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Exponential quantum spreading in a class of kicked rotor systems near high-order resonances
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Long-lasting exponential quantum spreading was recently found in a simple but very rich dynamical model,
namely, an on-resonance double-kicked rotor model [J. Wang, I. Guarneri, G. Casati, and J. B. Gong, Phys. Rev.
Lett. 107, 234104 (2011)]. The underlying mechanism, unrelated to the chaotic motion in the classical limit but
resting on quasi-integrable motion in a pseudoclassical limit, is identified for one special case. By presenting
a detailed study of the same model, this work offers a framework to explain long-lasting exponential quantum
spreading under much more general conditions. In particular, we adopt the so-called “spinor” representation to
treat the kicked-rotor dynamics under high-order resonance conditions and then exploit the Born-Oppenheimer
approximation to understand the dynamical evolution. It is found that the existence of a flat band (or an effectively
flat band) is one important feature behind why and how the exponential dynamics emerges. It is also found that
a quantitative prediction of the exponential spreading rate based on an interesting and simple pseudoclassical
map may be inaccurate. In addition to general interests regarding the question of how exponential behavior in
quantum systems may persist for a long time scale, our results should motivate further studies toward a better
understanding of high-order resonance behavior in δ-kicked quantum systems.
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I. INTRODUCTION

In a classical chaotic system, exponential sensitivity to its
initial conditions does not directly yield exponential growth
in physical observables due to the complicated stretching and
folding dynamics in phase space. So it sounds more unlikely
to have an exponential growth in the expectation value of
quantum observables for a long time scale. Indeed, after a
very short time scale of dynamical evolution, even the notion
of exponential sensitivity itself becomes problematic in most
quantum systems. Thus, apart from prototypical situations
like inverted harmonic oscillators [1], long-lasting exponential
quantum spreading (EQS) sounds elusive [2].

Recently, in a variant [3] of the kicked-rotor model [4]
that has been studied extensively for decades, we reported
long-lasting EQS in momentum space. The found EQS is
in striking contrast to other known dynamical behaviors in
kicked-rotor models, such as ballistic diffusion, superdif-
fusion, as well as linear diffusion followed by dynamical
localization [4]. In particular, a double-kicked rotor model with
two tunable time parameters is considered, with the first time
parameter tuned precisely on the so-called main resonance.
This defines the so-called on-resonance double-kicked rotor
model (ORDKR). The other time parameter is tuned close
to the so-called antiresonance condition [5] or to high-order
resonance conditions. With the second parameter tuned close
to an antiresonance condition, the EQS mechanism is as
follows. First, a quantum ORDKR, though in its deep quantum
regime, can still behave remarkably close to the dynamics
of a pseudoclassical limit [6], which can be derived using
the antiresonance condition. Second, the pseudoclassical limit
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has one unstable fixed point, and the stable branch of the
separatrix associated with the unstable fixed point can almost
fully accommodate a zero-momentum initial state. Third, as
time evolves, the quantum ensemble is attracted to the unstable
fixed point and then exponentially repelled from the fixed
point along its unstable manifold. As also shown in Ref. [3],
depending on the detuning from the antiresonance condition,
the time scale of this exponential behavior can be made
arbitrarily long. However, Ref. [3] was not able to explain
EQS under general situations, i.e., those with the second
time parameter tuned close to a rather arbitrary high-order
resonance condition. It is thus still unclear what are the general
and necessary conditions for EQS to occur in ORDKR.

To better understand long-lasting EQS, we carry out a de-
tailed study and adopt a more general framework to illuminate
EQS in ORDKR. Specifically, in treating the kicked-rotor
dynamics under a near high-order resonance condition, we
adapt to ORDKR a technique of analyzing the near-resonant
KR dynamics [7], based on a spinor formulation supplemented
by the Born-Oppenheimer approximation [7]. It is found that
the existence of a flat band (or an effectively flat band) of
ORDKR at zero detuning is one important feature behind
the exponential dynamics. A flat band or an almost flat band
makes it possible for a very simple pseudoclassical limit to
emerge. This fact turns out to be very important to explain and
understand EQS qualitatively. However, on a quantitative level,
we also observe that predictions based on a pseudoclassical
limit may not work well in accurately predicting the EQS rate.
This finding is shown to have a link with the fine spectral
properties of the Floquet bands of ORDKR.

The paper is organized as the follows. In Sec. II, we
first introduce necessary terms for describing a quantum
kicked-rotor under a resonance condition. In the same section
we also introduce ORDKR together with its important spectral
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features that can be connected with EQS. In Sec. III, we
study in detail the dynamics of ORDKR when its second time
parameter is tuned close to a general high-order resonance. We
discuss the dynamics induced by a small detuning from high-
order resonances and then show how simple pseudoclassical
limits can emerge. We then discuss in depth why EQS
occurs and what should be the associated conditions. We also
compare and comment on the EQS rate obtained from the
pseudoclassical limits with those directly obtained from the
quantum dynamics. Section IV concludes this paper.

II. ORDKR UNDER HIGH-ORDER QUANTUM
RESONANCE CONDITIONS

A. Quantum resonances and spinor states

In dimensionless units, the quantum map operator (Flo-
quet operator) for a periodically kicked-rotor model can be
written as

Û (kr) = exp

[
− i

τ

2
l̂ 2

]
exp[−ik cos(θ )], (1)

where θ ∈ [0,2π ) is an angular coordinate, τ is an effective
Planck constant, cos(θ ) describes the profile of a kicking po-
tential, k is determined by the strength of the kicking potential,
and τ l̂ can be regarded as the (angular) momentum operator,
whose eigenstates |l〉 with eigenvalues τ l (l ∈ Z) will be used
as the basis states of the Hilbert space; in the θ representation,
〈θ |l〉 = (2π )−1/2 exp(ilθ ). For later convenience, one may
write Û (kr) = M̂τ V̂ , where M̂τ and V̂ , respectively, denote
the two unitary operators on the right-hand side in Eq. (1).

