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Recent studies have established that, in addition to the well-known kicked-Harper model (KHM), an on-
resonance double-kicked rotor (ORDKR) model also has Hofstadter’s butterfly Floquet spectrum, with strong
resemblance to the standard Hofstadter spectrum that is a paradigm in studies of the integer quantum Hall effect.
Earlier it was shown that the quasienergy spectra of these two dynamical models (i) can exactly overlap with each
other if an effective Planck constant takes irrational multiples of 2π and (ii) will be different if the same parameter
takes rational multiples of 2π . This work makes detailed comparisons between these two models, with an effective
Planck constant given by 2πM/N , where M and N are coprime and odd integers. It is found that the ORDKR
spectrum (with two periodic kicking sequences having the same kick strength) has one flat band and N − 1 nonflat
bands with the largest bandwidth decaying in a power law as ∼KN+2, where K is a kick strength parameter.
The existence of a flat band is strictly proven and the power-law scaling, numerically checked for a number of
cases, is also analytically proven for a three-band case. By contrast, the KHM does not have any flat band and its
bandwidths scale linearly with K . This is shown to result in dramatic differences in dynamical behavior, such as
transient (but extremely long) dynamical localization in ORDKR, which is absent in the KHM. Finally, we show
that despite these differences, there exist simple extensions of the KHM and ORDKR model (upon introducing
an additional periodic phase parameter) such that the resulting extended KHM and ORDKR model are actually
topologically equivalent, i.e., they yield exactly the same Floquet-band Chern numbers and display topological
phase transitions at the same kick strengths. A theoretical derivation of this topological equivalence is provided.
These results are also of interest to our current understanding of quantum-classical correspondence considering
that the KHM and ORDKR model have exactly the same classical limit after a simple canonical transformation.
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I. INTRODUCTION

As one important paradigm in the studies of quantum
chaos and quantum-classical correspondence, the kicked-rotor
(KR) model [1] has received tremendous theoretical and
experimental interest in the past three decades [1,2]. For some
experimental activities on the KR model within the past three
years, we would like to mention those listed in Ref. [3]. A
one-dimensional KR is described by the Hamiltonian

HKR = p2/2 + K cos(q)
∑

n

δ(t − nT ) (1)

in terms of dimensionless variables, where p and q are
conjugate (angular) momentum and angle variables, K and
T are the kick strength and the period of the δ kicks. The
dynamical evolution of the system for a period from time
nT + 0− to (n + 1)T + 0− can be expressed as a quantum
map, which is given by the unitary Floquet operator

UKR = e−iT (p2/2h̄)e−i(K/h̄) cos(q). (2)

For our considerations below, we confine ourselves to a rotor
Hilbert space defined by the periodic boundary condition in q,
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with q ∈ [0,2π ). The Hilbert space can then be represented
by the eigenfunctions {|m〉} of p, with p|m〉 = mh̄|m〉,
〈q|m〉 = exp(imq)/

√
2π , m being an integer, and h̄ being a

dimensionless effective Planck constant. Through extensive
numerical simulations and mathematical analysis, it is now
well known that in general the KR dynamics can be classified
into two categories [2]. For an irrational (hence generic) value
of T h̄/2π the system can diffuse in (angular) momentum space
only for a short time due to dynamical localization, regardless
of the kick strength. This hints at a discrete spectrum of UKR

and is closely related to Anderson localization [4]. In contrast,
for T h̄/2π being a rational multiple of 2π (except for odd
multiples of 2π ), UKR has continuous bands: A time-evolving
state would keep spreading out in (angular) momentum space
ballistically. This category of dynamics is called quantum
resonance [5].

Another important quantum chaos model is the kicked-
Harper model (KHM) [6–8], originally introduced in Ref. [9]
as an approximation of the problem of kicked charges in a
magnetic field. Remarkably, the KHM and even a whole class
of its generalized versions were shown to be equivalent to the
problem of a charge kicked periodically in the presence of a
magnetic field [10]. The associated KHM quantum map for
each period is given by

UKHM = e−i(L/h̄) cos(p)e−i(K/h̄) cos(q), (3)
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with L being an additional system parameter. Throughout we
assume that the KHM is also treated in the same Hilbert
space as the KR model and is quantized on a rotor Hilbert
space. The dynamics of the KHM differs from that of the KR
model as described above in several aspects. For example,
for all irrational values of h̄/2π , the system in general tends
to delocalize (localize) in (angular) momentum space for
K > L (K < L) [8]. Of particular interest is the symmetric
case of K = L, for which the quasienergy spectrum of UKHM

is fractal-like in general. Scanning the spectrum collectively
for fixed K/h̄ = L/h̄ versus a varying h̄ forms a pattern that
resembles the Hofstadter butterfly spectrum [11], a paradigm
in studies of the integer quantum Hall effect. The associated
dynamics is extended in general and may be connected with
the fractal dimensions of the Floquet spectrum.

Given the above-mentioned differences between the KR
model and the KHM, the work of Ref. [12] by two of the
authors emerged somewhat unexpectedly. There it was shown
that a variant of the KR model also has Hofstadter’s butter-
fly spectrum. In particular, motivated by the double-kicked
rotor model studied both experimentally and theoretically in
Ref. [13], which is a special case of multiple-kicked rotors
first introduced in Ref. [14], Ref. [12] studied a double-kicked
rotor model under a quantum-resonance condition. For a total
period of τ (τ > 1), a double-kicked rotor model is associated
with two periodic δ kicks of strengths K and L, separated by
a time interval set to unity, yielding the Floquet operator

UDKR = e−i(τ−1)(p2/2h̄)e−i(K/h̄) cos(q)e−i(p2/2h̄)e−i(L/h̄) cos(q).

(4)

In Ref. [12], τ is chosen to satisfy the quantum-resonance con-
dition τh̄ = 4π . Then e−iτ (p2/2h̄) = 1 due to the discreteness of
the momentum eigenvalues. This leads us to an on-resonance
double-kicked rotor (ORDKR) model, whose Floquet operator
is given by [15]

UORDKR = ei(p2/2h̄)e−i(K/h̄) cos(q)e−i(p2/2h̄)e−i(L/h̄) cos(q). (5)

Note that we have deliberately used the symbols K and
L in both UKHM and UORDKR because in this paper, the
parameter K or parameter L from both models will always
be assigned the same value. Experimental realization of such
an ORDKR propagator in atom optics is possible by loading
a Bose-Einstein condensate (BEC) in a kicking optical lattice,
with the initial quasimomentum spread of the BEC negligibly
small as compared with the recoil momentum of the optical
lattice [16]. Interestingly, for h̄ being an irrational multiple
of 2π , the ORDKR model and the KHM share the same
quasienergy spectrum [17,18].

