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Electro-osmosis of electrorheological fluids
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Electrorheological fluids are suspensions that are characterized by a strong functional dependence of the
constitutive behavior of the fluids on the electric field. In this work, we consider electro-osmosis of an
electrorheological fluid through a channel where a transverse, nonuniform electric field is spontaneously induced
due to the presence of an electric double layer that is manifested due to surface charge density at the channel wall.
We reveal a nonlinear interplay between the applied electric field, the induced electric field, and the observed
flow profiles, which is fundamentally distinctive from other types of nonlinear electrokinetic effects that have
been extensively discussed in the literature, in a sense that here an interaction between the applied electric
field, the induced electric field, and the dependence of the rheology on the resultant electric field happens to
be the focal source of nonlinearity in the observed phenomena. We analyze the electro-osmotic flow control
through the exploitation of a combined nonlinear interplay of the driving electrokinetic forces and the resistive
viscous interactions, which gives rise to distinctive flow regimes as compared to those realized in cases of either
Newtonian fluids or non-Newtonian fluids having electric-field-independent flow rheology.
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I. INTRODUCTION

The alteration in the rheology of materials in the presence
of an electric field has been a subject of keen interest
in the areas of theoretical and experimental research, with
enormous attention paid to a particular kind of fluid, known
as electrorheological fluid (ERF) [1–16]. The term electrorhe-
ological (ER) effect, also known as the Winslow effect [17],
refers to the abrupt change in the apparent viscosity on the
application of an electric field. These viscosity variations
are very rapid and highly reversible. Owing to the sharp
response of rheological alterations to an electric field, one
may employ such fluids as smart materials for a wide
range of applications [18–22]. Electrorheological fluids are
generally nonaqueous suspensions of a noncontinuous phase
(nanoparticles or microparticles) dispersed in a nonaqueous
phase of continuous media [17,23,24]. Another class of ERF
exists wherein only the insulating oil acts as an ERF in the
presence of a nonuniform electric field that has been generated
by employing electrodes with flocked fabrics [25,26].

In the literature, there exist two kinds of ERFs, namely,
the dielectric ERFs and the giant ERFs, which differ in the
mechanism and amount of electrorheological effect produced
[11,27]. In the present work, we deal with dielectric elec-
trorheological fluids. The fundamental mechanism behind the
phenomenological change in rheology of such fluids may be
attributed to the polarization of the nanoparticles under an
electrostatic field with an effective dipole moment because of
the contrast in the dielectric constants between the two phases.
As a consequence of the particle dipole-dipole interactions,
the particles tend to aggregate and form columnlike structures
along the electric-field direction, thus giving rise to field-
dependent constitutive behavior [9,27–29].

From a rheological perspective, electrorheological fluids
are found to exhibit non-Newtonian features in the presence
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of an electric field. Rajagopal and Wineman [30] were the
pioneers in modeling ER fluids as a continuum medium and
formulated a general constitutive relation using the electric
field and deformation tensor by employing the Bingham
model, to arrive at good agreement with experimental results.
Later on, continuum-based models that describe the influence
of the orientation of the electric field on ER flow were
developed [31]. Several other mathematical formulations were
developed in parallel to mathematically model the experimen-
tal results for ER flows [32–34].

In all the aforementioned works, the electric field was
considered to be dominantly applied in a direction perpen-
dicular to the flow and thus the chaining is observed along the
transverse direction of the confinement. In addition, the net
electric field is considered to be externally applied and the flow
actuation mechanisms considered are either pressure driven
or shear driven. However, studies that reveal the interplay of
electro-osmotic mechanisms and the electric-field-dependent
rheology of ER fluids in narrow confinements are lacking in
the literature.

The past couple of decades have witnessed a tremendous
development in microfabrication and nanofabrication tech-
nologies, which has led to versatile lab on a chip microfluidic
and nanofluidic devices [35–38], exploiting the interactions
between interfacial electrochemistry and hydrodynamics over
small scales. Owing to several advantages such as massive
parallelization, ease of miniaturization, and lack of moving
parts, development of such devices has led to several appli-
cations such as DNA hybridization, power generation, and
on-chip assays [39–45]. An important facet of several such
devices is flow actuation using electro-osmotic mechanisms
[43,46]. Exploiting certain intrinsic characteristics of the
electro-osmosis phenomenon, mass flow-rate controllers and
their characteristics have been analyzed and studied in the
literature of electrokinetics [47,48]. A central concept behind
the phenomenon of electro-osmosis is the presence of a net
charge density in the medium. Ionic species that have a charge
similar to that of the substrate are referred to as coions,
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while those bearing the opposite charge are called counterions.
Typically for electrolytes, the distribution of ions away from
a charged substrate leads to a higher counterion concentration
and decreased coion concentration near the wall. Such a
distribution gives rise to the development of an electrically
charged layer adjacent to the solid boundary, also known
as the electric double layer (EDL) [43]. It may be noted in
this context that the substrate may acquire a net charge due
to several mechanisms such as selective dissociation on the
surface and charge adsorption [45,49–51]. In the presence of
the surplus counterions, an electric field applied tangentially
to the solid substrate pulls those species, thereby dragging
the fluid simultaneously with the species, by viscous action.
This phenomenon is known as electro-osmosis, which, for
ERFs, may be enriched and complicated by the fact that the
viscous force itself is a combined function of the applied
tangential electric field as well as the induced transverse
electric field, thereby establishing a nonlinear dependence
of the flow phenomenon on the electric field. In the present
study, we consider a case where only counterions exist in
the continuous phase of the ERFs to build up an EDL, thus
setting up a transverse field in the flow domain [52,53],
which is a consideration fundamentally different from that for
combined coion- and counterion-based systems. It is important
to mention in this context that ions can also be artificially
introduced in the dielectric phase of the ER medium and an
external voltage source can induce the nonuniform electric
field in the transverse direction [54–56].