The kicked-rotor dynamics is highly sensitive to the
arithmetic properties of τ . If τ is commensurate to 2π , then
the quasienergy spectrum of Û (kr) has a band structure, so
asymptotically in time the system’s kinetic energy (τ l̂)2/2
grows ballistically (except in exceptional cases, which occur
when all bands are flat). This is called a KR quantum
resonance and is due to translational invariance in momentum
space [8]. Denoting T̂ the shift operator in momentum space:
T̂ † l̂T̂ = l̂ + 1, one finds that whenever τ = 2πp/q with p,q

mutually prime,

T̂ q†Û (kr)T̂ q = (−1)pqÛ (kr) . (2)

So, Û (kr) commutes with momentum space translations by
multiples of q whenever pq is even and with momentum space
translations by multiples of 2q whenever pq is odd. In both
cases, the Bloch theorem is applicable in momentum space. It
is sufficient to sketch this construction for the case when pq

is even, as adaptation to the other case is trivial.
Thanks to Eq. (2), the generator of the translation T̂ q is

conserved under the discrete time evolution generated by Û (kr).
Since this translation acts in momentum space, its generator
may be dubbed quasiposition. Using that T̂ q is diagonal in
the θ representation, where it corresponds to multiplication by
exp(iqθ ), one finds that in the θ representation quasiposition
is an eigenphase of T̂ q , given by ϑ = qθ (mod 2π ) = q[θ
(mod 2π/q)]. Conservation of quasiposition makes it conve-
nient to study the resonant dynamics in a representation where
quasiposition, and hence T̂ q , is diagonal. Such a represen-
tation is provided by any eigenbasis of T̂ q . Straightforward
calculation shows that in the momentum l representation

any (generalized) eigenvector u of T̂ q associated with a
quasiposition ϑ has the Bloch form:

〈l|u〉 = e−ilϑf (ϑ,l̃), (3)

where l̃ = l (mod q), l = lq + l̃, and f (ϑ,·) is an arbitrary
function defined on the “unit cell” {0,1, . . . ,q − 1} (letters
marked by a tilde, such as l̃,l̃′, . . . , will hereafter denote
integers drawn from the “unit cell”). We shall therefore intro-
duce a representation, for which a complete set of commuting
observables is provided by quasiposition ϑ along with the
observable l̃ that is defined as ˆ̃l = ∑∞

l=−∞(l mod q)|l〉〈l|.
A basis for this representation consists of (generalized)
eigenvectors |ϑ,l̃〉, (0 � ϑ < 2π ), that are represented in the
momentum l representation by

〈l|ϑ,l̃′〉 = (2π )−1/2e−ilϑ δl̃,l̃′ . (4)

They indeed have the Bloch form, see Eq. (3), with the same
meaning of l and l̃, and satisfy

〈ϑ,l̃|ϑ ′,l̃′〉 = δ(ϑ − ϑ ′)δl̃,l̃′ ,

along with the completeness relation

Î =
∫ 2π

0
dϑ

q−1∑
l̃=0

|ϑ,l̃〉〈ϑ,l̃|.

In this representation, any rotor state � is represented by a
wave function ψ̃(ϑ,l̃) ∈ L2([0,2π ]) ⊗ Cq , that is naturally
interpreted as a q component spinor wave function of the
coordinate ϑ and is related to the wave function ψ(l) in the l

representation by

ψ̃(ϑ,l̃) = 〈ϑ,l̃|�〉 = 〈ϑ,l̃|
∞∑

l=−∞
ψ(l)|l〉

= 〈ϑ,l̃|
∞∑

l=−∞

q−1∑
l̃′=0

ψ(lq + l̃′)|lq + l̃′〉

= 1√
2π

∞∑
l=−∞

eilϑψ(lq + l̃). (5)

It is easily seen that in the spinor (ϑ,l̃) representation,
the angular momentum l̂ is represented by the operator
−iqd/dϑ + l̃, which may be pictured as a decomposition of
the angular momentum in an “orbital” plus a “spin” part.

A quite similar calculation yields matrix elements of the
Floquet operator in this representation:

〈ϑ,l̃|Û (kr)|ϑ ′,l̃′〉 = δ(ϑ − ϑ ′)U (kr)
l̃ l̃′ (ϑ),

(6)

U (kr)
l̃ l̃′ (ϑ) :=

∞∑
l=−∞

〈l̃|Û (kr)|lq + l̃′〉e−ilϑ .

For any fixed quasiposition ϑ , U (kr)
l̃ l̃′ (ϑ) represents matrix

elements of a q × q unitary matrixU (kr)(ϑ). The q eigenphases
of this matrix depend on ϑ . As ϑ varies in [0,2π ), any such
eigenphase 	(ϑ) is either a constant, generating a proper,
infinitely degenerate eigenvalue (a “flat band”) [9,10] in the
spectrum of Û (kr), or else it sweeps a continuous band in the
spectrum of Û (kr). In computing the matrix elements [see
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Eq. (6)], it is convenient to use Û (kr) = M̂2πp/qV̂ . Matrix
elements of M̂2πp/q and V̂ on the |ϑ,l̃〉 basis are calculated
in Appendix A, both for the case when pq is even and for the
case when pq is odd. It is found that

〈ϑ,l̃|M̂2πp/q |ϑ ′,l̃′〉 = δ(ϑ − ϑ ′ − πpq)Ml̃ l̃′
(7)

〈ϑ,l̃|V̂ |ϑ ′,l̃′〉 = δ(ϑ − ϑ ′)Vl̃ l̃′ (ϑ).

The matrices M and V(ϑ) are explicitly presented in Ap-
pendix A; the matrix M turns out to be diagonal and
independent of ϑ . Note that if pq is an odd integer then
M̂2πp/q is not diagonal with respect to ϑ , reflecting that it
is not invariant under momentum translations by q.

