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Radial viscous fingering: Wetting film effects on pattern-forming mechanisms
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We consider the interfacial motion between two immiscible viscous fluids in the confined geometry of a radial
Hele-Shaw cell. In this framework, we investigate the influence of a thin wetting film trailing behind the displaced
fluid on the linear and weakly nonlinear dynamics of the system. More specifically, we examine how the interface
instability and the pattern formation mechanisms of finger tip splitting and finger competition are affected by the
presence of such a film in the low capillary number limit. Our theoretical analysis is carried out by employing
a mode-coupling theory, which allows analytic assess to wetting-induced changes in pattern morphology at the
onset of nonlinearities.
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I. INTRODUCTION

The viscous fingering (Saffman-Taylor) problem [1] has
been extensively studied during the past fifty years or so [2].
It comes about in the narrow passage between two close
parallel plates of a Hele-Shaw cell, when a low viscosity
fluid displaces a more viscous one. Under such circumstances,
an instability develops at the fluid-fluid interface leading to
the growth of fingerlike shapes. In the channel geometry of
a rectangular Hele-Shaw cell [1,3–5] long, smooth steady
state fingers are formed. On the other hand, in radial Hele-
Shaw cells [6–8], where the less viscous fluid is injected
at the center and drives radially the more viscous fluid, the
emerging fingering structures compete and continue to evolve
through repeated tip splitting. In this scenario new fingers
are continuously generated, eventually resulting in a densely
branched interfacial pattern [9,10]. Finger tip splitting and
finger competition are the basic nonlinear mechanisms of the
viscous fingering process.

Although highly nonlinear, due to its relative simplicity
the viscous fingering instability has become a prototypical
free boundary problem for many pattern-forming systems of
both practical and academic relevance. The dynamic evolution
of the problem is governed by the Hele-Shaw flow equa-
tions, described by a quasi-two-dimensional, gap-averaged
Darcy’s law (essentially fluid velocity proportional to the
negative of the pressure gradient) and fluid incompressibility
(divergenceless velocity field), supplemented by two boundary
conditions at the interface [1–10]: a pressure jump as given
by a Young-Laplace equation and the continuity (kinematic)
condition for the normal component of the fluid velocity.

Despite the usefulness and effectiveness of the simplest
version of the Hele-Shaw flow equations in describing critical
issues such as interface stability, its original formulation has
been improved over the years in order to provide a better match
between theory and experiments. One particularly important
improvement refers to the incorporation of three-dimensional
effects related to the curvature in the transverse direction to
the cell plates, as well as to the influence of wall wetting
effects [11–20]. One major issue investigated in these works
is the fact that the displaced viscous fluid wets the cell walls,
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leaving a film of finite thickness behind. In particular, Park
and Homsy [12] have shown that, in the limit of low capillary
number Ca (relative measure of viscous and interfacial tension
forces), the inclusion of the effects due to the thin wetting film
leads to an order Ca2/3 correction to the pressure difference
boundary condition.

In fact, comparison between theory [12,16,17] and experi-
ments [13,14] in rectangular Hele-Shaw cells revealed that the
addition of the thin wetting film correction into the Young-
Laplace condition is indeed necessary to provide a more
satisfactory agreement between theoretical and experimental
results. These findings reinforced the theoretical claim that the
effect of the film has an important influence on the fingering
dynamics in Hele-Shaw flows.

Curiously the great majority of studies dealing with the
effects of thin wetting films focus on flows occurring in
rectangular Hele-Shaw cells [11–17]. There are some studies
addressing wetting film effects in radial Hele-Shaw flows,
but in the context of centrifugally driven flows in a rotating
Hele-Shaw cell [18,21,22]. Experiments performed in dry and
prewetted rotating Hele-Shaw cells investigated the stable
[21] and unstable [22] displacements of a rotating fluid
annulus and have demonstrated that the stability of the annular
structure depends substantially on the wetting conditions at
the leading interface. Further experimental and numerical
studies have been performed in Ref. [18], which considered
the relevance of wetting in viscous fingering patterns arising
on the border of a dense fluid droplet in a rotating Hele-Shaw
cell. Their fully nonlinear numerical simulations and exper-
iments have detected interface stabilization due to dynamic
wetting.