Motivated by the concerned intriguing physics as well
as a possible plethora of applications, some electrokinetic
properties of ERFs in the presence of surfactants have recently
been discussed in the literature [57–60]. However, the problem
of electro-osmosis of an ER fluid remains unaddressed. A
distinctive feature of the transport phenomena of ER fluids
under the purview of electro-osmosis, in sharp contrast
with the commonly reported ER flows, is that despite no
application of a transverse electric field, an induced electric
field spontaneously develops here [53,61]. This induced
transverse field, coupled with the applied tangential field,
affects the flow rheology in a rather intricate manner. In
addition, the spontaneously induced transverse electric field
also affects the charge distribution in the fluid. The resultant
combination of the charge density and the applied electric field
interacts with electric-field-dependent resistive (shear) forces
in a manner that is intriguingly different from electro-osmotic
flows of either Newtonian fluids or non-Newtonian fluids
having electric-field-independent flow rheology.

The aim of the present work is to investigate the phe-
nomenon of electro-osmosis of dielectric ERFs, where the
transverse electric field is spontaneously induced due to
electrochemical mechanisms. Towards this, we first describe
the potential and the counterion concentration distribution in
the presence of a charge density at the surface of the substrate.
In the subsequent analysis, we consider a combination of the
transverse electric field (due to the surface charge density)
and the applied longitudinal electric field for modeling the
constitutive behavior of the ERF as a function of the electric
field. In particular, we employ a Bingham-like fluid model,
following the considerations of Ceccio and Wineman [31]. The
central result of our work is identification of rheology-driven
regimes of electro-osmotic flow control through narrow fluidic

confinements, which are distinctive from the corresponding
regimes established in the presence of Newtonian fluids or
non-Newtonian fluids having electric-field-independent flow
rheology.

II. MATHEMATICAL DESCRIPTION OF
ELECTRO-OSMOTIC FLOW OF AN
ELECTRORHEOLOGICAL FLUID

We consider a parallel-plate microfluidic channel (of height
2H ) transmitting an ERF, as schematically depicted in Fig. 1
(the thick dashed line in the figure represents the channel
centerline). Only counterions are assumed to be present in the
dielectric phase of the electrorheological fluid due to certain
electrochemical processes near the wall in the nonaqueous
medium [52,53,59,61] while the electroneutrality condition is
imposed in the flow domain. Due to the charge distribution,
an induced transverse electric field E2 is spontaneously
established, which has a pivotal effect on the flow rheology,
apart from an electrokinetic body force generation.

The phenomenon of acquiring a surface charge density
by a substrate in the presence of an aqueous electrolyte is
considered to be the consequence of a spontaneous electro-
chemical mechanism [43]. This consideration, however, is
highly nonintuitive for cases in which interfaces interact with
nonaqueous electrolytic solvents [51]. An interface can acquire
a net charge when it comes in contact with another phase
(which can be liquid or gas) for many reasons, most common
being through the mechanism of charge transfer. Charge
separation may occur because of charge transfer across the
interface, which predominantly takes place in aqueous media.
Nevertheless, other reasons for such occurrence of charge
separation exist. These include the presence of surface-active
groups in ionizable media and the orientation of permanent or
induced dipoles that contribute to the formation of double-
layer structures in nonaqueous media [51]. Polar organic
solvents such as methanol or acetonitrile contribute to potential
drops across the electrode-electrolyte interface. Furthermore,
organic electrolytes [52,53] and ionic liquids may induce
a typical double layer for some typical electrode-liquid
pairs.

FIG. 1. (Color online) Schematic representation of the flow
domain of the ERF contained in a narrow confinement of height
2H . The thick dotted line represents the channel centerline.
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In organic electrolyte capacitors, the interface electrolyte
bears a particular charge distribution in which the charge in
the wall and that in the diffuse region are opposite to each other.
The interfacial charge along with the diffused charge makes
up the capacitor [52,53,61]. Such regions are formed due to
specific adsorption of charged ionic species of the organic
electrolyte even when no potential is applied on an electrode.
If a particular organic electrolyte is sandwiched between two
interfaces of the same material, then an EDL formation similar
to the classical case with two walls having the same charge
may be observed. A similar scenario of EDL formation is also
found in the case of an ionic liquid-electrode interface wherein
the ionic liquid confined between two negatively charged mica
sheets induces an EDL structure [59].