Our main plan for this paper is to make some detailed
comparisons between the KHM and the ORDKR model as
two closely related dynamical models, both possessing Hof-
stadter’s butterfly spectrum. Our motivations are as follows.
First of all, in Refs. [12,17] it was shown that UORDKR and
UKHM have different spectra if h̄ is a rational multiple of
2π . In contrast, as h̄/2π approaches an arbitrary irrational
number, the spectral difference between UORDKR and UKHM,
which is characterized by a Hausdorff metric in Ref. [17],
is shown to approach zero. It is therefore highly worthwhile
looking into the actual spectral differences for rational values

of h̄/2π because, up to a classical canonical transformation,
the ORDKR model and the KHM have exactly the same clas-
sical limit [19] (obtained by letting h̄ approach zero while
fixing K/h̄ and L/h̄). Indeed, given their equivalence in the
classical limit, the spectral differences we analyze constitute
beautiful examples to illustrate how quantization of classically
equivalent systems may lead to remarkable system-specific
consequences. Second, by working on the details we hope to
find some clues as to why the dynamics of the ORDKR model
can be so different from that of the KHM. We indeed succeed
in doing this, finding that even on a qualitative level, the
Floquet bands of the ORDKR model behave much differently
from that of the KHM, for h̄ = 2πM/N , with M and N

being coprime and both odd. In particular, we shall prove the
existence of a flat Floquet band [14,20] for the ORDKR model
with K = L, which may be of interest to current studies of
strongly correlated condensed-matter systems with an almost
flat energy band [21]. The existence of a flat Floquet band
has been shown elsewhere to be important in explaining the
intriguing exponential quantum spreading dynamics in the
ORDKR model [22,23]. Third, motivated by recent interests
in topological characterization of periodically driven systems
[24,25] and given the interesting relationship of the two
models described previously, we ask whether, after all, the
ORDKR model and the KHM have any interesting topological
connections. Based on our numerical and analytical studies,
the answer is that they do and we shall claim that the ORDKR
model and the KHM are topologically equivalent in the sense
that their extended Floquet bands (obtained upon introducing
a phase shift parameter defined in Sec. III) always have the
same band Chern numbers.

This paper is organized in the following order. In Sec. II
we present detailed results regarding a spectral comparison
between the KHM and the ORDKR model, for K = L

and h̄ = 2πM/N with M and N being coprime and odd
integers. Numerical findings will be described first, followed
by analytical considerations when possible (e.g., bandwidth
scaling for a three-band case and the general proof of a flat band
for ORDKR). The implications of peculiar spectral properties
of the ORDKR model for its dynamics are also discussed
via some numerical studies. In Sec. III we study the KHM
and the ORDKR model by extending them to accommodate a
different periodic parameter and demonstrating the topological
equivalence of the resulting extended models. Section IV
summarizes this paper.

II. SPECTRAL DIFFERENCES AND THEIR
DYNAMICAL IMPLICATIONS

A. Summary of main numerical findings

As far as numerics are concerned, the spectrum of the
unitary operators can be obtained in a straightforward manner.
For completeness we describe some details here. The key
step is to take advantage of the periodic property of UKHM

or UORDKR in the (angular) momentum space, which arises
naturally for h̄ being a rational multiple of 2π . We denote
by U either UKHM or UORDKR. Letting Uj,k ≡ 〈j |U |k〉, one
easily finds Uj+N,k+N = Uj,k for h̄ = 2πM/N . This indicates
a unit cell in (angular) momentum space, with a size of
N . The spectrum is then equivalent to that of a reduced
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FIG. 1. Quasienergy bands versus the kick strength K = L for an
effective Planck constant h̄ = 2πM/N , with M = 1 and N = 9, for
(a) the ORDKR model and (b) the KHM. Note that for the ORDKR
model, there is a straight line lying in the middle of the spectrum,
indicating the existence of a flat band. Here and in all other figures,
all plotted quantities are in dimensionless units.

N × N matrix Ũ (ϕ), whose elements are given by [Ũ (ϕ)]j,k =∑
l e

ilϕUj,k+lN , with ϕ ∈ [0,2π ) being the Bloch phase in
momentum space and l running over all integers, note that
this Bloch phase convention has a sign difference from
that used in Ref. [23]. As off-diagonal elements of Uj,k

decay exponentially, the summation in
∑

l e
ilϕUj,k+lN can

be truncated safely at a certain large enough value of |l| (in
our analytical studies below, we do not do such truncations).
Numerical results are then checked by further increasing the
truncation radius. Once Ũ (ϕ) is numerically obtained, the
standard diagonalization algorithm for a unitary matrix can
be exploited to obtain N values of quasienergy ε. By varying
ϕ in [0,2π ) we have N Floquet bands.

In Fig. 1 we show our obtained quasienergy values of
UORDKR and UKHM as functions of the kick strength K . Though
for each fixed value of K we only show the quasienergy values
for a limited number of Bloch phase choices, the locations of
the bands, the band width, and a few avoided band crossings
can already be seen clearly for not too large values of K = L.
In particular, at N = 9, nice Floquet bands can be identified
clearly for both the ORDKR model and the KHM, though for
very large values of K the merging of the bands does occur.

Spectral differences between UORDKR and UKHM in the
shown example are also obvious. Based on the results shown in
Fig. 1, we have carried out extensive numerical investigations
for other cases with h̄ = 2πM/N , with M and N coprime

and both odd. Some of the main features are presented and
commented on below.

First, the band structure of UORDKR is symmetric with
respect to the zero quasienergy axis, which is, however, not
the case for UKHM. This interesting symmetry is absent in both
UKHM and UKR. We shall prove this property below.

Second, consistent with the above-mentioned symmetry,
UORDKR is seen to have a flat band with ε = 0. By flat
band we mean that this quasienergy value is independent
of the Bloch phase ϕ. So the overall picture is that the N

bands can be classified into (N − 1)/2 pairs, with each pair
having opposite quasienergy values, plus a flat band in the
middle. Again, this is not the case for UKHM. The existence
of a flat Floquet band was previously observed in studies of
the quantum-antiresonance phenomenon in kicked systems
[14,20]. However, unless in the case of N = 1 (M odd) that
also corresponds to a quantum-antiresonance condition, here
the flat band of UORDKR coexists with other nonflat bands.
This coexistence of a flat band with nonflat bands constitutes
an interesting feature. As a side note, Ref. [26] suggested that
for a KR defined in this paper under the quantum-resonance
condition of any order (i.e., T h̄ = 4πM/N , with M and N

arbitrary coprime integers), none of the Floquet bands of UKR

is flat. So the existence of one single flat band of UORDKR is
also remarkable as compared with UKR.

Third, the largest bandwidth of the other N − 1 nonflat
Floquet bands of the ORDKR model scales with K as ∼KN+2,
in the limit of K → 0. In sharp contrast, the bandwidths of
the KHM scale with K linearly. Representative numerical
results are shown in Fig. 2, where the bandwidth of the widest
band is plotted against small values of K , for h̄ = 2πM/N ,
with M = 1 and N = 3,5,7,9. The power-law decay of the
ORDKR model bandwidth in the form of ∼KN+2 can be
clearly identified, whereas the bandwidth of the KHM remains
a linear function of K , irrespective of the value of N . This
being the case, in the small-K regime (K 	 1), the maximum
bandwidth of the ORDKR model is KN+1 times narrower than
that of the KHM.

B. Flat band and band symmetry in the ORDKR model

Flat bands in solid-state systems are of vast interest in
condensed-matter physics because they offer new opportu-
nities for understanding strongly correlated systems without
Landau levels. For this reason the existence of a flat band
in a periodically driven system can be useful too. To further
understand the flat band of the ORDKR model, we present a
theoretical proof in this section. In doing so we shall also prove
the band symmetry noted above. We shall also discuss how an
eigenstate on a flat band, which is infinitely degenerate, may
be numerically found.