We next apply this formalism to a double-kicked rotor
model [11], where within each period the free evolution of
a rotor is interrupted twice by an external kicking potential.
Again in terms of dimensionless parameters, the Floquet
operator is given by

Û (dkr) = exp

[
− i

2
(1 − η)T l̂ 2

]
exp[−ik cos(θ )]

× exp

[
− i

2
ηT l̂ 2

]
exp[−ik cos(θ )], (8)

where ηT is the time interval between two subsequent kicks,
with 0 < η < 1. As in previous work [12], we further assume
that the overall period T of the system has been tuned to
T = 4π . This leads to the so-called ORDKR model, whose
Floquet propagator becomes

Û (ordkr)
τ = exp

[
i

2
τ l̂ 2

]
exp[−ik cos(θ )]

× exp

[
− i

2
τ l̂ 2

]
exp[−ik cos(θ )], (9)

where τ := ηT now plays the role of an effective Planck con-
stant. Note that for p = q = 1, τ = 2π , Û (ordkr)

τ is equivalent to
a single kicked-rotor model under the so-called antiresonance
condition [5]. Using the operators M̂τ and V̂ , which were
introduced after Eq. (1), one may write

Û (ordkr)
τ = M̂†

τ V̂ M̂τ V̂ , (10)

whence, referring to Eq. (2), it is immediately seen that
whenever τ = 2πp/q with p,q coprime, Û (ordkr)

τ commutes
with translations by q in momentum space, regardless of parity
of pq; so the spinor formalism that was described above for the
KR can be equally applied here. The matrix-valued function
of quasiposition U (ordkr)(ϑ) that represents Û

(ordkr)
2πp/q in the (ϑ,l̃)

representation is immediately found using Eqs. (7) and (10):

U (ordkr)(ϑ) = M†V(ϑ − πpq)MV(ϑ), (11)

where M,V(ϑ) are the matrices that appear in Eq. (7). The
spectral analysis of the ORDKR at exact resonance, τ =
2πp/q, is based on diagonalization of the matrices U (ordkr)(ϑ).
Some results are presented in the next subsection.

B. Some spectral properties

The band structure of Û
(ordkr)
2πp/q has to be found numerically

in general. However, in the case when p = 1 and q = 3, it can
be calculated analytically as shown in Appendix B: a result
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FIG. 1. (Color online) (a) Floquet band structure of Û
(ordkr)
2πp/q with

p = 1, q = 3, and k = 2.0, shown via eigenphase 	(ϑ) vs. ϑ .
Momentum distribution profiles for states prepared on bottom band
(b), middle band (c), top band (d) are also shown. Here and in all
other figures, all plotted quantities are in dimensionless units.

is shown for k = 2.0 in Fig. 1(a). The bands are seen to be
symmetric with respect to the central band, which is flat, and
aligned with the zero eigenphase axis. In Appendix C we show
that the spectrum of Û

(ordkr)
2πp/q exhibits exactly the same features

whenever p and q are odd and coprime; in the following we
always restrict to such cases. The dynamical properties that
make the object of this paper rest on this very fact, and on a
result [9] that for the same values of τ the maximal bandwidth
of the nonflat bands scales with the kicking strength k as
kq+2, implying that under a high-order resonance condition
(i.e., q > 2), and for a sufficiently small kicking parameter
k, effectively all the Floquet bands of Û

(ordkr)
2πp/q will be flat.

Thanks to the inversion symmetry of the spectrum with respect
to zero eigenphase [9], the eigenphases 	(ϑ) of the matrix
U (ordkr)(ϑ) may be labeled by a band index ν with −q0 � ν �
q0, where q = 2q0 + 1, such that 	ν(ϑ) = −	−ν(ϑ); then
symmetric bands have opposite ν, and the flat band has ν =
0. Components of the eigenvectors of matrix U (ordkr)(ϑ) are
likewise denoted u

(ν)
l̃

(ϑ) (assuming an arbitrary ϑ-dependent
phase factor to be fixed by some gauge convention). A new
representation is thereby defined by quasiposition and by the
quantum number ν, such that basis kets |ϑ,ν〉 are given in the
(ϑ,l̃) representation by

〈ϑ,l̃|ϑ ′,ν〉 = δ(ϑ − ϑ ′)u(ν)
l̃

(ϑ). (12)

This may be dubbed “the band representation.” In this
representation, a state � is represented by a wave function:

φ(ϑ,ν) := 〈ϑ,ν|�〉 =
q∑

l̃=0

u
(ν)∗
l̃

(ϑ)ψ̃(ϑ,l̃). (13)

Transformation formulas from the band representation to the
momentum representation and to the coordinate representation
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are then easily computed in the form

〈l|ϑ,ν〉 = (2π )−1/2e−ilϑu
(ν)
l̃

(ϑ),
(14)

〈θ |ϑ,ν〉 = δ(qθ − ϑ)
q−1∑
l̃=0

eil̃θu
(ν)
l̃

(ϑ).

where as usual l = lq + l̃ and qθ is understood as qθ (mod 2π ).
Under a quantum resonance condition, states prepared in a
flat-band subspace will stay localized, whereas states prepared
in nonflat-band subspaces will undergo ballistic spreading in
momentum space. It will prove useful to prepare states that are
spectrally supported by the flat band alone, and in addition are
well localized in momentum space around momentum l = 0.
To this end one may exploit the mean ergodic theorem [13]
according to which, for any rotor state |�〉, in the limit when
N → +∞ the average

1

N

N−1∑
n=0

(
Û

(ordkr)
2πp/q

)n|�〉 (15)

tends to the projection of |�〉 onto the eigenspace of Û
(ordkr)
2πp/q ,

which corresponds to the eigenvalue 1, i.e., onto the flat-band
subspace. Alternatively, one may compute Wannier states in
momentum space, centered at l = 0; these are equal-weight
coherent superpositions of all eigenstates in a band with
different choices of the Bloch phase (quasiposition) ϑ . Figures
1(b)–1(d) show the momentum distribution profiles for such
kinds of states that are prepared on the bottom band, the
middle band, and the top band in the case p = 1, q = 3. The
momentum expectation values of the states are set to 0, as
illustrated in Figs. 1(b)–1(d).

We also plot in Fig. 2(a) the Floquet band structure
versus the kicking strength parameter k, with τ = 2π/3.
As a comparison, we show in Fig. 2(b) the spectrum in
parallel if the effective Planck constant is slightly increased to

FIG. 2. Floquet spectrum of Û (ordkr)
τ as a function of k for τ =

2π/3 in panel (a) and for τ = 2π/3 + 2π/3003 in panel (b). The
spectrum is also collectively plotted vs. a varying τ for k = 1.5 in
panel (c) and for k = 2.4 in panel (d).