Another class of liquids that exhibits the formation of an
EDL is liquid crystal in which the charge carriers are the
ions. These charge carriers can either be contained in the
liquid crystal bulk material or be generated within a liquid
crystal by the application of an electric field [62]. The EDL
formation when nonaqueous liquid crystals come in contact
with the model surface with sufficiently high densities of
sodium carboxylate salts has also been studied [63]. Thus one
can infer that the EDL structure in nonaqueous media may
indeed exist and they have been researched thoroughly in the
literature particularly in the context of supercapacitors and fuel
cells.

Given the fact that a nonaqueous solvent can induce a
surface charge due to certain physicochemical interactions
that culminate in the formation of an EDL, we next attempt
to address the question of whether these liquids can behave as
electrorheological fluids. In essence, an ERF is composed of
an organic or aqueous solvent in which a particulate medium
(for example, barium titanate oxalate) nanoparticles coated
with a very thin layer of urea molecules, in silicone oil [11]) is
distributed and the ER effect is exhibited due to the mismatch
of effective electrical permittivity between the solute and
solvent phase. Such an ER effect has been found in the
case of ionic liquids [60]. Even an organic electrolyte can
exhibit an ER effect if a particulate phase of different effective
electrical permittivity is allowed to disperse in that phase.
Furthermore, there have been studies on ERFs in which the
solvent phase of the ERF is aqueous [9] or the ER effect is water
activated [64,65]. Another class of fluids mentioned above
consists of liquid crystals, which also exhibit ER effects [66].
These liquids have an obvious advantage over other classes
of ER fluids in that it has a homogeneous structure (does
not contain suspended particles) that excludes the possibility
of agglomeration or sedimentation and thereby obviates the
obstruction of microchannels.

Based on the above considerations, it may be inferred that
studying the electrokinetics of ERFs is indeed a scientifically
relevant and technologically stimulating proposition. As a first
step towards studying the electrokinetics of ERFs, we next
investigate the transverse electric potential distribution in the
domain.

A. Transverse electric field in the EDL

The potential distribution ψ in the EDL is coupled with
the charge density distribution ρel , which is governed by the

Poisson equation, as given by [43,45]

d

dy

(
ε
dψ

dy

)
= −ρel, (1)

where ρel is the volumetric charge density ρel = zenc for the
situation where counterions are present only in the solution
(with nc being the number density of counterions that are
taken to be positive in this case) and ε is the permittivity of the
solution. The volumetric charge density in turn is given by the
Boltzmann distribution [43,45]

ρel = zen exp

(
−zeψ

kT

)
. (2)

Substitution of Eq. (2) into Eq. (1) leads to

d2ψ

dy2
= −zen

ε
exp

(
−zeψ

kT

)
. (3)

Here e is the protonic charge, z represents the valence of the
positively charged species (counterions in this case), T is the
absolute temperature, and k is the Boltzmann constant. Here
nb is the unknown bulk number density of counterions and
shall be found using the electroneutrality constraint. We solve
Eq. (3) subject to the boundary conditions y = 0 and ψ =
dψ/dy = 0. The solution is given by [67]

ψ(y) = 2kT

ze
ln

[
cos

( sy

H

)]
. (4a)

A nondimensional form of the EDL potential can be defined
as

φ̄ = ψze

kT
= 2 ln[cos(sȳ)], (4b)

where the ε parameter s = H (nz2e2 /2kT ε)1/2 is a dimen-
sionless constant, which signifies a dimensionless length on
the lines of the penetration layer. Importantly, the bulk number
density of ions n cannot be independently specified and must
be ascertained consistently with the charge density at the
substrate σw given by σw = −εdψ /dy |y=H (essentially, an
electroneutrality constraint). This in turn implicates that the
parameter s is not independent and is evaluated by enforcing
the electroneutrality boundary condition given by s tan(s) =
−(σw)zeH / 2kT ε. Typical values of various parameters ap-
pearing above are given as follows: σ ∼ 10−4C/m2, H =
10−4 m, T ∼ 300 K, n ∼ 1 mM, and ε = 10ε0. The parameter
s is analogous to the dimensionless Debye length. However,
this being a counterion-only scenario, the Debye screening
length is not exactly defined and the double layer virtually
penetrates the centerline. Thus the resulting value of the
parameter s is of order unity. The electric field that appears
due to the nonuniform distribution of the counterions is given
by

Ē2(ȳ) = −dφ̄(ȳ)

dȳ
= 2s tan(sȳ). (5)

Having obtained the transverse electric field, we next briefly
discuss the functional dependence of the constitutive behavior
on the electric field, taking into consideration that the resultant
electric field is a combined consequence of the applied
tangential electric field E1 and the induced transverse electric
field E2.
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B. Electric-field-dependent rheology: Electrorheological fluid