For h̄ = 2πM/N with M and N being coprime integers,
the spectrum becomes that of a reduced N × N Floquet matrix
with elements

[ŨORDKR(ϕ)]n,m =
∞∑

l=−∞
〈n|ÛORDKR|m + l × N〉eilϕ.

After performing some necessary integrals and using the fact
that both M and N are odd, one can express [ŨORDKR(ϕ)]n,m

as a summation of finite terms (see Appendix A for
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FIG. 2. (Color online) Bandwidth of the widest band, denoted
by Wmax, as a function of the kick strength parameter K = L for
(a) the ORDKR model and (b) the KHM. In both panels, the effective
Planck constant h̄ = 2πM/N , with M = 1 and N = 3, 5, 7, and 9,
respectively. In the former case Wmax ∼ KN+2 as K → 0, but in the
latter case it always scales linearly with K .

details). In the following discussions regarding the existence
of a flat band and the band inversion symmetry, we shall
restrict ourselves to the cases of K = L (note, however,
that in the next section the notation introduced here will
be extended to the cases with K �= L). We first introduce
diagonal unitary matrices Dϕ , D1, and DK and unitary matrix
F , with matrix elements (Dϕ)n,m = e−in(ϕ/N)δn,m, (D1)n,m =
ei[(2π−h̄)/2]n2

δn,m, (DK )n,m = e−i(K/h̄) cos[(2π/N)n−(ϕ/N)]δn,m, and
Fm,n = 1√

N
ei(2π/N)mn, where indices m and n take values

0,1, . . . ,N − 1. Note that in obtaining our expression for D1,
we made use of the fact that ein2π = einπ . We then have the
following compact form for the reduced Floquet matrix:

ŨORDKR(ϕ) = D†
ϕD

†
1F

†D†
KFD1F

†DKFDϕ. (6)

To prove that there is a flat band for the ORDKR model,
we show that ŨORDKR(ϕ) has an eigenvalue equal to one,
regardless of the value of ϕ. Consider then a matrix Ũ ′

ORDKR(ϕ)
transformed from ŨORDKR(ϕ) by a unitary operation FDϕ ,
which takes the form

Ũ ′
ORDKR(ϕ) = (FD

†
1F

†)D†
K (FD1F

†)DK. (7)

The eigenvalue equation of Ũ ′
ORDKR(ϕ) may be rewritten as

(BDK − λDKB)|x〉 = 0, (8)

where B ≡ FD1F
†, |x〉 denotes an eigenvector, and λ is an

eigenvalue of ŨORDKR(ϕ). Detailed calculations show that B

is a symmetric matrix (see Appendix B for details) and since
DK is a diagonal matrix, (BDK − DKB) must be an antisym-
metric matrix of odd dimension. It immediately follows that
Det(BDK − DKB) = 0. Thus, regardless of the Bloch phase
ϕ, λ = 1 is a permissible solution to Eq. (8). We have thus
shown that ŨORDKR(ϕ) always has a unity eigenvalue or zero
quasienergy for h̄ = 2πM/N . This is nothing but the existence
of a flat Floquet band.

Our considerations above also lead us to a proof of the
band inversion symmetry of the ORDKR model for odd M

and N . Specifically, because (BDK − λDKB)T = (DKB −
λBDK ) = −λ(BDK − λ−1DKB), we see that if Det(BDK −
λDKB) = 0, then Det(BDK − λ−1DKB) = 0 as well. That
is, both λ and λ−1 are solutions to the eigenvalue equation of
Eq. (8). As such, if we have a quasienergy ε = i ln λ, we must
have i ln λ−1 = −ε in the spectrum. This completes our proof
of the inversion symmetry of the ORDKR model.

A flat band is infinitely degenerate as states on the band
can still have a continuous Bloch phase ϕ. Due to such
an independence from the Bloch phase, the band dispersion
relation directly yields a zero group velocity in the (angular)
momentum space, thus indicating a zero mobility in the
(angular) momentum space. Further, the infinite degeneracy
allows us to construct a flat-band eigenstate that is localized in
the (angular) momentum space (though the Floquet operator
itself is periodic in momentum with a period Nh̄). It is
interesting to outline a simple approach to the construction
of flat-band states. It is found that highly localized flat-band
states can be obtained by directly truncating the full Floquet
matrix UORDKR(ϕ) to a small size such that there is only
one eigenstate whose eigenvalue is real and still equal to
unity (thus not affected by the truncation). Other localized
states on the flat band can be obtained by shifting it by a
multiple of N sites or by superimposing these states localized
at different locations. Figure 3 depicts one computational
example of a flat-band eigenstate strongly localized in the
(angular) momentum space. We have checked that if we use
a flat-band state we constructed as the initial state for time

|
|2

|
|2

FIG. 3. (Color online) Localized eigenstate |ψ〉 = ∑
j cj |j〉

associated with the flat band in the on-resonance double-kicked rotor
model for K = 3 and h̄ = 2π/3. The inset is the same, but on a
semilogarithmic scale.

052920-4



KICKED-HARPER MODEL VERSUS ON-RESONANCE . . . PHYSICAL REVIEW E 88, 052920 (2013)

evolution, then indeed this state does not evolve with iterations
of our ORDKR quantum map. This situation is more subtle
than the quantum-antiresonance phenomenon [14,20]: For
the ORDKR model with multiple bands, only special states
prepared on the single flat band can remain localized, whereas
in the case of quantum antiresonance an arbitrary state should
remain localized.

C. Theoretical bandwidth result and its dynamical consequence

For h̄ = 2πM/N with M and N being coprime integers,
the reduced N × N Floquet matrices ŨORDKR(ϕ) and ŨKHM(ϕ)
(see our general expressions in Appendix A) can be obtained
analytically. To further understand and confirm the bandwidth
scaling of the ORDKR model and the KHM, we have also
carried out analytical studies for a three-band case, with K = L

and h̄ = 2π/3.
For the ORDKR model, the three eigenvalues are found

to be 1 and e±iε(ϕ), where ε(ϕ) ≡ arccos[ 1
2 TrŨ (ϕ) − 1

2 ]. One
finally finds

ε(ϕ) = arccos

{
1

3

[
2 cos

(√
3K

2 h̄
sin

ϕ

3

)
cos

(
3K

2 h̄
cos

ϕ

3

)

+ cos

(√
3K

h̄
sin

ϕ

3

)]}
,

where h̄ = 2π
3 . For K < 1 it can be shown that the edges of the

band correspond to ϕ = 0(π ) and ϕ = π
2 ( 3π

2 ). The bandwidth
can thus be determined to be

arccos

{[
cos

(√
3K

h̄

)
+ 2 cos

(√
3K

2 h̄

)]/
3

}

− arccos

[
1

3
+ 2

3
cos

(
3K

2 h̄

)]
.

Taylor expanding this expression for the bandwidth, we find
the first nonzero term to be

√
6

1280 (K
h̄

)5, a clear power-law scaling
of K5.

For the KHM, the eigenvalues can be deduced from
the equation Det[ŨKHM(ϕ) − λ] = 0. The resulting explicit
expression of the eigenvalue equation is

λ3 − 3reiθλ2 + 3re−iθλ − 1 = 0, (9)

where

reiθ = 1

9
(e−i(K/h̄) + 2ei(K/2 h̄))

[
e−i(K/h̄) cos (ϕ/3)

+ 2ei(K/2 h̄) cos (ϕ/3) cos

(√
3K

2 h̄
sin

ϕ

3

)]
.