τ = 668π/1001 (= 2π/3 + 2π/3003, so the effective Planck
constant remains a rational multiple of 2π ). In that case, there
are 1001 Floquet bands forming three clusters. We denote
W (k) as the spectral range of the clusters with a kicking
strength k. It is seen from Fig. 2(b) that W (k) is not a
monotonous function of k. To have an overview of the spec-
trum, we also show for completeness the spectrum collectively
as we scan τ , resulting in the well-known Hofstadter’s butterfly
spectrum [12,14]. The results are shown in Fig. 2(c) for k = 1.5
and in Fig. 2(d) for k = 2.4.

III. EQS IN ORDKR TUNED NEAR QUANTUM
RESONANCE

A. Numerical results

When setting the effective Planck constant τ of ORDKR
close to a quantum resonance condition, i.e., τ = 2πp/q + ε

with both p and q being odd integers, we found in Ref. [3]
that long-lasting EQS over many orders of magnitude of the
kinetic energy occurs, with the EQS time scale increasing with
a decreasing detuning parameter ε. However, the theoretical
analysis in Ref. [3] was applicable exclusively to the case of
p = q = 1. It is still unclear what is the underlying physics
behind EQS under general near-resonance cases and why we
need q and p to be both odd integers to observe EQS. Here
we analyze the dynamics of ORDKR tuned near a general
resonance condition. Though our discussions will be as general
as possible, we mainly use τ = 2π/3 + ε to present explicit
results.

Figures 3(a) and 3(b) depict the dynamics of the expectation
value of momentum squared (plotted on a log scale), for
an initial state prepared on the middle flat Floquet band or
on the bottom nonflat band of Û

(ordkr)
2πp/q with p = 1, q = 3

[throughout we all assume that such band states are localized
in the neighborhood of zero momentum; see Figs. 1(b)–1(d)].
The detuning is chosen to be ε = 10−4. First of all, for the
flat-band initial state [Fig. 3(a)], there is an obvious (relatively
wide) time window in which the plotted curve can be fitted
by a straight line. This indicates EQS, which is seen to cover
the expectation value of momentum squared by many orders
of magnitude over quite a long time scale. By contrast, for
the initial state prepared on a nonflat band of Û

(ordkr)
2πp/q , there

is clearly no such exponential behavior. This comparison
suggests that it is important for the initial state to be placed
on a flat band of Û

(ordkr)
2πp/q to observe EQS upon introducing

a small detuning. To further understand this, we project the
wavefunction evolving in time under Û (ordkr)

τ onto the three
bands of Û

(ordkr)
2πp/q with p = 1 and q = 3. We show in Figs. 3(c)

and 3(d) the time dependence of the resulting projection
probabilities. In particular, Fig. 3(c) is for the flat-band initial
state. There it is seen that despite the detuning ε, the system
still mainly occupies the flat band for a very long time
scale. Interestingly, once considerable population has been
transferred to the other two bands (at about t = 6 × 104),
the associated time dependence of the momentum squared
shown in Fig. 3(a) also starts to deviate significantly from
an exponential law. Figure 3(d) shows the other case, where
initially all population is on a nonflat band and then the system
experiences population transfer to the other two bands.
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FIG. 3. (Color online) Panels (a) and (b) depict the time-
dependence of momentum squared, with t denoting the number
of iterations of the ORDKR Floquet operator Û (ordkr)

τ , with τ =
2π/3 + ε, k = 2.0, and ε = 10−4, for initial states prepared on the
middle flat band or a nonflat band of Û

(ordkr)
2πp/q (with p = 1 and q = 3),

respectively. Note the log scale used for plotting the expectation value
of momentum squared and that panel (a) displays a wide time window
in which the plotted curve is linear, thus signaling an exponential time
dependence. Panels (c) and (d) show the corresponding population
dynamics, where the occupation probability is obtained by projecting
the time evolving state on the three Floquet bands of Û

(ordkr)
2πp/q (with

p = 1 and q = 3).

We have also numerically examined how the exponential
rate of EQS depends on the system parameters k and ε for
a flat-band initial state, with the results shown in Fig. 4. In
particular, we first fit the EQS behavior shown in Fig. 3(a)
by e2λ+ over a proper time scale, and then plot the obtained
λ+ versus k [Fig. 4(a)] or versus ε [Fig. 4(b)]. It is seen that
the exponential rate is a linear function of ε but displays a
highly nontrivial dependence on k. As such, the exponential
rate of EQS depends on both parameters k and ε, rather than
depending on their product only. This marks a clear difference
from the analysis in Ref. [3] for τ = 2π + ε.

Parallel numerical studies are also carried out for other
cases. For example, we have considered cases with much
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FIG. 4. Exponential rate of EQS obtained by direct exponential
fitting of the time-dependence of the kinetic energy (i.e., ∼e2λ+ ) over
a proper time scale, with τ = 2π/3 + ε. In panel (a), ε = 2π/3003,
λ+ is shown for a varying k. In panel (b), k = 1.5, λ+ is shown for a
varying ε.

smaller values of k. Due to the above-mentioned power-law
scaling of the band width (∼ kq+2) for Û

(ordkr)
2πp/q with both p and

q being odd, all the Floquet bands are effectively flat. In these
situations (including the high-order resonance case studied in
Ref. [3]), we find that upon introducing a detuning of ε, i.e.,
τ = 2πp/q + ε, EQS occurs and the result is insensitive to the
initial state preparation. This further strengthens the view that
the flat-band initial states are important to understand EQS.
To double-check this, we have also considered cases in which
either p or q is an even integer. In these cases there are no
flat bands for Û

(ordkr)
2πp/q and indeed we do not find EQS either.

All these numerical results suggest an important connection
between EQS and the existence of a flat (or effectively flat)
band in Û

(ordkr)
2πp/q with both p and q being odd.

B. Theoretical analysis

1. Single-band approximation

To see how a detuning from exact resonance (τ = 2πp/q +
ε) induces nontrivial dynamical evolution, we first rewrite the
ORDKR propagator in the following form:

Û (ordkr)
τ = R̂†

εŴτ R̂ε, (16)

where

R̂ε = exp(−iεl̂2/2), (17)

Ŵτ = Û
(ordkr)
2πp/q Ûε, (18)

and so

Ûε = exp[ik cos(θ )]R̂ε exp[−ik cos(θ )]R̂†
ε . (19)

Operator Ŵτ is thus a product of the exactly resonant propa-
gator times a detuning-induced factor. This factor Ûε has two
effects: it breaks the momentum-space translational invariance
possessed by Û

(ordkr)
2πp/q , which means that quasiposition is no

longer a conserved quantity; moreover, it causes population
transfer between different Floquet bands of Û

(ordkr)
2πp/q .