In addition to the studies mentioned in the previous
paragraph, only a few other investigations examined wetting
film-related issues for injection-driven flow in radial Hele-
Shaw cells. In 1989 Maxworhty [23] contrasted a series of
meticulous experiments with various theoretical predictions
and found that inclusion of wetting effects improves the
agreement between theory and experiments. More recently
a theoretical study performed by Kim et al. [24] revisited
Maxworthy’s experimental findings [23], and achieved a better
agreement with experiments by taking into consideration the
role played by viscous normal stresses [25,26]. Another recent
experimental investigation [27] performed measurements of
wetting film thicknesses in a radial Hele-Shaw cell.
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PEDRO H. A. ANJOS AND JOSÉ A. MIRANDA PHYSICAL REVIEW E 88, 053003 (2013)

Only very recently a couple of groups carried out linear
stability analyses specifically on the topic of film wetting
effects on injection-driven radial Hele-Shaw flows [19,20].
In Ref. [19] the wetting film effects on the interface sta-
bility are not really discussed, but the calculation leading
to their (somewhat cumbersome) linear dispersion relation
[their Eq. (3.24)] does include the wetting film correction.
The authors of Ref. [20] managed to derive a much simpler
expression for the linear growth rate [Eq. (2) in their paper]
and actually have shown that the wetting film effects have
a stabilizing role, tending to decrease the magnitude of the
growth rate of interfacial disturbances at the linear level.
This last result is consistent with the rotating Hele-Shaw cell
findings of Ref. [18] and with early studies in rectangular cell
geometry [14].

It should be emphasized that investigations performed in
Refs. [19,20] are restricted to the early time, purely linear
regime in injection-driven radial Hele-Shaw flows, so that they
cannot assess the effects of film wetting on the fundamental
nonlinear mechanisms of finger tip splitting and finger com-
petition. Therefore, a systematic study of the influence of the
wetting film on the most salient morphological features of the
patterns arising in injection-driven radial Hele-Shaw flows is
still lacking. The investigation of these key issues is the main
purpose of this work.

The remainder of this paper is structured as follows.
Section II presents our theoretical weakly nonlinear approach.
From the Hele-Shaw equations including wetting corrections,
and under low capillary number conditions, we derive a
second-order mode-coupling equation that describes the time
evolution of the interfacial amplitudes under injection-driven
radial Hele-Shaw flow circumstances. Our analytical mode-
coupling theory provides important insights into pattern forma-
tion processes at the onset of nonlinear effects, just by consider-
ing the interplay between small number of perturbative Fourier
modes. In Sec. III we focus on discussing the role played by the
wetting thin film in regulating finger tip-splitting phenomena
and in determining the behavior of finger competition events.
Our concluding remarks are presented in Sec. IV.

II. WEAKLY NONLINEAR APPROACH

Consider a Hele-Shaw cell of gap spacing b containing two
immiscible, incompressible, viscous fluids (see Fig. 1). Denote
the viscosities of the inner and outer fluids, respectively, as η1

and η2. Between the two fluids there exists a surface tension

FIG. 1. (Color online) Representative sketch of the injection-
driven flow in a radial Hele-Shaw cell.

σ . Fluid 1 is injected into fluid 2 at a constant injection
rate Q (equal to the area covered per unit time). As in
Refs. [11–17,19,20] our weakly nonlinear theory is developed
with the assumption that the displaced fluid (fluid 2) wets the
walls of the Hele-Shaw cell, leaving behind a thin wetting film.
Likewise, it is assumed that the capillary number is small.

The perturbed fluid-fluid interface is described as R(θ,t) =
R(t) + ζ (θ,t), where θ represents the azimuthal angle, and
R(t) is the time-dependent unperturbed radius R = R(t) =√

R2
0 + Qt/π , with R0 being the unperturbed radius at t = 0.

Here ζ (θ,t) = ∑+∞
n=−∞ ζn(t) exp(inθ ) denotes the net interface

perturbation with Fourier amplitudes ζn(t), and discrete wave
numbers n. Our perturbative approach keeps terms up to
the second order in ζ . In the Fourier expansion of ζ we include
the n = 0 mode to maintain the area of the perturbed shape
independent of the perturbation ζ . Mass conservation imposes
that the zeroth mode is written in terms of the other modes as
ζ0 = −(1/2R)

∑
n�=0 |ζn(t)|2.