We first describe the general constitutive behavior of the
fluid, following [30]:

τ = −pI + α1E ⊗ E + α2D + α3D
2

+α4(DE ⊗ E + E ⊗ DE)

+α5(D2E ⊗ E + E ⊗ D2E). (6a)

Here τ is the stress tensor, I is the unitary tensor, D =
1
2 (L + LT ) is the stretching tensor defined in terms of velocity
gradient (with L = ∇u), and E is the electric-field vector.
The notation A⊗B represents the tensor product whose
components are given by AiBj with respect to the Cartesian
coordinates. The scalar p is the indeterminate pressure that
arises from the incompressibility criteria of the fluid and the
αi (where i = 1,2,. . .,5) are scalar functions of the set of
invariants

I1 = tr(E ⊗ E), I2 = tr(D2), I3 = tr(D3),
(6b)

I4 = tr(DE ⊗ E), I5 = tr(D2E ⊗ E).

Equation (6a) for the stress tensor, relating τ , D, and E, is
the most general equation and hence includes all physical
phenomena that can be predicted in a constitutive equation
of this type involving the electric field. The scalar functions
αi are material properties of the fluid that can be determined
by experimental work or by employing computer simulations
at the microlevel. In essence, Eq. (6) relates the electric-
field vector and deformation tensor to the stress tensor in a
very generic manner. The above modeling incorporates the
observed transient and viscoelastic effects of ER fluids and can
predict the solid to fluid transition in response to electric fields.
However, a more specific phenomenological relation needs
to be adopted for the present scenario, which can properly
reflect and predict the rheological behavior that is generally
encountered in the pertinent flow conditions.

Towards the above, we first consider a fully developed flow
in the x-y plane. The electric-field vector is given by E =
E1e1 + E2e2 and the velocity profile is given by u = u(x2)ê1,
where ê1 is directed along x and ê2 is directed along y. The
flow is considered to be incompressible with tr(D) = 0. The
stress tensor [from Eq. (6)] is written as

τij = −pδij + α1EiEj + α2Dij + α3DikDkj

+α4(DikEkEj + EiDjkEk)

+α5(DikDkmEmEj + EiDjkDkmEm), (6c)

where the invariants have the form

I1 = EiEi, I2 = DijDji, I3 = DijDjkDki,
(6d)

I4 = DijEjEi, I5 = DijDjiEiEj

and (i,j ) ∈ (1,2). For the present case with the electric-field
vector E = E1e1 + E2e2 and velocity vector u = u(x2)ê1,
Eq. (6a) reduces to

τ11 = −p + α1E
2
1 + α4E1E2

du

dy
+

(α3

4
+ α5

2
E2

1

) (
du

dy

)2

,

(7)

τ22 = −p + α1E
2
2 + α4E1E2

du

dy
+

(α3

4
+ α5

2
E2

2

) (
du

dy

)2

,

(8)

τ12 =
[
α1 + α5

2

(
du

dy

)2
]

E1E2

+ 1

2

[
α2 + α4

(
E2

1 + E2
2

)]du

dy
. (9a)

Let E0 and θ denote the magnitude of the resultant electric
field and its angle with the velocity u, respectively. Then E1 =
E0 cos θ and E2 = E0 sin θ and the shear stress tensor has the
form

τ12 = 1

4

[
2α1 + α5

(
du

dy

)2
]

E2
0 sin 2θ

+ 1

2

[
α2 + α4

(
E2

0

)] du

dy
, (9b)

where the invariants are given by

I1 = E2
0 , I2 = (du/dy)2

2
, I3 = 0,

I4 = (du/dy)E2
0 sin(2θ )

2
, I5 = (du/dy)2E2

0

4
and αi as a function of the invariants has the form

αi(I1,I2,I3,I4,I5) = αi

(
E2

0 ,
(du/dy)2

2
,0,

× (du/dy)E2
0 sin(2θ )

2
,
(du/dy)2E2

0

4

)
.

Effectively, the shear stress τ12 can be rewritten in the reduced
form as

τ12 = α′E1E2 + μ′
[
E2

0 ,

(
du

dy

)2
]

du

dy
, (9c)

where μ′ is the effective viscosity, α′ is a constant, E1 =
E0 cos θ , and E2 = E0 sin θ .