Our analysis is based on two main ingredients. First, we
will implement an approximation of the Born-Oppenheimer
type, motivated by our numerical results discussed above, that
the population transfer can be insignificant over a considerable
time scale for sufficiently small detuning. We shall therefore
project the above operators onto the band subspaces, thus
neglecting interband interactions [7]. Next, to study the single-
band dynamics thus obtained at small detuning ε we will
implement a pseudoclassical approximation, resting on the
observation that in the dynamical equations ε plays the formal
role of a Planck constant. The pseudoclassical approximation
[6] is based on the limit ε → 0, εl → I , and kε → k̃; where I

is a pseudoclassical momentum, that is conjugate to position
θ , when ε is given the role of a Planck constant.

To project onto band subspaces we have first to write
operators in Eqs. (17) and (19) in the band representation.
Matrix elements of operator R̂ε in Eq. (17) are computed
using Eq. (14). The task is simplified by the observation that in
the pseudoclassical approximation ε → 0, to be implemented
later, terms like εl̃ and εl̃2 will be negligible, because l̃ is
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bounded by q. Dismissing such terms, we find

〈ϑ,ν|R̂ε |ϑ ′,ν ′〉 = δν,ν ′ 〈ϑ,ν| exp

(
− i

q2L̂2

2ε

)
|ϑ ′,ν〉, (20)

where L̂ ≡ −iε d
dϑ

is the operator that is pseudoclassically
conjugate to quasiposition. Thus, in the pseudoclassical limit,
operator R̂ε does not cause interband transitions. The calcula-
tion of matrix elements of the kick operator is slightly more
complicated. For an arbitrary function G(θ̂) of the position
operator, Eq. (14) yields

〈ϑ,ν|G(θ̂ )|ϑ ′,ν ′〉

=
∫ 2π

0
dθG(θ )〈ϑ,ν|θ〉〈θ |ϑ ′,ν ′〉

= δ(ϑ − ϑ ′)
q−1∑
r=0

V ∗
ν,r (ϑ)Vν ′,r (ϑ)G(ϑ/q + 2πr/q), (21)

where

Vν,r (ϑ) = 1

q

q−1∑
l̃=0

u
(ν)
l̃

(ϑ) exp[il̃(ϑ/q + 2πr/q)]. (22)

With G(θ ) = cos(θ ), this yields

〈ϑ,ν| cos(θ̂)|ϑ ′,ν ′〉 = δ(ϑ − ϑ ′)Fν,ν ′(ϑ), (23)

where

Fν,ν ′(ϑ) = 1

2q

q−1∑
l̃=0

[
u

(ν)
l̃

(ϑ)u(ν ′)∗
l̃+1

+ u
(ν ′)
l̃

(ϑ)u(ν ′)∗
l̃−1

]
, (24)

where l̃ ± 1 is understood mod(q). This shows that the kick
operators exp[±ik cos(θ̂)] do produce interband transitions,
even in the pseudoclassical limit. In order to obtain a projected
single-band dynamics without breaking unitarity, we simply
ignore all interband matrix elements of cos(θ̂). For the νth
band this amounts to replacing operator Ûε by the Born-
Oppenheimer-like operator:

Û (BO)
ν,ε = exp

(
i

ε
k̃Fν,ν(ϑ)

)
exp

(
− i

ε
q2L̂2

)

× exp

(
− i

ε
k̃Fν,ν(ϑ)

)
exp

(
i

ε
q2L̂2

)
. (25)

It should be noted that the “band potential” Fν,ν(ϑ) is gauge-
invariant, i.e., it does not depend on the choice of the arbitrary
phase factor of the band eigenvectors. For higher (q > 1)
resonances it has to be numerically computed. In the case
p = 1, q = 3, the effective potentials for all bands can be
found analytically. We plot in Fig. 5 the effective potential
for flat band. The flat-band potential F0,0 is found to be
indistinguishable from −(2q)−1 cos(ϑ) when k  1.

2. Pseudoclassical approximation

If ε is regarded as a (pseudo)-Planck constant, then Eq. (25)
is manifestly the formal quantization of the pseudoclassical
map (ϑ0,L0) �→ (ϑ4,L4), which is obtained by composing the

FIG. 5. (Color online) Effective potential for flat Floquet band in
spinor representation, with τ = 2π/3. In panel (a), k = 2.0, and in
panel (b), k = 3.5. Panel (c) is the top view of the effective potential
with respect to ϑ and k. The color bar indicates the value of F0,0(ϑ).

following four maps:

(ϑ1,L1) = (ϑ0 − q2L0,L0)

(ϑ2,L2) = (ϑ1,L1 − k̃F ′
ν,ν(ϑ1))

(26)
(ϑ3,L3) = (ϑ2 + q2L2,L2)

(ϑ4,L4) = (ϑ3,L3 + k̃F ′
ν,ν(ϑ3)).

These maps respectively correspond to the four unitary opera-
tors of which Eq. (25) is composed. Using this, and Eq. (19), we
can then derive a pseudoclassical in-band approximation for
the operator Ŵτ . In the νth band, Û

(ordkr)
2πp/q is just multiplication

by exp ( − i	(ϑ)), which amounts to an additional kick,
implies a correction by

L4 → L4 + ε	′(ϑ). (27)

The additional operators R̂ε , R̂†
ε which appear in Eq. (16)

simply enforce a cyclic rearrangement of the maps in Eq. (26),
such that the 2nd map in Eq. (26) becomes the 1st, while the
1st becomes the 4th. This composite map is, however, written
in the “band” variables ϑ,L, and to make comparisons to
the exact dynamics it is necessary to restore the “physical”
variables θ and I = εl. To this end we use that ϑ = qθ , and
so I = qL. This yields:

(θ1,I1) = (θ0,I0 − qk̃F ′
ν,ν(qθ0))

(θ2,I2) = (θ1 + I1,I1)

(θ3,I3) = (θ2,I2 + qk̃F ′
ν,ν(qθ2)) (28)

I3 = I3 + εq	′(qθ3)

(θ4,I4) = (θ3 − I3,I3).