For the effectively two-dimensional geometry of the radial
Hele-Shaw cell, the governing equation of the system is the
gap-averaged Darcy’s law [1,2]

vj = − b2

12ηj

∇pj , (1)

where vj and pj denote the velocity and pressure in fluids
j = 1,2, respectively. From the irrotational nature of the flow
(∇ × vj = 0) and the incompressibility condition

∇ · vj = 0, (2)

it can be readily verified that the velocity potential φj (vj =
−∇φj ) obeys the Laplace equation. It this context, to get the
equation of motion for the interface, we rewrite (1) for each of
the fluids in terms of the velocity potential. Integrate and then
subtract the resulting equations from each other to obtain [5,8]

A

(
φ1 + φ2

2

)
−

(
φ1 − φ2

2

)
= −b2(p1 − p2)

12(η1 + η2)
, (3)

where the dimensionless parameter A = (η2 − η1)/(η2 + η1)
is the viscosity contrast.

To include the contributions coming from surface tension
and wetting effects we consider a generalized Young-Laplace
pressure boundary condition, which expresses the pressure
jump across the fluid-fluid interface [11–20]

p1 − p2 = −π

4
σκ − 2σ

b
[cos θc + JCaγ ]. (4)

The first term on the right-hand side (RHS) of Eq. (4)
represents the contribution related to surface tension and the
interfacial curvature κ in the plane of the Hele-Shaw cell. The
factor π/4 is purely a capillary static effect, coming from the z

average of the mean interfacial curvature. The second term on
the RHS of Eq. (4) accounts for the contribution of the constant
curvature associated with the interface profile in the direction
perpendicular to the Hele-Shaw cell plates, set by the static
contact angle θc measured between the plates and the curved
meniscus. As in most experiments and wetting models, we
consider a nonwetting fluid displacing a wetting one, so that
θc = 0. Finally, the third term on the RHS of (4) considers the
effect of a thin wetting film trailing behind the displaced fluid,
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where Ca = η2vn/σ is the capillary number, vn the normal
component of the interface velocity, J = 3.8, and γ = 2/3.

At this point, we comment on a noteworthy issue involving
the pressure boundary condition (4): Unlike the rectangular
Hele-Shaw cell situation [11–17] for which the thickness
of the wetting film is constant for a prescribed injection
rate, the film thickness could change in the viscous fingering
problem in radial Hele-Shaw cells. If one considers that the
wetting film thickness scales as the capillary number, which
is defined by the finger tip velocity dR/dt = Q/2πR (due
to mass conservation), the film thickness would decrease in
the radial direction. In this scenario the wetting film effect on
fingering instability could become less and less pronounced at
later times. However, despite this decrease in the wetting film
thickness, the fact is that at the onset of nonlinearities (situation
treated in this work) we find that wetting film effects are still
sizable and do affect the viscous fingering pattern-forming
mechanisms. The precise influence of the variable thickness
of the wetting film on fully nonlinear dynamics of viscous
fingering remains an open question. Proper verification of such
effects at the advanced time regime would require intensive
numerical simulations and laboratory experiments and are
beyond the scope of this work.

The problem we study is specified by the generalized
pressure jump boundary condition (4), plus the kinematic
boundary condition which states that the normal components
of each fluid’s velocity are continuous at the interface

∂R

∂t
=

(
1

r2

∂R

∂θ

∂φi

∂θ

)
−

(
∂φi

∂r

)
. (5)

Following standard steps performed in previous weakly
nonlinear studies for Hele-Shaw flows [5,8], first, we define
Fourier expansions for the velocity potentials. Then we express
φj in terms of the perturbation amplitudes ζn by considering
condition (5). Substituting these relations, and the pressure
jump condition Eq. (4) into Eq. (3), always keeping terms up
to second order in ζ , and Fourier transforming, we find the
equation of motion for the perturbation amplitudes (for n �= 0)

ζ̇n = λ(n)ζn +
∑
n′ �=0

{
F (n,n′)ζn′ζn−n′ + G(n,n′)ζ̇n′ζn−n′

+H (n)

[
ζ̇n′ ζ̇n−n′ + Q

2πR2
ζn′ ζ̇n−n′

]}
, (6)

where the overdot denotes total time derivative,

λ(n) = 1

1 + w(n)

[
Q

2πR2
(A|n| − 1)

− πσb2(A + 1)

96η2R3
|n|(n2 − 1)

]
, (7)

is the linear growth rate, and

w(n) = γ |n|J (A + 1)

12

b

R

(
2πRσ

Qη2

)1−γ

(8)

is related to the wetting film contribution. Note that considering
the fact that Ṙ = Q/2πR one could write η2Ṙ/σ = Ca′
as a local variable capillary number in these expressions.
Even though we do consider the establishment of this time-
dependent modified capillary number Ca′ in our calculation,

we do not write our expressions explicitly in terms of Ca′, but
rather in terms of η2, Ṙ, and σ .