Note that all eigenvalues are in the form of λ ≡ e−iε since the
reduced Floquet matrix is always unitary. The three eigen-
values are found to be e−iε1 = reiθ + (re2iθ − e−iθ ) r

z
+ z,

e−iε2 = reiθ + e−(2iπ/3)(re2iθ − e−iθ ) r
z
+ e2iπ/3z, and e−iε3 =

reiθ + e2iπ/3(re2iθ − e−iθ ) r
z
+ e−(2iπ/3)z, where

z =
[

1

2
− 3

2
r2 + r3e3iθ

+
√

1

4
− 3

2
r2 + 2r3 cos(3θ ) − 3

4
r4

]1/3

.

For K < 1, the edges of the band correspond to ϕ = 0 and
ϕ = π . The bandwidth can thus be determined to be
W1 = |ε1(ϕ = 0) − ε1(ϕ = π )|, W2 = |ε2(ϕ = 0) − ε2(ϕ =
π )|, and W3 = |ε3(ϕ = 0) − ε3(ϕ = π )|. Taylor expanding the
expressions of eigenvalues for K 	 1 and keeping the lowest
order in K , we have W1 ≈ √

2 sin( π
12 )K

h̄
, W2 ≈ (

√
3/2 − 1)K

h̄
,

and W3 ≈ [
√

2 cos( π
12 ) − √

3/2]K
h̄

, a clear linear scaling of K .
The very fast decay of the Floquet bandwidth of the

ORDKR model suggests that in a considerable range of K

the bandwidths will be very narrow. In other words, for a
small K , all the Floquet bandwidths would be effectively
zero for a reasonably long time scale. Therefore, when it
comes to the dynamical evolution of the system, effectively
the system will not detect its continuous Floquet spectrum and
hence displays localization behavior, for a time scale inversely
proportional to the bandwidths. We call this the time scale of
transient dynamical localization and denote it by Ttr. We then
have Ttr ∼ K−(N+2). The overall expectation is the following:
Within Ttr, the ORDKR model displays localization in the
(angular) momentum space, but afterward it begins to show
ballistic behavior in the (angular) momentum space. Because
of the power-law scaling, the intriguing time scale Ttr can be
very sensitive to a change in the kick strength K . Our numerical
calculations indeed confirm this. Figure 4(a) shows an example
of the dynamics of the kinetic energy of the ORDKR model,
starting from an initial state with zero momentum. In all three
of the shown cases, the kinetic energy is seen to freeze over
a time scale before it starts to increase ballistically. The time
scale of the freezing stage is shown to increase rapidly as
we decrease the value of K . As a comparison, Fig. 4(b)
shows the parallel dynamics of the KHM for the same three
values of K . There it is seen that the transient stage of
localization is only weakly dependent upon K , which is again
consistent with the linear K dependence of the bandwidth of
the KHM. Quantitatively, the transient localization time scale
Ttr is numerically determined from the duration of kinetic
energy freezing. The Ttr thus obtained numerically and shown
in Fig. 4(c) indeed satisfies the scaling Ttr ∼ K−(N+2) for the
ORDKR model, which is in sharp contrast to the Ttr ∼ K−1

scaling for the KHM. The results here can also be understood
as a quantitative explanation of our earlier finding of transient
dynamical localization in Ref. [15]. For future experiments, the
observation of the aforementioned scaling of Ttr versus K may
serve as evidence of a successful realization of an ORDKR.

III. TOPOLOGICAL EQUIVALENCE BETWEEN THE
ORDKR MODEL AND THE KHM

In this section we devote ourselves to a detailed comparison
of the Floquet-band topologies of the ORDKR model and the
KHM. We first describe our motivation and introduce new
notation. Then we report numerical findings of the Floquet-
band topological numbers of both models. Finally, an exact
analytical proof of the topological equivalence between the
ORDKR model and the KHM is presented.

A. Motivation and notation

One early study [6] suggested that topological properties
of the Floquet bands of the KHM may be connected with
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FIG. 4. (Color online) Expectation value of the system’s kinetic
energy versus time t (measured as the number of quantum maps
iterated), with h̄ = 2π/3 and the initial state given by |0〉, for three
values of the kick strength K = L, for (a) the ORDKR model and
(b) the KHM. For a small value of K , the kinetic energy of the
ORDKR model or the KHM is seen to be localized for a long while
before it starts to increase ballistically. (c) shows how the time scale of
this initial transient stage, denoted by Ttr, scales with K: The scaling
is found to be ∼K−5 for the ORDKR model but ∼K−1 for the KHM,
which is consistent with our analysis of the respective bandwidth
power-law scaling with K .

the regular-to-chaos transition in the classical limit. Because
the ORDKR model and the KHM share the same classical
limit (up to a canonical transformation), we suspect that there
should be some similarity in their Floquet-band topologies.
Our second motivation for a topological study is related to
an earlier finding that, when h̄/2π is a rational number, the
spectral union of UORDKR−α (variant of the ORDKR model
defined below) over all α is the same as that of UKHM−α (variant
of the KHM defined below) over all α [17]. This previous
mathematical result further suggests a possible topological
connection between the two models. Interestingly, as we
explore this possible topological connection, we are able
to see a connection between the KHM propagator and the
ORDKR propagator for each individual value of α along with
an individual value of the Bloch phase, thus going beyond
Ref. [17], which considered a unification of all values of α and
the Bloch phase. Further, as we shall see below, the connection
is established by a mapping in the parameter space, which

cannot be achieved by a unitary transformation between the
two propagators.

Next we introduce necessary notation for our discussion
of band topology. To characterize the band topology for both
the ORDKR model and the KHM, we introduce an additional
periodic phase parameter α ∈ [0,2π ) to the ORDKR model
and KHM maps, namely,

UORDKR−α = ei(p2/2 h̄)e−i(K/h̄) cos(q)e−i(p2/2 h̄)e−i(L/h̄) cos(q+α),

UKHM−α = e−i(L/h̄) cos(p−α)e−i(K/h̄) cos(q). (10)

For h̄ = 2πM/N , both operators are periodic in (angular)
momentum space with period Nh̄. Hence their eigenvalues
are 2π periodic in the Bloch phase ϕ and also in α,
giving rise to N extended Floquet bands that disperse as
functions of ϕ and α. These two-dimensional bands may be
topologically characterized by Chern numbers, denoted by Cn

for the nth band. In what follows we denote by |ψn(ϕ,α)〉 a
(generalized) eigenstate of either UORDKR−α or UKHM−α , in the
nth band, with an eigenvalue exp[iεn(ϕ,α)]. Such a generalized
eigenstate exists on the entire (angular) momentum space.
We then denote by Ũ (ϕ,α) the reduced N × N Floquet
matrix constructed from either UORDKR−α or UKHM−α using
the method described at the beginning of Sec. II. We next
define the state |ψ̄n(ϕ,α)〉, which is |ψn(ϕ,α)〉 projected onto
N sites of one unit cell in the (angular) momentum space, i.e.,
|ψ̄n(ϕ,α)〉 ≡ ∑N−1

m=0 |m〉〈m|ψn(ϕ,α)〉. We further assume that
|ψ̄n(ϕ,α)〉 is normalized over one unit cell consisting of N

sites. Using the above notation, the Berry curvature of the nth
band is then defined as [24]

Bn(ϕ,α) = i

N∑
n′=1,�=n

{ 〈ψ̄n| ∂Ũ †

∂ϕ
|ψ̄n′ 〉〈ψ̄n′ | ∂Ũ

∂α
|ψ̄n〉

|e−iεn − e−iεn′ |2 − c.c.