Investigating Eq. (9b), it is apparent from the first term
that an electrorheological body force is induced in the fluid
in the longitudinal direction due to the spontaneously induced
transverse electric field that suggests that a nonzero shear rate is
experienced even when no shear stress is imposed externally. It
is also seen that the reversal of flow affects only the invariant I4

while other invariants remain unaltered, as seen from Eq. (9b).
Since the shear stress term τ12 is not an odd function of du/dy,
τ12 is not fully dependent on the direction of the flow. This
situation would not have arisen if E1 were zero. In addition,
if the direction of E is reversed keeping E0 unaffected while
θ → θ + π , it is seen clearly from Eqs. (9a)–(9c) that the
stresses remain unaltered. It has also been seen from various
experimental and phenomenological advances that the resistive
yield stress for ERFs generally varies as the square of the
electric field only [68–71]. Thus a form of Eq. (9c) is chosen
that satisfies the limiting condition that in the case when E1

is zero, the governing equation must be consistent with the
constitutive behavior as described by the Bingham model.
These considerations are significant in the development of
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the modified Bingham equation by Ceccio and Wineman [31],
which then appears in the form

τ12 = δE2
0 sin 2θ +

⎡
⎣μ + τeB̂√

1 + (
B̂ du

dy

)2

⎤
⎦ du

dy
. (10)

Here δ and B̂ are material constants, μ is the apparent
dynamic viscosity, and τe is the yield stress for the modified
Bingham model fluid and is also assumed to depend on the
electric field as τe = aE2

0 [68–70], a being a constant. We
have assumed that the apparent viscosity remains constant
when there is a component of the electric field along the
flow [72]. From Eq. (10) it can be seen that as du/dy increases,
the stress term reaches an asymptote τe + μ(du/dy), which
represents the Bingham model. The parameter B̂ represents
how rapidly the asymptote is reached as du/dy is increased.
Physically, the parameter B̂ reflects the chaining mechanism
in the fluid domain and its influence on the strain rate. The
chaining process is governed by the induced polarization
within the solute particles and it occurs due to the mismatch
in the effective permittivity between the continuous phase and
the solute particles. The strength of the columnlike chains
formed in the fluid depends on the magnitude of the electric
field present. The strength of the structures to resist a shear
deformation is quantified through the yield stress, which varies
as the square of the magnitude of the electric field. However,
the calculated yield stress does not completely obstruct the
shearing process since there is a component of the electric
field in the flow direction, so the value of B̂ determines the
fraction of the yield stress that actually, in action, has an
adverse effect on the flow. If, however, the value of B̂ is
kept constant along the transverse region, an increase in the
applied field E1 increases the yield stress, thereby decreasing
the velocity, and this gets magnified further as the applied field
increases. Further, in practice, an increase in the axial field
will have an orientation dominant in the axial direction and
thus the flow will experience a reduced obstruction in shear
deformation, resulting in a higher velocity. The formulation
must reflect this feature through the parameter B̂, which varies
as E2/E1. Referring to the form of B̂ [31], we incorporate
the variation in B̂ as B̂ = B tan θ . This expression takes care
of two important limitations. The first is that when the two
fields are of similar order, the value of B = 0.15 (as used
in [31]) remains the same since tan θ → 1. Second, when

E1 → 0,
√

1 + [B̂(du/dy)]2 → B̂(du/dy); thus the yield
stress term tends to τe. This reduces the shear stress term
τ12 = τe + μ(du/dy), which represents the classical Bingham
model, thus satisfying the above limiting condition.

Next we describe the fluid flow in the x direction, which
is governed by the equation (Cauchy-Navier equation) given
by [44]

0 = ∂τ11

∂x
+ ∂τ12

∂y
+ ρelE1. (11)

In the absence of an external applied pressure gradient
(∂p/∂x = 0), Eq. (11) reduces to

∂τ12

∂y
= −ρelE1. (12)

We then integrate Eq. (12) by imposing the centerline
symmetry condition and making use of Eq. (10) to obtain
the velocity field as

−εE1E2 = δE2
0 sin 2θ +

⎡
⎣μ + τeB̂√

1 + (
B̂ du

dy

)2

⎤
⎦ du

dy
. (13)

Using trigonometric identities it can be shown δE2
0 sin 2θ =

2δE1E2. Therefore, upon substituting β = 2δ + ε, Eq. (13) is
recast to form the governing equation as

0 = βE1E2 + μ
du

dy
+ τeB̂√

1 + (
B̂ du

dy

)2

du

dy
. (14)

Equation (14) is subjected to the no-slip boundary condition
at the channel walls. It is also interesting to mention that when
δ ∼ ε, the shear developed due to the electrorheological effect
in the presence of the two mutually orthogonal fields is of the
same order as the shear developed due to the electro-osmotic
effects. However, if δ � ε, electro-osmotic forces are more
significant over electrorheologically induced shear. For the
present study, we assume δ ∼ ε, which is close to the value of
δ as chosen by Ciecco and Wineman [31].

It needs to be noted here that the above formulation
applies to a steady flow scenario, wherein a postbreakage
steady structure of the columns is established. Without any
flow-actuating axial electric field, columns are established
due to the transverse field and their sizes are comparable
to the characteristic length scale of the EDL. However, as a
consequence of shear in the flow due to the interaction between
the applied axial electric field and the induced transverse
electric field, the columnar structures tend to break and attempt
to align in the direction of the channel axis. The resultant
broken fragments get advected with the flow, whereas the few
small stronger columns stick near the electrodes and give rise
to the yieldlike property for the ERF. This trend is observed
in experimental results [12] as well as simulations on ER
fluids [29] with high particle concentration at the electrode
walls. In the present scenario, we neglect the initial transients
and assume that under a combined action of the axial and
transverse electric fields, the columns no longer run from
electrode to electrode but are mostly broken due to the flow
conditions and are thus quite small in size as compared to the
EDL length scale under steady state.