In the case of flat band (ν = 0), the correction in Eq. (27)
is absent; hence, the pseudoclassical analog of the complete
operator Û (ordkr)

τ is found, once more as the product of four
maps. The fourfold product of maps in the variables θ, I ,
which is obtained in this way is our final pseudoclassical
approximation for the flat-band dynamics. Its form is greatly
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FIG. 6. (a) Phase-space portrait of the pseudoclassical map of
ORDKR described by Eq. (29), for flat band with k = 2.0, ε = 10−3,
and τ = 2π/3 + ε. (b) Phase-space portrait of the pseudoclassical
map described in Eq. (28) for nonflat band with k = 2.0, ε = 10−3,
and τ = 2π/3 + ε.

simplified by one more canonical change of variables, from
θ, I to θ, J ≡ θ + I . In the new variables, the map can be
written in an alternate form as iteration map:

Jn+1 = Jn − B(θn)
(29)

θn+1 = θn − B(Jn+1),

where B(θ ) = qk̃F ′
0,0(qθ ) and B(J ) = qk̃F ′

0,0(qJ ). This map
is somewhat resemblant of the Kicked-Harper (KH) map, from
which it differs because in that case B(θ ) ∝ sin(θ ). It is impor-
tant to remark that this map is not precisely pseudoclassical,
because along with the pseudoclassical parameter k̃ it still
explicitly retains ε, the pseudo-Planck constant. Note also that
the band potential is fully determined by the spectral structure
at exact resonance, so it is only dependent on k = k̃/ε. At
small ε �= 0, the phase space structure of the map, illustrated
in Fig. 6(a) for the case q = 3, reveals the origin of the EQS, as
we shall explain in detail. For not too large k, the phase portrait
exhibits 2q unstable fixed points in each line I = 2nπ/q (n an
arbitrary integer). The stable and unstable manifolds of such
points support thin stochastic layers, which interconnect so as
to form a regular network, whereby phase space is partitioned
into parallelograms. Each parallelogram is centered at a stable
fixed point and has unstable fixed points at its vertices; two
of its sides are parallel to the θ -axis, and the other two are at
an angle of arctan(−2) with it. For half of the unstable points,
which lie on the zero-momentum axis, the unstable manifolds
reach out in momentum space toward the unstable points
located at momentum ±2π/q. Hence, a pseudoclassical
ensemble of points initially prepared near momentum zero
will be attracted exponentially fast along the zero momentum
axis by such fixed points, to be then exponentially fast driven
away from the axis, along their unstable manifolds. The same
qualitative behavior is observed in the dynamics of quantum
states, which are initially prepared in the flat-band subspace
of Û

(ordkr)
2πp/q , near zero momentum. For such states, the quantum

I
/
π

I
/
π

θ/π

I
/
π

FIG. 7. (Color online) Husimi distribution for Û
(ordkr)
2πp/q (p = 1,

q = 3), with initial state I = 0 under condition k = 2.0 and
τ = 2π/3 + 2π/3003. (a) Husimi distribution of the initial state.
(b) Husimi distribution of the state after 3 000 iterations under
the map Û (ordkr)

τ . (c) Husimi distribution of the state after 60 000
iterations under the map Û (ordkr)

τ . In plotting the Husimi distribution
the dimensionless effective Planck constant used in the coherent states
is taken to be the same as the detuning 2π/3003.

evolution follows for a long time the flat-band dynamics as
we have seen, and the small-ε, quantum flat-band dynamics in
turn mirrors the pseudoclassical dynamics. This is confirmed in
Fig. 7, where Husimi phase-space distributions are shown for
a quantum state evolved from an initial state that prepared on
the flat band of Û

(ordkr)
2πp/q . The pseudoclassical separatrix struc-

ture is faithfully reflected in the quantum dynamics. Because
the actual physical momentum is given by τI/ε, the EQS in the
expectation value of I 2 results in a large-scale EQS in the actual
momentum space. This twofold EQS mechanism explains why
the system should be slightly detuned from τ = 2πp/q with
p and q both being odd. If either p or q is an even number,
then Û

(ordkr)
2πp/q does not have a flat band (or an effectively flat

band) and our analysis does not apply.
To further check the above picture, we consider an initial

state prepared on a nonflat band of Û
(ordkr)
2πp/q with p = 1,

q = 3, and k = 2 (we do not consider a smaller k because,
as mentioned earlier, all bands will be effectively flat if k is
very small). In this case, 	′(ϑ) is not negligible, and hence an
appropriate classical dynamics description should be based on
the map in Eq. (28). More importantly, which is perhaps not

052919-7



WANG, WANG, GUARNERI, CASATI, AND GONG PHYSICAL REVIEW E 88, 052919 (2013)

obvious from the phase space plot in Fig. 6(b), along one in-
dividual trajectory, the value of Lε can now jump by εq	′(ϑ),
which yields a linear increase in the momentum scale (on
average) and has nothing to do with an exponential repulsion
mechanism we identified earlier. Indeed, the computational
results shown in Fig. 3(b) do not suggest any EQS behavior.
Rather, examining the results using a log-log plot shows that
the spreading is ballistic, which is consistent with the fact that
the states are prepared on a continuous nonflat band.

3. Quantitative investigation of EQS rates

To perform linear stability analysis of the pseudoclassical
map described in Eq. (29), we wrote the Jacobian matrix (as
the stability matrix) at the fixed points

J (θ,J ) =
(

1 −B ′(θ )

−B ′(J ) 1 + B ′(θ )B ′(J )

)
, (30)

where J ≡ θ + I , B(θ ) = qk̃F ′
0,0(qθ ), and B(J ) =

qk̃F ′
0,0(qJ ). The unstable points can be obtained from

the band potential derived above. It can be easily shown
that the pseudoclassical map is an area-preserving map, as
det (J ) ≡ 1. Based on a linear stability analysis at the unstable
fixed points of the pseudoclassical map, we immediately
obtain a pseudoclassical prediction of the EQS rate, i.e.,
λcl

± = ln[ 2+K±√
K2+4K

2 ] with K = B ′(θ )B ′(J ) evaluated at an
unstable fixed points. For small values of kicking strength k,
K is proportional to k2 and λcl

+ ∼ k. In Fig. 8, we show λcl
+

versus k. Note that if we use an actual ensemble of trajectories
close to zero momentum to simulate the pseudoclassical
dynamics, the obtained pseudoclassical EQS rate still agrees
quite well with the simple linear stability analysis here.