The second-order mode-coupling terms are given by

F (n,n′) = 1

1 + w(n)

( |n|
R

{
QA

2πR2

[
1

2
− sgn(nn′)

]

− πb2σ

48(η1 + η2)R3

[
1 − n′

2
(3n′ + n)

]}
,

− 3Qw(n)

4πR3
n′(n − n′)

)
, (9)

G(n,n′) = 1

1 + w(n)

{
1

R
[A|n|[1 − sgn(nn′)] − 1]

+ w(n)(1 − γ )

2R

}
, (10)

and

H (n) = w(n)

1 + w(n)

πR

Q
(1 − γ ), (11)

where the sgn function equals ±1 according to the sign of its
argument.

The expressions (6)–(11) represent the mode-coupling
equations of the viscous fingering problem in a radial Hele-
Shaw cell, taking into consideration the contributions from
wetting film effects. This set of nonlinear equations opens up
the possibility of investigating analytically how the stability
and morphology of the evolving fluid-fluid interface respond
to the action of thin film wettability.

We have verified that by setting γ = 0, Eqs. (6)–(11)
reproduce the equivalent expressions originally derived in
Ref. [8], where the effects of the wetting film are not taken into
account. Note that in this limit a proper match with their results
is obtained if the extra π/4 multiplicative factor appearing in
the surface tension term in Eq. (4) is replaced by one.

FIG. 2. (Color online) Linear growth rate λ(n) as a function of
mode n, for the cases without (γ = 0), and with wetting (γ = 2/3)
at time t = 6.5 s. The maxima of the curves are indicated by small
dots.
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FIG. 3. (Color online) Time evolution of the cosine perturbation
amplitudes an and a2n. The dashed (solid) curves are plotted for γ = 0
(γ = 2/3).

III. WETTING FILM EFFECTS

In the next three subsections we use our mode-coupling
approach to investigate the interface evolution at first and
second order. To simplify our discussion it is convenient to
rewrite the net perturbation in terms of cosine and sine modes

ζ (θ,t) = ζ0 +
∞∑

n=1

[an(t) cos(nθ ) + bn(t) sin(nθ )] , (12)

where an = ζn + ζ−n and bn = i (ζn − ζ−n) are real valued.
Without loss of generality we may choose the phase of the
fundamental mode so that an > 0 and bn = 0.

We stress that the values we take for our parameters
throughout the rest of this work are consistent with typical
physical quantities used in real experiments for injection-
driven radial viscous flows in Hele-Shaw geometry [2,6,8,9].
Most of the parameters we use are taken from Paterson’s
classical experiment [6]. We consider the rapid growth of
fingers, as air [η1 ≈ 0] is blown at a constant injection
rate Q = 2π cm2/s into glycerin [η2 ≈ 5.21 g/(cm s)] in a
radial source flow Hele-Shaw cell. The thickness of the cell
b = 0.15 cm and the surface tension σ = 63 dyne/cm. The
initial radius R0 = 1.0 cm and the evolution of the interfaces
we consider run up to time t = 6.5 s.

A. Linear regime

Although the main focus of our present study is to
understand how the wetting film affects intrinsically nonlinear
effects related to the morphology of the fingers, for the sake of
completeness and clarity we highlight some useful information
that can be extracted already at the linear level.

Let us begin by briefly examining Eq. (7): It is interesting
to point out that this linear dispersion relation differs from the
conventional one (which neglects wetting) just in the prefactor
1/[1 + w(n)], which introduces an explicit dependence on γ .
So one’s first conclusion is that the critical mode nc of the

FIG. 4. (Color online) Snapshots of the evolving interface for the
interaction of two cosine modes n = 4 and 2n = 8: (a) γ = 0, and
(b) γ = 2/3.

system, that is, the mode for which λ(n) = 0, is not modified
by the consideration of wetting effects. Therefore, the width
of the band of unstable modes [region of Fourier modes within
the interval 0 � n � nc] is not affected by the presence of the
wetting fluid. While nc is not changed, we have verified that
the wave number of the fastest growing mode nmax [obtained
by setting dλ(n)/dn = 0] is just slightly reduced when wetting
effects are added. Since nmax is connected to the typical number
of interfacial fingers rising at the linear level, one anticipates
that the number of emerging fingers should not be significantly
influenced by the action of wetting. But, if neither nc nor nmax

are strongly affected, one could wonder what would be the
main effect of wettability at the linear regime.