C. Scaling analysis: Three regimes

In this section we identify three scaling regimes for the
electro-osmotic flow of electrorheological fluids. We begin
with our analysis by first referring to Eq. (14), in which the
order magnitude of the first term (term 1) on the right-hand side
is βE1E2m, that of the second term (term 2) on the right-hand
side is μU/H , and that of the third term (term 3) on the
right-hand side is BaE2

1U/H , where E2m = −σw/ε is the
order of magnitude of the maximum transverse electric field
and U is the characteristic velocity.

We first consider a case in which the directions of particle
chains are predominantly present parallel to the wall of the
conduit. As a result, a low magnitude of yield stress occurs
that contributes to the flow resistance as opposed to the
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viscous resistance of the continuous phase. Mathematically,
this corresponds to a low value of the ratio E2m/E1 at the
wall, resulting in a low value of tan θ . Thus, for the case when
the axially applied field is much larger than the transverse
electric field, term 1 scales with term 2. Equating the order
of both these terms, we arrive at the velocity scale that has
the order of magnitude Uref,1 ∼ βE1E2mH/μ. Here Uref,1 is
the velocity scale for the case when E1 � E2m, i.e., when the
hydrodynamic forces are dominant over the rheological effects
due to very low transverse electric field. The velocity scale in
this regime resembles the Helmholtz-Smoluchowski velocity
scale of electro-osmotic flows of Newtonian fluids.

In the second regime, both the axial and transverse electric
fields are of the same order of magnitude E2m ∼ E1. Over this
regime, the order of magnitude of term 3 is BaE2

1U/H as
the yield stress has an order of magnitude τe ∼ aE2

1 (noting
that E1 ∼ E2). In this scaling regime, the yield stress term
has a profound effect on the maximum velocity as compared
to the viscous effects. In this scenario, term 1 represents
the forcing function that drives the flow, whereas the yield
stresses, described by term 3, seek to obstruct the shear of
the fluid medium. Through this reasoning, term 1 scales with
term 3 in this particular case. Equating the order of both of
these terms, it is seen that the velocity scales as Uref,2 ∼
βE1E2mH/BaE2

1 . Here Uref,2 represents the velocity scale
for the first regime, i.e., E2m ∼ E1. For further assessment of
the implication of this scenario, we appeal to Eq. (14) with the
following nondimensional terms:ȳ = y /H , Ē1 = E1 /Eref,1,
−dφ̄ /dȳ = E2 /Eref,2, and ū = u/Uref . Here the reference
transverse electric field Eref,2 is taken to be E2m. Writing
β = (2δ+), we have the following nondimensional form of
Eq. (14):

0 = −Ē1
dφ̄

dȳ
+ μ

η

dū

dȳ

+

⎡
⎢⎢⎣ tan θ dū

dȳ√
1 +

(
κ tan θ dū

dȳ

)2

(
Ē2

1 +
(

E2
2m

E2
ref,1

Ē2
2

))⎤
⎥⎥⎦ ,

where

Uref,2 = HβEref,1E2m

BaE2
ref,1

.

We choose Eref,1 = ϕ/L and E2m = −σw/ε so that the
nondimensional parameters appearing in the above are related
as μ/η = μ/BaE2

ref,1 and κ = βEref,1E2m /aE2
ref,1, with ϕ

being the applied potential across the axial length of the
channel and L the length of the channel under consideration.
The parametric term μ/η resembles the dimensionless Mason
number for electrorheological flows [7,9], which reflects a
comparative influence of the hydrodynamic viscous forces on
the fluid motion relative to the adverse effect of the yield stress
due to the polarization forces on the electro-osmotic flow.
Importantly, the modified Bingham model tends to the pure
Bingham model as the shear rate increases, as discussed above.
The modified Mason number parameter μ/η determines how
rapidly μ/η approaches the form of pure Bingham flow model.
The parameter κ is effectively the electric driving influence
behind fluid flow and is the ratio of the electric actuation force

to the critical Bingham yield stress due to the polarization
force. This parameter signifies the relative importance of
the intrinsic coupling in the electric field, which influences
the forcing term as well as the rheological response of the
fluid.