}
,

(11)

where we have suppressed the explicit dependences on ϕ and
α for brevity. From the Berry curvature we obtain the Chern
number Cn,

Cn = 1

2π

∫ 2π

0
dϕ

∫ 2π

0
dα Bn(ϕ,α). (12)

B. Numerical findings

We have conducted extensive numerical evaluations of the
Floquet-band Chern numbers associated with both UORDKR−α

and UKHM−α . We find that for the same K and L respectively
in both models, the Chern numbers are always equal. For
example, for h̄ = 2π/3 and K = L, Fig. 5 represents the
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FIG. 5. Chern numbers Cn for both the ORDKR model and the
KHM, for K = L. In both cases, topological phase transitions occur
at K/h̄ ≈ 4.20,7.25,8.40 (correct to within ±0.05).
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Floquet-band Chern numbers for both models versus a varying
K . The Chern numbers obtained for UORDKR−α are identical
to those for UKHM−α . Here we adopt the convention that the
band with the largest absolute value of the Chern number is
always represented by the line in the middle. Vertical lines
represent collisions between quasienergy bands, during which
Chern number transitions can take place. Note that in some
cases band 1 and band 3 can collide directly with each other
through the boundary of the quasienergy Brillouin zone. It is

also important to stress that the Chern numbers of the ORDKR
model match those of the KHM for all K values, despite
their jumps at various topological phase transition points. We
are thus clearly witnessing, albeit numerically, a remarkable
topological equivalence between the ORDKR model and
the KHM.

Some insight into this observed topological equivalence
may be obtained by comparing the quasienergy dispersions
of the two models. In Fig. 6 we present the Floquet-band

FIG. 6. (Color online) Floquet-band plots showing the quasienergy (eigenphase) dependence on ϕ and α in the ORDKR model and the
KHM with K = L = 3h̄ and h̄ = 2π/3: (a), (c), and (e) [(b), (d), and (f)] correspond to bands 1, 2, and 3, respectively, for the the ORDKR
model [the KHM]. The the ORDKR model band profile appears to be a result of some translation along the ϕ and α axes followed by a rotation
of the spectrum about the ε axis.
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FIG. 7. Chern numbers Cn for both the ORDKR model and the
KHM, with h̄ = 2π/3, L = h̄ fixed, and a varying K . In both cases,
topological phase transitions occur at K/h̄ ≈ 4.20,7.25,8.40 (correct
to within ±0.05). The Chern numbers obtained here are different
from the case of K = L over some ranges of K . Note that the phase
transition points seem to be exactly the same as those in Fig. 5 only
because we have rounded the phase transition points to steps of 0.05.
A more accurate characterization does show very small differences.

structure for both the ORDKR model and the KHM in the
case of K = L = 3h̄. Interestingly, the ORDKR model band
profile appears to be the same as that of the KHM, up to some
translation along the ϕ and α axes, followed by a rotation of
the spectrum about the quasienergy axis. This observation is
consistent with our proof of topological equivalence in the next
section.

We have numerically observed that the topological equiv-
alence also occurs for K �= L. As one example of this, Fig. 7
depicts a zoo of Chern numbers for the ORDKR model and
the KHM, with h̄ = 2π/3, L = h̄ fixed, and K varying. We
again see the same equivalence of Chern numbers across a
few topological phase transition points. In addition, we found
computationally that the Chern numbers are invariant upon an
exchange between L and K . This was found to hold true also
in other cases with more bands.

We have also plotted the Floquet-band structure for a
K > L case in Fig. 8. Here we consider the case of K/h̄ = 3

and L/h̄ = 1. It is seen that the band profiles of the ORDKR
model and the KHM are once again similar and appear to be
related by a rotation and translation.

C. Proof of topological equivalence

To strictly confirm our claim of topological equivalence,
we present an analytical proof in this section. The proof
proceeds as follows. We first show that the reduced ORDKR
model Floquet matrix and the reduced KHM Floquet matrix
are equivalent up to a series of unitary transformations and
a mapping between their parameters. We then show that
these matrices obtained under the unitary transformations
and mapping of parameters still correspond to the same
Chern numbers as the original reduced matrices. These steps
constitute a proof of topological equivalence.

We consider cases with h̄ = 2πM/N , with M and N

coprime and both odd. In these cases, the reduced Floquet
matrices of UORDKR−α and UKHM−α (see Appendix A for
details) can be written compactly as a product of N × N

unitary matrices

ŨORDKR(ϕ,α) = D†
ϕD

†
1(F †D1KF )D1(F †D1LF )Dϕ,

(13)
ŨKHM(ϕ,α) = D†

ϕD2L(F †D2KF )Dϕ,

where D1K , D1L, D2K , and D2L are diagonal unitary matrices,
with matrix elements (D1K )n,m = ei(K/h̄) cos[(2π/N)n−ϕ/N]δn,m,
(D1L)n,m = e−i(L/h̄) cos[(2π/N)n−ϕ/N+α]δn,m, (D2K )n,m =
e−i(K/h̄) cos[(2π/N)n−ϕ/N]δn,m, and (D2L)n,m = e−i(L/h̄) cos(nh̄−α)

δn,m, where the indices m,n take values 0,1, . . . ,N − 1. Here
D1 and Dϕ are defined as they were in Sec. II.

We begin the proof by applying a unitary transformation
given by U1 ≡ F †D2KFDϕ to the ŨKHM(ϕ,α) matrix to
obtain ṼKHM(ϕ,α) ≡ U1ŨKHM(ϕ,α)U †

1 . Writing F †D2KF as
the exponential of a matrix, we obtain

ṼKHM(ϕ,α) = F †D2KFD2L

= exp

⎡
⎢⎢⎣−i

K

2 h̄
F †

⎛
⎜⎜⎝

. . .

ei[(2π/N)n−ϕ/N] + e−i[(2π/N)n−ϕ/N]

. . .

⎞
⎟⎟⎠F

⎤
⎥⎥⎦ D2L

= exp

[
−i

K

2 h̄
(e−i(ϕ/N)C + ei(ϕ/N)C†)

]⎛
⎜⎜⎝

. . .

e−i(L/h̄) cos[2π(M/N)n−α]

. . .

⎞
⎟⎟⎠, (14)

where

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

In the following steps, we will apply a series of unitary transformations to the reduced matrix ŨORDKR(ϕ,α) and show that the
result is equivalent to the above unitarily transformed version of ŨKHM(ϕ,α) provided a condition between ϕ and α in the two
models is obeyed.
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Applying a transformation given by FDϕ to ŨORDKR(ϕ,α), we obtain Ũ
(1)
ORDKR(ϕ,α) ≡ FDϕŨORDKR(ϕ,α)D†

ϕF †, which we
simplify as

Ũ
(1)
ORDKR(ϕ,α) = FD

†
1F

†D1KFD1F
†D1L

= FD
†
1 exp

[
i
K

2 h̄
(e−i(ϕ/N)C + ei(ϕ/N)C†)

]
D1F

†D1L

= exp

[
i
K

2 h̄
(e−i(ϕ/N)FD

†
1CD1F

† + ei(ϕ/N)FD
†
1C

†D1F
†)

]
D1L. (16)

Defining X = FD
†
1CD1F

†, Ũ
(1)
ORDKR(ϕ,α) = exp[i K

2 h̄
(e−i(ϕ/N)X + ei(ϕ/N)X†)]D1L. The explicit expression for X is

X = eiπ[(N−M)/N]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei(2π/N)×M · · · 0
...

