means that the links are mostly saturated
with a mixture of both the fluids.

is due to the appearance, at low Ca and high saturation with
BPBCs, of percolating nonwetting flow channels yielding a
high nonwetting fractional flow (Fnw ≈ 0.99), as shown in the
inset of Fig. 14(e), while the rest of the system is immobilized.

On the histograms, we observe two distinct peaks with
BPBCs for Ca = 9.15 × 10−3: one at snw 	 0.8 corresponding
to the links mostly filled with nonwetting fluid, and the other at
snw 
 0.4 corresponding to the links mostly filled with wetting
fluid. Therefore links can be divided into two categories: highly
saturated with either the nonwetting or the wetting fluid, rather
than containing a mixture of the two phases. This in turn
indicates the presence of large clusters at this Ca, as already
observed in the fluid morphology on Figs. 9(d) and 9(f). For the
other two Ca values with BPBCs, the histograms are changing
towards having one peak, with a flatter shape. For M = 10−4

in BPBCs, and in OBCs, the histograms also display one peak,
roughly centered but whose position shifts along the x axis
with changing Ca. This indicates that most of the links are
filled with a mixture of both fluids. Therefore it is difficult
to obtain large clusters in such conditions, as observed in the
fluid morphology for OBCs (Fig. 10).

Finally we compute the nonwetting cluster-size distribu-
tions at different steady states. Here, the size n of a cluster
is defined by the total number of links that belong to the
cluster. The probability p(n) to have an n-sized cluster is then
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FIG. 17. (Color online) Steady-state nonwetting cluster-size dis-
tributions 〈p(n)〉 vs n for BPBCs with M = 1 and Snw = 0.74. For all
the simulations, ss1 and ss3 are found to have the same distributions,
which depend only on the capillary number.

defined as p(n) = N (n)/Ntot, where N (n) is the number of
n-sized clusters out of a total of Ntot clusters identified. p(n) is
averaged over different configurations in the steady state and
different samples of the network. In Figs. 17 and 18, 〈p(n)〉 is
plotted on a log-log scale for BPBCs and in Fig. 19 for OBCs,
for different simulations. For all the simulations, we find
that the cluster-size distributions are identical for ss1 and ss3,
whereas they are different for ss2. Distributions for the same
Ca for different simulations are also the same, showing that the
steady-state cluster-size distributions are history independent.

VI. CONCLUSIONS

In this article we have considered the question of history
dependence in steady-state two-phase flow in porous media
and presented detailed experimental and numerical investiga-
tions in this context. Experimentally, a quasi-two-dimensional
laboratory model consisting of a Hele-Shaw cell filled with
glass beads is considered, through which two phases, a
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FIG. 18. (Color online) Steady-state nonwetting cluster-size dis-
tributions 〈p(n)〉 vs n for BPBCs with M = 10−4 and Snw = 0.5.
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FIG. 19. (Color online) Steady-state nonwetting cluster-size dis-
tributions 〈p(n)〉 vs n for OBCs with M = 1. As for BPBCs, the
distributions are found to be identical in ss1 and ss3 in all the
simulations.

gas-liquid pair with a viscosity ratio of 10−4 flows at a
constant flow rate. The system is allowed to evolve to a
steady state where the global pressure drop fluctuates around
a constant average value. Steady states corresponding to the
same control parameters (e.g., capillary number) are attained
from different initial conditions. In order to characterize the
complex flow patterns in the steady state, grayscale histograms
of snapshots and the nonwetting cluster-size distributions
are analyzed. The system is then modeled numerically by
a network of disordered pores transporting two immiscible
fluids. The steady-state situation in the network model is
attained by implementing two different boundary conditions,
a toroidal one with constant saturation and an open boundary
with constant fractional flow, as in the experiments. The global
pressure drop, distribution of nonwetting pore saturation over
the network, and cluster-size distributions are computed.
Both the experimental and numerical results show that when
both the fluids are flowing in steady state, different mea-
surements corresponding to the same control parameters are
identical, no matter how the steady state has been reached.
Thus, unlike the transients, the steady states depend only
on the external parameters, but do not depend on the initial
preparation of the system or the history of the process.
We therefore conclude that, within the range of parameters
explored in this study, the steady states in simultaneous flow of
two phases through a porous medium are history independent.

However, the present study covers only a restricted range
of the parameter space. To obtain a complete picture of
steady state in simultaneous two-phase flow in 2D porous
media, additional work is needed. First, in the present work,
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we have used only systems with a relatively high porosity.
Second, the use of a gas-liquid system with a high viscosity
contrast (M ≈ 10−4) yields a specific dynamical steady-state
regime in which flow patterns vary in time. In future work, it
will be very interesting to investigate in detail how both the
compressibility of the gas and the high viscosity contrast force
the system to explore different configurations. In terms of a
thermodynamic description, in particular, this is potentially
making the system ergodic. Using an experimental porous
medium similar to the one presented here, we are currently
running experiments with two liquids, thereby investigating
the situation M ≈ 1. Preliminary results seem to show that
film flow is an important contribution to the steady-state
dynamics in this case. Although the simulations presented

here investigate the case M = 1, they are performed by
neglecting film flow. Thus, the implementation of film flow
in the numerical model will be of great interest in the future.
Finally, it is by no means obvious how to extend these results
to 3D cases, and the development of 3D experiments in model
porous media is important for future work.
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Måløy, R. Toussaint, and E. G. Flekkøy, Phys. Rev. Lett. 102,
074502 (2009).

[29] E. M. Rassi, S. L. Codd, and J. D. Seymour, New J. Phys. 13,
015007 (2011).

[30] S. Sinha, A. Hansen, D. Bedeaux, and S. Kjelstrup, Phys. Rev.
E 87, 025001 (2013).

[31] S. Sinha and A. Hansen, Europhys. Lett. 99, 44004 (2012).
[32] T. Ramstad and A. Hansen, Phys. Rev. E 73, 026306 (2006).
[33] A. Hansen and T. Ramstad, Comput. Geosci. 13, 227 (2009).
[34] R. Juanes, E. J. Spiteri, F. M. Orr, Jr., and M. J. Blunt, Water

Resour. Res. 42, W12418 (2006).
[35] S. A. Aryana and A. R. Kovscek, Phys. Rev. E 86, 066310

(2012).
[36] T. J. Greytak, R. T. Johnson, D. N. Paulson, and J. C. Wheatley,

Phys. Rev. Lett. 31, 452 (1973).
[37] J. Watson and D. S. Fisher, Phys. Rev. B 54, 938 (1996).
[38] N.-S. Cheng, Ind. Eng. Chem. Res. 47, 3285 (2008).
[39] W. S. Rasband, computer code IMAGEJ (U.S. National

Institutes of Health, Bethesda, MD, USA, 1997–2012),
http://imagej.nih.gov/ij/.

[40] G. Landini, http://www.dentistry.bham.ac.uk/landinig.
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A. Hansen, Phys. Rev. E 58, 2217 (1998).

[42] F. A. L. Dullien, Porous Media: Fluid Transport and Pore
Structure (Academic Press, San Diego, 1992).

[43] E. W. Washburn, Phys. Rev. 17, 273 (1921).
[44] H. A. Knudsen, E. Aker, and A. Hansen, Transp. Porous Media

47, 99 (2002).
[45] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).
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