Interestingly, our numerical results shown in Fig. 4 are
richer than the prediction of λcl

+ ∼ k: the actual EQS rate λ+ is
found to be proportional to ε but is not a monotonous function
of k. This disagreement on the quantitative level suggests that
our above treatments have introduced some errors. Additional

0 1 2 3
0

10

20

30

k

λ
+
/
10

−
3

FIG. 8. Pseudoclassocal prediction of the EQS rate at the unstable
fixed point for our pseudo-classical map, with τ = 2π/3 + ε, ε =
2π/3003.
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FIG. 9. (a) Dashed line represents numerical results of g, where g

is defined in the text as the ratio of the actual exponential rate and the
rate obtained from our pseudoclassical map, with τ = 2π/3 + ε, ε =
2π/3003. In panel (b) the dashed line basically represents the same
result but plotting 0.7 × g × k for a varying k. Solid line represents
W (k), which is the spectral range of the middle subband cluster of
Û (ordkr)

τ (see Fig. 2).

numerical checks show that the errors are not directly due to
the pseudoclassical treatment itself.

To better characterize and understand the quantitative
disagreement we introduce a factor g ≡ λ+

λcl+
, namely, the

ratio of the numerical EQS rate and that predicted by our
pseudoclassical map. g thus defined should be a function of
ε and k. The dependence of g on ε is found to be very weak
so we focus on the k-dependence. In Fig. 9(a), we show g

versus k. For the same detuning, Fig. 9(b) shows 0.7 × g × k

versus k (dash line) as compared with W (k), where W (k) is the
spectral range of the middle subband cluster of Û (ordkr)

τ , with
τ = 2π/3 + 2π/3003. Remarkably, the g factor is seen to be
strongly correlated with the actual spectral range W (k) of the
middle subband cluster [for a computational example of the
subband clusters, see Fig. 2(b)]. This correlation between g and
W (k) is somewhat expected: the pseudoclassical Hamiltonian
suggests that the energy scale is proportional to k but the actual
spectrum can be a highly nonlinear function of k. In particular,
it is seen that for k ≈ 2.4, g as well as the spectral width
W (k) is seen to be almost zero in Fig. 9(a). This collapse
of the Floquet subbands leads to a freezing of the quantum
dynamics and the difference between the actual dynamics
and our pseudoclassical prediction becomes most pronounced.
Such type of information about Û (ordkr)

τ can be sensitive to τ

and k and is naturally not considered in our above theoretical
analysis based on the adiabatic approximation and the pseudo-
classical treatment. Roughly speaking, detailed aspects of the
dynamical evolution are determined by the actual spectrum
of Û (ordkr)

τ , not by the on-resonance propagator Û
(ordkr)
2πp/q . So

by analyzing the actual dynamics using one-band subspace of
Û

(ordkr)
2πp/q only, certain subtle quantum effects connected with the

many subbands are necessarily lost. Indeed, in our theoretical
analysis, we only require the population to stay on the flat band
of Û

(ordkr)
2πp/q and have neglected all possible fine structures in the

actual Floquet spectrum of Û (ordkr)
τ .

Some additional remarks are in order. First, we have
also carried out the same analysis for τ = 2π + ε, i.e., the
antiresonance case studied in Ref. [3]. In this case we always
find g = 1. That is, for ORDKR slightly detuned from an
antiresonance condition, the pseudoclassical prediction is
found to match the EQS rate quantitatively. We believe that this
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FIG. 10. (a) Dashed line represents numerical results of g, where
g is defined in the text as the ratio of the actual exponential rate and the
rate obtained from our pseudoclassical map, with τ = 6π/5 + ε, ε =
2π/4990. In panel (b) dashed line basically represents the same result
but plotting 0.2 × g × k for a varying k. Solid line represents W (k),
which is the spectral range of the middle subband cluster of Û (ordkr)

τ .

is closely connected with the fact that Û
(ordkr)
2πp/q (p = 1, q = 1)

has only one band (which is flat) and hence there is no need to
apply the above-mentioned adiabatic approximation. We have
also studied other cases, for example, with τ = 6π/5 + ε and
ε = 2π/4995, see Fig. 10, again showing correlations with
the actual spectral range of the subband clusters of Û (ordkr)

τ . As
the focus of this work is on a physical explanation of EQS in
ORDKR detuned slightly from a general resonance condition,
which has been achieved, we leave a more detailed study of g

for possible future work.

IV. CONCLUDING REMARKS

The main contribution of this work is to extend the
analysis in Ref. [3] from ORDKR near an antiresonance
condition to general cases near high-order resonances. It
is explained here why EQS can occur in ORDKR if its
effective Planck constant τ is slightly detuned from 2πp/q

with both p and q being odd. Our theoretical analysis shows
that EQS is closely related to two pieces of physics: (i) the
existence of flat bands or effectively flat bands of ORDKR
under high-order resonances and (ii) the emergence of an
integrable pseudoclassical limit whose dynamics can induce
rather uniform exponential spreading in the momentum space.
We also point out that the pseudoclassical picture also makes
it straightforward to understand the time scale of EQS [3]. On
the quantitative level, we find that there is some difference
in EQS rates between our simple theoretical analysis and the
actual quantum dynamics. This indicates that the dynamics of
ORDKR near high-order resonances can be richer if details
become important.

In this paper we do not discuss any experimental issues.
For example, in atom-optics realizations of the kicked-rotor
dynamics [15], the nonzero width in the quasimomentum
should introduce more complications, but in our constructed
ORDKR the width is taken as absolutely zero. However,
for near antiresonance cases this issue was already carefully
addressed by us in Ref. [3]. Therefore, we do not repeat similar
analysis here.