. . .
...

0 · · · ei(2π/N)×(N−1)

ei(2π/N)×0 · · · 0
...

. . .
...

0 · · · ei(2π/N)×(M−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Next we introduce the N × N permutation matrix Pσ , which is made up entirely of zeros except that in the j th row, the σj th
column equals 1, with σj = j × (N − M) mod N . Here j and σj take values 0, . . . ,N − 1. Note that Pσ is unitary and that the
set of σj values will include all of the N values j = 0,1, . . . ,N − 1. We apply the unitary transformation Pσ to Ũ

(1)
ORDKR(ϕ,α)

and obtain

Ũ
(2)
ORDKR(ϕ,α) ≡ Pσ Ũ

(1)
ORDKR(α,ϕ)P †

σ = exp

[
i
K

2 h̄
(e−i(ϕ/N)PσXP †

σ + ei(ϕ/N)PσX†P †
σ )

]
D′

1L,

where D′
1L ≡ PσD1LP †

σ , with D′
1L a diagonal unitary matrix with diagonal elements

(D′
1L)n,n = e−i(L/h̄) cos[(2π/N)σn−ϕ/N+α] = e−i(L/h̄) cos[−2π(M/N)n−ϕ/N+α].

The effect of the permutation matrix on X is

PσXP †
σ = eiπ[(N−M)/N]

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 ei(2π/N)σN−1

ei(2π/N)σ0 0 · · · 0 0
0 ei(2π/N)σ1 0 0
...

...
. . .

...
...

0 0 · · · ei(2π/N)σN−2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (18)

We can see that the structure of the above matrix is very similar to C and would be made identical to it if we were to replace
all the nonzero elements with 1. This is achieved by a transformation via the diagonal unitary matrix D0, which has diagonal
elements

(D0)n,n = exp

[
−i

(
2π

N

k=n−1∑
k=0

σk + π
N − M

N
n

)]
.

It can be shown that D0PσXP †
σ D

†
0 = C. Defining ṼORDKR(ϕ,α) ≡ D0Ũ

(2)
ORDKR(ϕ,α)D†

0 and using that D0 and D′
1L commute due

to their both being diagonal, we obtain

ṼORDKR(ϕ,α) = exp

[
i
K

2 h̄
(e−i(ϕ/N)C + ei(ϕ/N)C†)

]
D′

1L

= exp

[
−i

K

2 h̄
(e−i[(ϕ+Nπ/)N]C + ei[(ϕ+Nπ)/N]C†)

]⎛
⎜⎜⎜⎝

. . .

e−i(L/h̄) cos[2π(M/N)j+ ϕ

N
−α]

. . .

⎞
⎟⎟⎟⎠. (19)
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FIG. 8. (Color online) Floquet-band plots showing the quasienergy (eigenphase) dependence on ϕ and α for the ORDKR model and
the KHM with K = 3h̄, L = h̄, and h̄ = 2π/3. (a), (c), and (e) [(b), (d), and (f)] correspond to bands 1, 2, and 3, respectively, for the
ORDKR model [the KHM].

From Eqs. (14) and (19) we observe that ṼORDKR(ϕ,α)
and ṼKHM(ϕ̃,α̃) are identical provided ϕ̃ = ϕ + Nπ and
α̃ = α − ϕ

N
. Summarizing what we have found so far, we

have learned that if we unitarily transform from ŨKHM(ϕ̃,α̃)
to ṼKHM(ϕ̃,α̃) ≡ U1ŨKHM(ϕ̃,α̃)U †

1 , where U1 ≡ F †D2KFDϕ̃ ,
and unitarily transform from ŨORDKR(ϕ,α) to ṼORDKR(ϕ,α) ≡
U2ŨORDKR(ϕ,α)U †

2 , where U2 ≡ D0PσFDϕ , we find that the
two unitarily transformed matrices are identical up to some
mapping between (ϕ̃,α̃) and (ϕ,α).

Figure 9 represents one example of the quasienergy band
plot for both the ORDKR model and the KHM. Referring to
Figs. 9(b) and 9(c), we thus directly see that provided ϕ̃ =
ϕ + Nπ and α̃ = α − ϕ

N
, the extended Floquet-band structure

for the ORDKR model and the KHM are the same [though the
boundaries on the (ϕ̃,α̃) plane are different].

Recapping our proof so far, with the mapping ϕ̃ = ϕ + Nπ

and α̃ = α − ϕ

N
, we have

ŨKHM(ϕ̃,α̃) = UT ŨORDKR(ϕ,α)U †
T , (20)
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FIG. 9. (Color online) Quasienergy band (band 2) plot for K =
L = 3h̄ with h̄ = 2π/3: (a) dependence on (ϕ, α) for ŨORDKR(ϕ,α),
(b) dependence on (ϕ̃, α̃) for ŨORDKR(ϕ̃ − Nπ,α̃ + ϕ̃

N
− π ), and

(c) dependence on (ϕ̃, α̃) for ŨKHM(ϕ̃,α̃).

where UT ≡ D
†
ϕ̃F †D†

2K (ϕ̃)FD0PσFDϕ and the definitions of
the matrices D, F , D2K , D0, and Pσ all are previously given.
For example, (Dϕ̃)n,m = e−in(ϕ̃/N)δn,m and (D2K )(ϕ̃)n,m =
e−i(K/h̄) cos[(2π/N)n−(ϕ̃/N)]δn,m. Let |ψ̄KHM

n (ϕ̃,α̃)〉 be the nth
eigenstate of ŨKHM(ϕ̃,α̃) and |ψ̄ORDKR

n (ϕ,α)〉 be the nth
eigenstate of ŨORDKR(ϕ,α). Equation (20) then leads to

∣∣ψ̄KHM
n (ϕ̃,α̃)

〉 = UT

∣∣ψ̄ORDKR
n (ϕ,α)

〉
. (21)

Because scanning all the values of (ϕ,α) will scan all the values
of (ϕ̃,α̃), it is obvious now that the union of the spectrum of
ŨKHM(ϕ̃,α̃) (after considering all values of ϕ̃ and α̃) should be
the same as the union of the spectrum of ŨORDKR(ϕ,α) (after
considering all values of ϕ and α), thus directly confirming an
early proof in Ref. [17]. We stress, however, that the one-to-one
correspondence between ŨORDKR(ϕ,α) and ŨKHM(ϕ,α) is a
result that we did not find previously.