The answer to this point is given in Fig. 2, which plots the
linear growth rate λ(n) as a function of mode number n, at
time t = 6.5 s, for γ = 0 (wetting is neglected) and γ = 2/3
(wetting effects are taken into account). It can be seen that
even though nc is kept unchanged, and nmax is just shifted a bit
towards lower wave numbers, the magnitude of the growth rate
is considerably reduced by the action of wetting. This would
indicate that wetting would tend to stabilize the growth of
interfacial instabilities at the linear regime. Nevertheless, one
must go beyond the purely linear stage in order to explicitly
verify how wetting would affect the nonlinear phenomena
related to finger tip splitting and finger competition.

B. Weakly nonlinear regime

This section demonstrates the usefulness of our weakly
nonlinear analysis in elucidating key aspects related to finger
tip behavior and competition under the action of wetting film
effects.

1. Tip splitting

At second order the most noteworthy phenomenon in
injection-driven radial Hele-Shaw flows is finger tip splitting.
Within our mode-coupling approach tip splitting is related to
the influence of a fundamental mode n on the growth of its
harmonic 2n [8]. Under these circumstances, the equations of
motion for the cosine and sine modes of the harmonic are

ȧ2n = λ(2n)a2n + 1
2T (2n,n)a2

n, (13)

ḃ2n = λ(2n)b2n, (14)
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FIG. 5. (Color online) Time evolution of the cosine an/2 and sine
bn/2 perturbation amplitudes of the subharmonic mode. The dashed
(solid) curves are plotted for γ = 0 (γ = 2/3).

where

T (2n,n) =
{
F (2n,n) + λ(n)G(2n,n)

+H (2n)λ(n)

[
λ(n) + Q

2πR2

] }
. (15)

From Eq. (14) we can see that the growth of the sine mode
b2n is uninfluenced by an, and does not present second-order
couplings, so we focus on the growth of the cosine mode. In
fact, Eq. (13) shows that the presence of the fundamental mode
n forces growth of the harmonic mode 2n. It has been shown in
Ref. [8] that in the absence of wetting film effects a2n is driven
negative, precisely the sign that leads to finger tip widening
and finger tip splitting. Here we study how the presence of the
wetting film could modify this scenario.

To examine the influence of wetting film effects on finger tip
behavior at second order, in Fig. 3 we plot the time evolution
of the cosine perturbation amplitudes for the fundamental
mode (an) and for its harmonic mode (a2n). We consider
situations in which wetting effects are ignored (γ = 0, dashed
curves) and taken into account (γ = 2/3, solid curves). We
take the initial amplitudes as an = R0/20, and a2n = 0. By
inspecting Fig. 3 it is clear that the presence of wetting does
tend to decrease the magnitude of the perturbation amplitudes.
Valuable information about finger tip-splitting behavior can be
obtained if one focuses on the time evolution for the harmonic
mode. When wetting is absent the sign of the harmonic
goes strongly negative although its initial value was zero. In
this case the nonlinear coupling naturally enhance tendency
toward finger tip splitting. However, when wetting effects
are considered the magnitude of the harmonic is decreased,
indicating that tip splitting would be inhibit. This points
to a nonlinear stabilization of the tip-splitting phenomenon
induced by the action of the wetting film.

These findings are reinforced and even more clearly
illustrated in Fig. 4, which plots the time evolution of the
interface for times t = 0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 s.

FIG. 6. (Color online) Snapshots of the evolving interface for the
interaction of two modes n = 4 and n/2 = 2 (both sine and cosine)
for (a) γ = 0, and (b) γ = 2/3. The times shown are the same ones
used in Fig. 4. The dashed circle is added to facilitate visualization
of finger competition among the outward moving fingers of the inner
fluid.

This is done considering the interaction of two cosines modes
(a fundamental n = 4 and its harmonic 2n = 8) under the
absence (a) and presence (b) of wetting film effects. When
wetting is not considered we see typical flowerlike patterns,
with the petals presenting tips that clearly split. But, when
the wetting film is present, fundamentally different shapes are
obtained, and the nonlinear growth of the instability results in
the formation of shorter, stubby fingers. In this last case, the
usual finger tip-splitting phenomenon is evidently restrained.