A third regime may be identified with the axially applied
electric field being much lower than the spontaneously induced
transverse field. This is a particular case when the forcing effect
on the flow is highly resisted by the high yield stress manifested
due to the existence of a relatively strong transverse field
and the axial driving force can hardly overcome the effect.
However, this effect is felt primarily near the confinement
boundary, where the field is comparatively higher because
of the high wall charge density and consequently a higher
concentration of counterions near the wall. Apart from this
region of high interaction between the transverse induced field
and the axially applied field, the rest of the fluid is driven
mainly by the viscous effect and any change in the liquid
viscosity is manifested by a change in the maximum velocity.
For the third regime, when E2m � E1, two regions based on
the particle chain strength and direction can be conceptualized.
One region spans near the channel substrate where the yield
stress is considerably high due to strong chainlike structure
formation attached perpendicular to the wall (characterized
by a high shear rate and low flow rate). The onset of bulk
flow occurs in the domain in the second region, where the
electrokinetic force overcomes the adverse yield stress of
the fluid as manifested by the chainlike formation and the
particulate chains tend to rearrange towards the shearing
direction. Thus, in the region of bulk flow, we conclude
that the expression B̂(du/dy) in the denominator of term
3 must be of order unity or less so that the basic flow
physics of the ERF remains consistent with the mathematical
formulation throughout the flow domain. In other words, the
expression B̂(du/dy) should not, anywhere in the domain
of flow, be unnecessarily large so that the strain rate term
du/dy gets canceled out of term 3, thereby altering the basic
form of the equation as developed in [31]. This results in a
scenario in which the reference velocity in the bulk is of the
order of

Uref ∼ H

B
∼ HaE2

1

μ

μ

η
.

Characteristics of this regime include a low axial electric
field (signifying lower force of actuation) and a high induced
transverse field (resulting in a strong adverse yield stress
effect).

III. RESULTS AND DISCUSSION

The central focus of this work is to highlight the nonlinear
interplay of the electric-field-dependent fluid rheology for the
electrorheological fluids and the applied electric field. The
confluence of these two physical phenomena ranging over
the three different scaling regimes is explored to highlight
the markedly different physics. In the ensuing analysis we
consider physically consistent values from those reported in
literature. For illustration we consider an electrorheological
fluid having the variation of yield stress as τe = 87.4E2

0
Pa (kV mm−2), while the viscosity is taken as 0.5 Pa s [69,72].
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FIG. 2. (Color online) Variation of the induced electric field
across the dimensionless channel height for different values of the
nondimensional parameter s = 0.8, 1.3, and 1.5. The inset depicts the
spatial variation of the potential for the parameter s mentioned above.

Before analyzing the electro-osmosis of ERFs, we first
study the effect of the surface charge density and the induced
transverse electric field. In Fig. 2 we plot the spatial variation
of the transverse electric field for different values of the
dimensionless characteristic length s. We reiterate the fact
that for the case where only counterions are present in the
bulk solution, the surface charge density and the dimensionless
length are related by the electroneutrality condition given as

s tan(s) = −(σw)zeH

2kT ε
.

The inset in Fig. 2 depicts the variation of the potential across
the channel due to the charge density at the wall.

A higher value of the parameter s is a direct manifestation
of a higher surface charge density. It is observed that for an
increase in the value of the dimensionless parameter s, there
is an increase in the electric field especially near the walls.
From the inset we observe that the potential profile tends to
become flatter near the wall as the magnitude of s increases.
Thus the strength of the electric field is higher for a high value
of the parameter s. For a high wall charge density (or higher
s), the counterions exhibit a denser concentration near the wall
due to stronger electrostatic interaction. A higher electric field
thus leads to a twofold effect on the dynamics of fluid flow,
the first being an increase in the electric body force in the
longitudinal direction and the second being a local increase in
the apparent fluid viscosity that, in the case of ERFs, depends
on the electric field. On the contrary, with reduced wall charge
densities, the counterions are distributed effectively all across
the channel height with a decrease in concentration towards
the central axis.

We next obtain a numerical solution for the flow field as
governed by Eq. (14). Towards that, we nondimensionalize
Eq. (14) using the following parameters:

ȳ = y

H
, Ē1 = E1

Eref,1
, − dφ̄

dȳ
= E2

Eref,2
, ū = u

Uref
,

FIG. 3. (Color online) Comparison of the numerical solutions for
different modified Mason numbers with the corresponding scaling
analysis. Dashed lines represent the data from the numerical solution,
whereas the lines with markers represent the scaling predictions.

where

Uref ∼ Uref,2 = HβEref,1E2m

BaE2
ref,1

,

Eref,1 = ϕ

L
, Eref,2 = E2m ∼ −σw

ε
.

It is important to note that all the above-mentioned reference
values correspond to the velocity scaling realized over the
regime for which E1 ∼ E2m. This leads to the following
normalized form of Eq. (14):

0 = −Ē1
dφ̄

dȳ
+ μ

η

dū

dȳ

+

⎡
⎢⎢⎣ tan θ dū

dȳ√
1 +

(
κ tan θ dū

dȳ

)2

[
Ē2

1 +
(

E2
2m

E2
ref,1

Ē2
2

)]⎤
⎥⎥⎦ .