Finally, we show that ṼORDKR(ϕ,α) and ṼKHM(ϕ,α) have
the same set of Chern numbers as their respective original
matrices ŨORDKR(ϕ,α) and ŨKHM(ϕ,α). To do this, we make
use of the line integral version of the Chern number of the nth
band given by

Cn = i

2π

∮
d �θ〈ψ̄n(�θ)|∂�θ |ψ̄n(�θ)〉, (22)

where �θ ≡ (ϕ,α) and the line integral is around the perimeter of
the Brillouin zone (0,2π ] × (0,2π ] in (ϕ,α) parameter space.
Here |ψ̄n(�θ )〉 again refers to the nth band eigenstate of either
ŨORDKR(ϕ,α) or ŨKHM(ϕ,α) at the point �θ . The eigenstates
of ṼKHM(ϕ,α) and ṼORDKR(ϕ,α), denoted by |ψ̃n(�θ )〉, are
related to the original eigenstates by U

†
1,2|ψ̃n(�θ )〉 = |ψ̄n(�θ)〉,

respectively. We may substitute this into Eq. (22) to obtain
an expression for Cn in terms of |ψ̃n(�θ )〉. Because the
transformations U1,2 depend on ϕ but not on α, it can be
shown, by making use of the fact that the line integrals along
α = 0 and α = 2π are in opposite directions, that the resulting
expression for Cn reduces to that of the form of Eq. (22), except
with the transformed eigenstates taking the place of the original
ones. This proves that the Chern numbers of the unitarily
transformed reduced matrices match those of the original ones.

Next we note that when we impose ϕ̃ = ϕ + Nπ and
α̃ = α − ϕ

N
, working out the line integral in Eq. (22) for

ṼORDKR(ϕ,α) over a typical square perimeter space in (ϕ,α)
space with corners (0,0), (2π,0), (2π,2π ), and (0,2π ) is
equivalent to working out the line integral for ṼKHM(ϕ̃,α̃)
over some parallelogram in (ϕ̃,α̃) space with corners (Nπ,0),
(Nπ + 2π,−2π/N ), (Nπ + 2π,2π − 2π/N ), and (Nπ,2π ).
To complete the proof of topological equivalence, we need
only show that the aforementioned line integral in (ϕ̃,α̃) for
ṼKHM(ϕ̃,α̃) gives a result equal to that when we calculate the
line integral around the perimeter of the usual (0,2π ] × (0,2π ]
Brillouin zone. However, this can be easily shown to be the
case by converting the line integral around the parallelogram
into a surface integral using Stokes’s theorem. We then obtain
a surface integral of the form of Eq. (12) enclosing the area
of the parallelogram. Because the Berry curvature as seen in
Eq. (11) is exactly 2π periodic along both ϕ and α, it is trivial
to see that we can map the area of the parallelogram onto
that of the original (0,2π ] × (0,2π ] Brillouin zone, without
any difference in the result of the integral. In other words, the
Chern numbers of ṼKHM(ϕ̃,α̃) and ṼORDKR(ϕ,α) are always
identical. Putting this together with the result of the previous
paragraph, we may conclude that the Chern numbers of the
original matrices ŨKHM(ϕ,α) and ŨORDKR(ϕ,α) are indeed the
same. This completes our proof of topological equivalence.

IV. CONCLUSION

In this work we have mainly focused on two topics: the
spectral difference between the ORDKR model and the KHM
(comparing quantum maps UORDKR and UKHM) and their
topological equivalence upon introducing an additional peri-
odic phase parameter α (comparing quantum maps UORDKR−α

and UKHM−α). One important spectral difference we have
found is the existence of a flat band for UORDKR under the
condition K = L, but not for UKHM. This is an example
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of a periodically driven model that has a mixture of a flat
band and nonflat bands. States launched from a flat band
will be strictly localized and this feature might be useful for
benchmarking experimental errors in any future realizations
of the ORDKR model. The coexistence of a flat band with
nonflat bands may also open up alternative applications of
δ-kicked systems. We have also shown that for small kick
strength K = L, the largest bandwidth of the nonflat bands of
UORDKR scales with K in a power law with a high exponent
N + 2, indicating that for sufficiently small kick strength, all
Floquet bands will be effectively flat for a long time scale. The
dynamical consequence is a transient dynamical localization in
the ORDKR model (absent in the KHM) for a long time scale.
The topological equivalence between UORDKR−α and UKHM−α

makes our ORDKR-KHM comparison even more interesting.
That is, for a fixed α, the ORDKR model and the KHM have
many different features. However, topologically speaking,
upon introducing one extra parameter α we have a topological
equivalence between an extended ORDKR model, previously
proposed in studies of quantum ratchet acceleration without
using a bichromatic lattice [27], with a simple extension of the
standard KHM. To have a pair of models that are topologically
equivalent should be a useful contribution to the general
understanding of the topological properties of periodically
driven systems [28].
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APPENDIX A: EXPRESSIONS FOR REDUCED
FLOQUET MATRICES

For h̄ = 2πM/N with M and N being coprime and odd
integers, the reduced N × N Floquet matrix is given by
[Ũ (ϕ)]n,m = ∑∞

l=−∞〈n|Û |m + l × N〉eilϕ .

1. Reduced Floquet matrix for the ORDKR model

The Floquet operator of the ORDKR model is

UORDKR = ei(p2/2 h̄)e−i(K/h̄) cos(q)e−i(p2/2 h̄)e−i(L/h̄) cos(q). (A1)

The reduced N × N Floquet matrix is thus

[ŨORDKR(ϕ)]n,m =
∞∑

l=−∞
〈n|ÛORDKR|m + l × N〉eilϕ

=
∞∑

l=−∞

∞∑
l′=−∞

N−1∑
m′=0

〈n|ei(p2/2 h̄)e−i(K/h̄) cos(q)|m′ + l′ × N〉〈m′ + l′ × N |e−i(p2/2 h̄)e−i(L/h̄) cos(q)|m + l × N〉eilϕ

=
N−1∑
m′=0

1

2π
ei(h̄/2)n2

∫ 2π

0
dθ2e

−i(K/h̄) cos(θ2)eiθ2(m′−n)
∞∑

l′=−∞
eiθ2l

′N

× 1

2π
e−i(h̄/2)(m′+l′N)2

∫ 2π

0
dθ1e

−i(L/h̄) cos(θ1)eiθ1(m−m′)
∞∑

l=−∞
eiθ1(l−l′)Neilϕ

=
N−1∑
m′=0

1

2π
ei h̄

2 n2
∫ 2π

0
dθ2e

i(K/h̄) cos(θ2+π)ei(θ2+π)(m′−n)eiπ(m′−n)
∞∑

l′=−∞
ei(θ2+π)l′N

× 1

2π
e−i(h̄/2)m′2

∫ 2π

0
dθ1e

−i(L/h̄) cos(θ1)eiθ1(m−m′)e−iθ1l
′N

∞∑
l=−∞

eiθ1lNeilϕ. (A2)

To simplify, we make use of the Poisson summation formula
∞∑

l=−∞
e2πilϕ =

∞∑
j=−∞

δ(ϕ − j ) (A3)

and obtain

[ŨORDKR(ϕ)]n,m = ei(h̄/2)n2
N−1∑
m′=0

e−i(h̄/2)m′2
eiπ(m′−n) 1

N

N−1∑
j2=0

ei(K/h̄) cos[(2π/N)j2−ϕ/N]ei[(2π/N)j2−ϕ/N](m′−n)

× 1

N

N−1∑
j1=0

e−i(L/h̄) cos[(2π/N)j1−ϕ/N]ei[(2π/N)j1−ϕ/N](m−m′)

= 1

N2

N−1∑
j2=0

N−1∑
m′=0

N−1∑
j1=0

ein(ϕ/N)e−im(ϕ/N)e−i[(2π−h̄)/2]n2
e−i(2π/N)nj2ei(K/h̄) cos[(2π/N)j2−ϕ/N]ei(2π/N)j2m

′

× ei[(2π−h̄)/2]m′2
e−i(2π/N)m′j1e−i(L/h̄) cos[(2π/N)j1−ϕ/N]ei(2π/N)j1m. (A4)
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For the sake of illustration, we write the reduced Floquet matrix as a product of unitary matrices

ŨORDKR(ϕ) =

⎛
⎜⎜⎝

. . .

ein(ϕ/N)

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

. . .

e−i[(2π−h̄)/2]n2

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝ e−i(2π/N)nj2

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

ei(K/h̄) cos[(2π/N)j2−ϕ/N]

. . .