2. Finger competition

Now we turn our attention to the effects of the wetting film
on finger competition events. Once again, we follow Ref. [8]
and consider finger length variability as a measure of the
competition among fingers. Within our approach the finger
competition mechanism can be described by the influence of a
fundamental mode n, assuming n is even, on the growth of its
subharmonic mode n/2. By using Eqs. (6)–(11) the equations
of motion for the subharmonic mode can be written as

ȧn/2 = {λ(n/2) + C(n)an} an/2, (16)

ḃn/2 = {λ(n/2) − C(n)an} bn/2, (17)

where

C(n) = 1

2

[
F

(
− n

2
,
n

2

)
+ λ(n/2)G

(
n

2
,−n

2

)]

+ 1

2

[
F

(
n

2
,n

)
+ λ(n)G

(
n

2
,n

)]

+ 1

2
λ(n)H (n/2)

[
λ(n/2) + Q

2πR2

]

+ 1

2
λ(n/2)H (n/2)

[
λ(n) + Q

2πR2

]
. (18)

The action of the subharmonic mode breaks the n-fold rota-
tional symmetry of the fundamental by alternately increasing
and decreasing the length of each of the n fingers. In Ref. [8] it
has been shown that, under injection-driven radial Hele-Shaw
flow (without wetting) cosine modes an/2 grow, and sine
modes bn/2 decay. The result is an increased variability among
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FIG. 7. (Color online) Difference between the interface positions
of the finger tips for consecutive outward moving fingers of the inner
fluid �R as a function of time, for γ = 0 and γ = 2/3. This figure
uses the same physical parameters utilized in Figs. 5 and 6. It is
evident that finger competition is decreased in the presence of wetting
effects.

the lengths of the outward moving fingers of the inner fluid
invading the outer one. This effect describes the preferential
and more intense competition among outward moving fingers.

To get some insight into the effect of wetting on finger
competition in Fig. 5 we plot the time evolution of the
cosine an/2 and sine bn/2 subharmonic amplitudes when
wetting effects are ignored (γ = 0, dashed curves), and taken
into account (γ = 2/3, solid curves). We take the initial
amplitudes as an/2 = bn/2 = R0/30, and an = R0/20. Recall
that the finger length variability and the very nature of finger
competition depend on the relative magnitudes of sine and
cosine subharmonic amplitudes. From Fig. 5 we notice the
growth of an/2 over bn/2 when γ = 0. This indicates enhanced
competition among the outward moving fingers of the inner
fluid, in agreement to what has been obtained in Ref. [8].
When the wetting film effect is considered, one observes that
the values of both an/2 and bn/2 are lowered (solid curves
located below dashed curves), indicating a tendency toward
inhibition of finger competition events. We have verified that a
similar decrease is detected in the growth of the fundamental
mode. These observations indicate that both the size and

finger length variability would be decreased as a result of
the wetting effects. This is actually what one can see in Fig. 6,
where the time evolution of the interface is plotted. If wetting
is neglected [Fig. 6(a)] long fingers of different lengths are
formed revealing competition among outward moving fingers
of the inner fluid. In contrast, short stubby fingers arise when
wetting is taken into consideration [Fig. 6(b)].

However, from a purely visual inspection of Figs. 6(a) and
6(b) it is a bit hard to tell for which situation finger competition
is most repressed. A clearer illustration of the time evolution
of the finger competition behavior in our system is provided by
Fig. 7. It plots the difference in finger lengths for consecutive
outward moving fingers of the inner fluid �R as a function of
time, for the times used in Fig. 6. This is done for the cases
without (γ = 0) and with wetting (γ = 2/3). One can see that
finger length variability (i.e., finger competition) changes more
significantly with time in the absence of wetting. Therefore,
one concludes that finger competition is indeed diminished by
the action of the wetting thin film.

IV. CONCLUDING REMARKS

It is well known that wetting film corrections are necessary
to provide a more accurate theoretical description of confined
flows in rectangular Hele-Shaw cells [11–17]. Interestingly,
the studies of the effects of such corrections in the related
problem in radial Hele-Shaw cells are scarce, and limited to
the purely linear regime [19,20].

In this work we investigated the role played by wetting
film corrections on the linear stability and weakly nonlinear
dynamics in injection-driven radial Hele-Shaw flows. By
employing a mode-coupling approach we have been able to get
analytical insight into the changes introduced by wettability
on the basic pattern-forming mechanisms of the problem.
Our results indicate that the wetting film plays an important
role in the overall stabilization of the fingers, restraining
the development of both finger bifurcation and finger length
variability. We predict the formation of short, stubby fingering
structures when the displaced fluid wets the Hele-Shaw walls
under radial flow.
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