Long-lasting EQS is an intriguing dynamical phenomenon.
Our route toward the understanding of EQS also indicates that
a pseudoclassical approach of kicked systems near quantum
resonance conditions constitutes a powerful tool in digesting

quantum dynamics that is nevertheless in the deep quantum
regime. Further studies on the quantitative difference between
our pseudoclassical predictions and the actual quantum results
might bring deeper understandings of this approach as well as
the adiabatic approximation we made. The very existence of
flat Floquet bands of ORDKR and its role in generating EQS
also hint that there should be more interesting physics to be
discovered in kicked-rotor systems.
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APPENDIX A: RESONANT FLOQUET OPERATORS
IN THE SPINOR REPRESENTATION

All Floquet operators considered in this paper may be
expressed as products of unitary M̂ and V̂ operators. Conse-
quently, their matrix elements in the spinor (ϑ,l̃) representation
can be found from matrix elements of the latter operators.
These are explicitly calculated in this appendix.

〈ϑ,l̃|M̂τ |ϑ ′,l̃′〉 =
+∞∑

l=−∞
〈ϑ,l̃|l〉〈l|ϑ ′,l̃′〉e−iτ l2/2. (A1)

Using Eq. (4), replacing τ = 2πp/q, l = lq + l̃′′, and sum-
ming over l,l̃′′, one finds

〈ϑ,l̃|M̂τ |ϑ ′,l̃′〉 = δ(ϑ − ϑ ′ − πpq)Ml̃ l̃′ , (A2)

where the matrix element Ml̃ l̃′ = δl̃,l̃′ exp(−iπpl̃ 2/2).
In a completely similar manner one finds

〈ϑ,l̃|V̂ |ϑ ′,l̃′〉 = δ(ϑ − ϑ ′)Vl̃ l̃′(ϑ), (A3)

where

Vl̃ l̃′(ϑ) = 1

q

q−1∑
j=0

e−ik cos(2πj/q+ϑ/q)e−i(l̃−l̃′)(2πj/q+ϑ/q). (A4)

For τ = 2πp/q, with both p and q being odd integer, we
have

U (ordkr)
l̃ l̃′ (ϑ) = eiτ l̃ 2/2

q−1∑
l̃′′=0

e−iτ l̃′′2/2eiπ(l̃−l̃′′)

1

q

q−1∑
j1=0

eik1 cos(2πj1/q+ϑ/q)ei(2πj1/q+ϑ/q)(l̃′−l̃′′) (A5)

1

q

N−1∑
j2=0

e−ik2 cos(2πj2/q+ϑ/q)ei(2πj2/q+ϑ/q)(l̃′′−l̃).

APPENDIX B: A SOLVABLE CASE WITH τ = 2π/3

For ORDKR under the resonance condition τ = 2π/3,
there are three Floquet bands and all of them can be analytically
solved. The eigenphases are found to be

	1 = 	, 	0 = 0, 	−1 = −	, (B1)
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where

	 = cos−1(η),

η =
(

1

3
cos 2β + 2

3
cos β cos 3α

)
, (B2)

α = k

2
cos

ϑ

3
, β =

√
3k

2
sin

ϑ

3
.

The eigenphase 	0 is independent of the Bloch phase ϑ and
so it gives a perfectly flat band. The corresponding normalized
eigenvector is (see Sec. II B for notations):

u
(0)
0 (ϑ) = 0

u
(0)
1 (ϑ) = γ e−iϑ/3[e−3iα − 2 cos(β + π/3)]

(B3)
u

(0)
2 (ϑ) = γ e−2iϑ/3[2 cos(β − π/3) − e−3iα]

γ = [6(1 − η)]−1/2.

APPENDIX C: PROOF OF THE EXISTENCE
OF FLAT BAND

Here we give a simple proof that whenever τ = 2πp/q,
with p and q odd and coprime integers, 1 is an infinitely
degenerate proper eigenvalue of Û

(ordkr)
2πp/q , which generates a

flat band in the band spectrum of Û
(ordkr)
2πp/q . From Eq. (A4) it is

immediate that

V(ϑ + π ) = RV†(ϑ)R , Rj̃ l̃ := δj̃ l̃ (−1)l̃ .

Hence, defining a matrix M1 := RM, and using that M is
diagonal, whenever pq is an odd integer, the factorization, see
Eq. (10), may be rewritten as follows:

U (ordkr)(ϑ) = M†
1 V†(ϑ) M1 V(ϑ). (C1)

Next we introduce the following unitary matrices S(ϑ):

Sj̃ l̃(ϑ) = 1√
q

eij̃ϑ/q e2πipj̃ l̃/q .

For any given ϑ ,S(ϑ) defines a rotation of spin axes that carries
V(ϑ) to diagonal form. For a generic q × q matrix-valued
function A(ϑ) of quasiposition, let Ǎ(ϑ) denote the matrix
S(ϑ)†A(ϑ)S(ϑ). Then Eq. (C1) yields

Ǔ (ordkr)(ϑ) = M̌†
1 V̌†(ϑ) M̌1 V̌(ϑ). (C2)

Straightforward calculation shows that V̌(ϑ) is diagonal, and
M̌1(ϑ) is symmetric. Therefore, the last equation can be
rewritten in the form

Ǔ (ordkr)(ϑ) = M̌∗
1 V̌∗(ϑ) M̌1 V̌(ϑ), (C3)

where ∗ denotes complex conjugation. It is then immediate
that

(Ǔ (ordkr))∗(ϑ) = W(ϑ) Ǔ (ordkr)(ϑ) W†(ϑ), (C4)

where W(ϑ) = V̌(ϑ)M̌1. Equation (C4) says that the matrix
Ǔ (ordkr)(ϑ) is unitarily equivalent to its own complex conjugate,
hence its spectrum is invariant under complex conjugation.
The same is then true of the spectrum of U (ordkr)(ϑ), which
is indeed unitarily equivalent to Ǔ (ordkr)(ϑ) by construction.
This proves symmetry of the spectrum with respect to the
zero eigenphase axis. As the spectrum consists of q points
on the unit circle (counting multiplicities), and q is odd, this
symmetry entails that an odd number of eigenvalues must be
real, hence equal to ±1; on the other hand, from Eq. (C3),
det(Ǔ (ordkr)(ϑ)) = |det(M̌1(ϑ)|2|det(V̌(ϑ))|2 = 1, so at most
an even number of eigenvalues may be equal to −1. So 1 is
always an eigenvalue, independent of θ , and this produces a
flat band at zero eigenphase.
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