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝ ei(2π/N)j2m

′

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

. . .

ei[(2π−h̄)/2]m′2

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝ e−i(2π/N)m′j1

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−i(L/h̄) cos[(2π/N)j1−ϕ/N]

. . .

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝ ei(2π/N)j1m

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−im(ϕ/N)

. . .

⎞
⎟⎟⎠. (A5)

If we introduce an additional periodic phase parameter α ∈ [0,2π ) to the ORDKR map, the Floquet operator becomes

UORDKR−α = ei(p2/2 h̄)e−i(K/h̄) cos(q)e−i(p2/2 h̄)e−i(L/h̄) cos(q+α). (A6)

The corresponding reduced Floquet matrix is

[ŨORDKR(ϕ,α)]n,m = 1

N2

N−1∑
j2=0

N−1∑
m′=0

N−1∑
j1=0

ein(ϕ/N)e−im(ϕ/N)e−i[(2π−h̄)/2]n2
e−i(2π/N)nj2ei(K/h̄) cos[(2π/N)j2−ϕ/N]ei(2π/N)j2m

′

× ei[(2π−h̄)/2]m′2
e−i(2π/N)m′j1e−i(L/h̄) cos[(2π/N)j1−ϕ/N+α]ei(2π/N)j1m. (A7)

Written again as a product of unitary matrices

ŨORDKR(ϕ,α) =

⎛
⎜⎜⎝

. . .

ein(ϕ/N)

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

. . .

e−i[(2π−h̄)/2]n2

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝ e−i(2π/N)nj2

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

ei(K/h̄) cos[(2π/N)j2−ϕ/N]

. . .

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝ ei(2π/N)j2m

′

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

. . .

ei[(2π−h̄)/2]m′2

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝ e−i(2π/N)m′j1

√
N

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

. . .

e−i(L/h̄) cos[(2π/N)j1−ϕ/N+α]

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝ ei(2π/N)j1m

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−im(ϕ/N)

. . .

⎞
⎟⎟⎠. (A8)

2. Reduced Floquet matrix for the KHM

The Floquet operator of the KHM is
UKHM = e−i(L/h̄) cos(p)e−i(K/h̄) cos(q), (A9)

with reduced N × N Floquet matrix

[ŨKHM(ϕ)]n,m =
∞∑

l=−∞
〈n|ÛKHM|m + l × N〉eilϕ

= 1

2π
e−i(L/h̄) cos(nh̄)

∫ 2π

0
dθ e−i(K/h̄) cos(θ)eiθ(m−n)

∞∑
l=−∞

eiθlNeilϕ

= e−i(L/h̄) cos(nh̄) 1

N

N−1∑
j=0

e−i(K/h̄) cos[(2π/N)j−ϕ/N]ei[(2π/N)j−ϕ/N](m−n)

= 1

N

N−1∑
j=0

ein(ϕ/N)e−i(L/h̄) cos(nh̄)e−i(2π/N)nj ei(K/h̄) cos[(2π/N)j−ϕ/N]ei(2π/N)jme−im(ϕ/N). (A10)
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For the sake of illustration, we write the reduced Floquet matrix as a product of unitary matrices

ŨKHM(ϕ) =

⎛
⎜⎜⎝

. . .

ein(ϕ/N)

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−i(L/h̄) cos(nh̄)

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝ e−i(2π/N)nj

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−i(K/h̄) cos[(2π/N)j−ϕ/N]

. . .

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝ ei(2π/N)jm

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−im(ϕ/N)

. . .

⎞
⎟⎟⎠. (A11)

If we introduce an additional periodic phase parameter α ∈ [0,2π ) to the KHM map, the Floquet operator becomes

UKHM−α = e−i(L/h̄) cos(p−α)e−i(K/h̄) cos(q). (A12)

The corresponding reduced Floquet matrix is

[ŨKHM(ϕ,α)]n,m = 1

N

N−1∑
j=0

ein(ϕ/N)e−i(L/h̄) cos(nh̄−α)e−i(2π/N)nj ei(K/h̄) cos[(2π/N)j−ϕ/N]ei(2π/N)jme−im(ϕ/N). (A13)

Written as a product of unitary matrices,

ŨKHM(ϕ,α) =

⎛
⎜⎜⎝

. . .

ein(ϕ/N)

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−i(L/h̄) cos(nh̄−α)

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝ e−i(2π/N)nj

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−i(K/h̄) cos[(2π/N)j−ϕ/N]

. . .

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝ ei(2π/N)jm

√
N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

. . .

e−im(ϕ/N)

. . .

⎞
⎟⎟⎠. (A14)

APPENDIX B: CALCULATION OF THE SYMMETRIC B MATRIX

Here D1 is a diagonal unitary matrix and F is a unitary matrix. The corresponding matrix elements are [D1]n,n = ei[(/2π−h̄)2]n2

and Fm,n = 1√
N

ei(2π/N)mn, where h̄ = 2π M
N

and indices m and n take values 0,1, . . . ,N − 1. We also assume that k is an integer

ranging from 1 to N and k̃ is an integer ranging from 1 to Q, with Q = (N − 1)/2. From B ≡ FD1F
† and using the fact that

MN is an odd number, we have

Bm,n = 1

N

N∑
k=1

exp

{
i
2π

N

[
M

2
k2 +

(
N

2
+ m − n

)
k

]}

= 1

N

N∑
k=1

(−1)k exp

{
i
2π

N

[
M

2
k2 + (m − n)k

]}

= 1

N

Q∑
k̃=1

exp

{
i
2π

N

[
M

2
(2k̃)2 + (m − n)(2k̃)

]}
− 1

N

Q∑
k̃=1

exp

{
i
2π

N

[
M

2
(N − 2k̃)2 + (m − n)(N − 2k̃)

]}

− 1

N
exp

{
i
2π

N

[
M

2
N2 + (m − n)N

]}

= 1

N
+ 1

N

Q∑
k̃=1

exp

{
i
2π

N
[2Mk̃2 + 2(m − n)k̃]

}
− 1

N

Q∑
k̃=1

exp

{
i
2π

N

[
2Mk̃2 + M

2
N2 − 2MNk̃ + (m − n)N − 2(m − n)k̃

]}

= 1

N
+ 1

N

Q∑
k̃=1

[
exp

(
i
2π

N
[2Mk̃2 + 2(m − n)k̃]

)
+ exp

(
i
2π

N
[2Mk̃2 − 2(m − n)k̃]

)]

= 1

N
+ 2

N

Q∑
k̃=1

ei4π(M/N)k̃2
cos

[
4π

k̃

N
(m − n)

]
. (B1)

It is now seen that B is a symmetric matrix, i.e., Bm,n = Bn,m.
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