In Fig. 3 the lines plotted without markers represent the
numerical solution of the normalized maximum velocity
Umax = umax/Uref,2, where umax is the maximum value of
the flow velocity attained for a given value of E2m/E1. The
lines with markers resemble the relative velocity scale of the
three scaling regimes. From the figure it is apparent that the
numerical solution corroborates the predictions from scaling
analysis. From Fig. 3 it is apparent that when E2m ∼ E1,
Umax ∼ 1. In contrast, when E2m � E1,

Umax ∼ Uref,1

Uref,2
= BaE2

1

μ
,

which is in accordance with the scaling predictions described
earlier. Analogously, for the regime E2m � E1, we have

Umax ∼ Uref,3

Uref,2
= E1

E2m

,

which corroborates the corresponding scaling predictions as
well. The variation of the velocity scales with the modified
Mason number parameter μ/η is also depicted in Fig. 3.
Notably, over the region E2m � E1, the value of Umax turns
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FIG. 4. (Color online) Variation in the nondimensional flow
velocity as a function of the nondimensional height for different
values of the ratio E2m/E1 (which also changes the dimensionless
parameter κ). The corresponding κ values for increasing E2m/E1

ratio are κ = 0.0035, κ = 0.35, and κ = 350.

out to be independent of the ratio μ/η, unlike the physical
behavior manifested over the other two regimes.

We now proceed to plot the velocity profiles for the three
different regimes to highlight that not only does the velocity
scale change, but the velocity profile also is significantly
altered. In Fig. 4 we plot the velocity profiles for the three
cases of E1 ∼ E2, E1 � E2, and E1 � E2.

Figure 4 depicts the variation in the nondimensional flow
velocity with nondimensional height for different values of
the nondimensional ratio E2m/E1. An increase in the nondi-
mensional parameter κ implicates the effective dominance of
the body force contribution on the actuation of the fluid flow
over the yield stress resistance obstructing the flow. Thus the
resultant effect on the velocity profiles, due to a combined
consequence of the above two influences, is manifested in the
increase in flow velocity. In the regime where the induced
transverse electric field is much larger than the applied axial
electric field, we note that the profile tends to that of a
Bingham-like fluid. This feature is dependent on the parameter
κ (or, in other words, on the ratio E2m/E1). Thus, with a high
κ value, signifying a higher induced field compared to the
applied axial field, a Bingham-like plug profile is obtained,
while with a very low value of κ , the profile tends to conform
to a Poiseuille-like profile. Further, the nature of the velocity
profile for a large value of E2m/E1 [see Fig. 4(b)] is consistent
with the physical interpretation that as the induced field is
increased, the yielding resistance increases, which tends to
flatten the shape of the velocity profile. In addition, with
a high induced transverse electric field, the counterions are
concentrated near the confinement boundaries. Accordingly,
the rheological variations are largely limited near the wall,

inducing an apparent plug flow zone. Unlike Newtonian flows,
for the ERFs, there is a nontrivial interplay between the electric
body force, the polarization body force, and the adverse yield
stress, leading to an intricate physics in the regime where
the transverse field has its influence. As a consequence, for
a high induced transverse field, the zone where the interplay
is realized is restricted to a narrow region near the wall. The
rest of the flow is driven solely due to the flow viscosity, thus
leading to a pluglike zone. In contrast, with two components
of field having similar order E2m ∼ E1, the zone where the
interplay mentioned above takes place spans the larger depth
of the channel, thus leading to a Poiseuille-like profile. Thus
this distribution of the electric field plays a pivotal role in
dictating the flow behaviors as corroborated by the scaling
analysis as well.

IV. CONCLUSION

In order to establish the implications of the nonlinear
coupling between electrokinetic transport and electric-field-
dependent rheology, we have considered three physically
distinct regimes that demarcate the electrorheological fluids
from the field-independent non-Newtonian (Bingham) and
Newtonian fluids. Through a rigorous mathematical formalism
we demonstrate that for a vanishingly small induced transverse
electric field (i.e., for very low surface charge density) in the
presence of a weak applied field, we observe physical behavior
that mimics electro-osmotic transport of Newtonian fluids.
We further analyze the case when E2m ∼ E1 and capture the
difference in the flow profile obtained for that case as compared
to that obtained for Newtonian fluids. We also show that when
E2m � E1, the flow profile tends to have an apparent pluglike
shape.

Inferences drawn from the present work may act as valuable
pointers towards designing experiments to capture the complex
interactions between electrorheology and electro-osmosis. By
manipulating the applied and/or induced electric field, one may
effectively modulate electro-osmotic transport by exploiting
electrorheological phenomena, which can be employed in a
wide range of applications such as microfluidic valves and
dampers. Exploiting the variations in the flow profile as
seen from the three scaling regimes, we may also control
the dispersion of neutral species in the flow. A plug profile
obtained in the case of a relatively large transverse electric
field leads to a lower solute dispersion as compared to
the other cases where the profile is nonuniform in nature.
By dynamically manipulating the electric fields, one may
achieve on-the-fly control of dispersion, which has tremendous
potential in lab-on-a-chip applications. Thus electro-osmosis
of electrorheological fluid provides exciting prospects for
designing futuristic microfluidic and nanofluidic devices with
precise and highly maneuverable flow control characteristics.
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