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Rational solitons of wave resonant-interaction models
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Integrable models of resonant interaction of two or more waves in 1 + 1 dimensions are known to be of
applicative interest in several areas. Here we consider a system of three coupled wave equations which includes
as special cases the vector nonlinear Schrödinger equations and the equations describing the resonant interaction
of three waves. The Darboux-Dressing construction of soliton solutions is applied under the condition that the
solutions have rational, or mixed rational-exponential, dependence on coordinates. Our algebraic construction
relies on the use of nilpotent matrices and their Jordan form. We systematically search for all bounded rational
(mixed rational-exponential) solutions and find a broad family of such solutions of the three wave resonant
interaction equations.
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I. INTRODUCTION

Integrable partial differential equations which model non-
linear wave propagation in 1 + 1 dimension have been largely
investigated because of their applicative relevance. In fact,
even if approximate, some of them capture important nonlinear
effects because they can be derived, as amplitude modulation
equations, by multiscale perturbation methods from various
kind of (not necessarily integrable) wave equations with the
assumption of weak dispersion and nonlinearity (see, for
instance, Ref. [1], and references therein). The universality
of these integrable models has been well recognized [2,3].
The best known and simplest example of such models is
the nonlinear Schrödinger (NLS) equation for the evolution
of the amplitude of a quasimonochromatic wave with wave
number k and frequency ω, as given by the linear dispersion
function ω = ω(k). Many physical applications require, how-
ever, that integrable models be extended to wave coupling.
One important instance is in regard to resonance phenomena.
If the dispersion relation allows for resonances, multiscale
perturbation methods show that the amplitudes of two or
more monochromatic waves couple to each other leading to
(possibly integrable) systems of nonlinear partial differential
equations. The simplest of such integrable systems is the vector
nonlinear Schrödinger (VNLS) system of equations (see, e.g.,
Ref. [4]), given by the following two coupled equations (a
subscript denotes partial differentiation):

u
(1)
t = i

[
u(1)

xx − 2(s1 |u(1)|2 + s2 |u(2)|2)u(1)
]
,

(1)
u

(2)
t = i

[
u(2)

xx − 2(s1 |u(1)|2 + s2 |u(2)|2)u(2)
]
,

where, because of the integrability condition, s2
1 = s2

2 = 1.
This system, also known as Manakov system, follows from
the weak resonant condition that two quasimonochromatic
waves, with wave numbers k1 and k2, have the same
group velocity, i.e., ω′(k1) = ω′(k2) [ω′(k) = dω/dk]. In (1)
u(1)(x,t), u(2)(x,t) are the amplitudes of these two resonant
waves. We note that all three integrable cases (i.e., s1 = s2 =
±1 and s1 = −s2) are of physical interest. For applications
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to propagation in elliptically birefringent optical fibers see
Ref. [5], and for modeling crossing sea waves see Ref. [6]. A
different type of phenomenon occurs when the medium non-
linearity includes quadratic terms and the dispersion relation
ω(k) allows for the two wave numbers k1 and k2 to satisfy
the strong resonant condition ω(k1 + k2) = ω(k1) + ω(k2). In
this case a third wave is generated with amplitude w(x,t),
and the three amplitudes u(1), u(2), and w couple to each other
according to the system of equations

u
(1)
t = [−c1u

(1)
x − s1 w∗u(2)

]
,

u
(2)
t = [−c2u

(2)
x + s2 wu(1)

]
, (2)

0 = wx + s1 s2 (c1 − c2) u(1)∗ u(2).

Also this system, with different choices of the signs s1,s2,
applies to various physical settings and phenomena as in fluid
dynamics, see, e.g., Ref. [7] and in optics, see, e.g., Ref. [8]. In
this paper we construct particular solutions of both the systems
(1) and (2). In the construction method, the physical meaning
of the wave amplitudes and of the independent variables x,t

does not play any essential role. On the other hand, the results
given here are likely to be of applicative relevance in a rather
broad range of different physical contexts (e.g., fluid dynamics,
nonlinear optics, plasma physics, Bose-Einstein condensate)
so it should be kept in mind that the actual meaning of all
variables may vary according to context. In particular, for the
system (2), if x is the evolution (e.g., time) variable, then this
system is the the well-known three-wave resonant interaction
(3WRI) equation [8] where the three characteristic velocities
are 1/c1, 1/c2, and 0; otherwise, if the evolution variable is
t , this system models the nonlocal interaction of two waves
(NL2W) [9,10]. Here rescaling transformations have been used
to give the equations (1) and (2) a neat form in terms of their
coefficients.

As for the solutions presented below, we observe that
elementary symmetries of equations (1) and (2) (such as
gauge transformations and coordinate translations) and linear
transformations of the (x,t) plane can be used also to eliminate
some of the free parameters which may appear in analytic
expressions. Indeed, these parameters will be considered in the
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following as unessential since they can be easily introduced
through simple transformations.

The kind of solutions we construct here are usually referred
to as rational solitons with the following specifications:
(1) they are localized pulses nonlinearly superimposed to a
plane wave and (2) they are solitons since they are spectrally
characterized by the vanishing of the continuous spectrum
component; however, the discrete spectrum eigenvalues are
so special that their corresponding solutions have a rational
dependence on the variables x,t , in contrast with the standard
soliton whose expression is given in terms of exponentials.
Rational solutions of multicomponent wave equations such
as (1) and (2) generically have a dependence on coordinates
which is richer than in the scalar case by possibly having
a mixed rational and exponential expression. Despite this
feature, in the following we term rational solitons all these
kinds of solutions. Pole singularities in the x,t variables cannot
be avoided, these being the zeros of the denominator of the
rational expression. However, if these singularities occur only
for complex (i.e., strictly nonreal) values of x and t , these
solutions are bounded and gain physical relevance.

Rational solutions of integrable partial differential equa-
tions attracted immediate mathematical interest in the 1970s,
first for the Korteweg-de Vries equation, the motion of the
poles being associated with integrable many-body dynamics.
Then quite a number of papers have been devoted to rational
solutions of various integrable equations for one dependent
variable, such as the Boussinesq equation [11], Hirota equation
[12], Kadomtsev-Petviashvili equation [13], and NLS equation
(see, e.g., Refs. [14–17]). Recently further investigations
of rational solutions were extended to integrable systems
of two coupled differential equations. In this direction a
number of such solutions have been found for the VNLS
(1) [18–20] and for two coupled Hirota equations [21]. Similar
extension has been reported also for three coupled NLS
equations [22].

The starting motivation of such a surge of research work
goes back to the observation by Peregrine [23] that the simplest
rational solution of the focusing NLS equation may well model
an ocean rogue wave (for a recent survey, see Ref. [24]).
This solution describes a localized lump over a background
with a peak amplitude which is three times higher than the
surrounding background itself and with a finite lifetime. On
the physical side, these new nonlinear objects were soon
recognized as ubiquitous rather than just ocean events and
maritime disasters. Rogue waves have been observed not
only in water tanks [25] but also in fiber optics [26] and in
plasma [27]. They are predicted in the atmosphere [28], in
superfluids [29], in Bose-Einstein condensates [30], and
in capillary waves [31].

In this paper we systematically search for all bounded
rational (mixed rational-exponential) solutions of both the
VNLS equation (1) and of the 3WRI equation (2). We adopt
a formalism such that these two equations are simultaneously
treated by using an appropriate Lax pair. As happens to all
integrable wave equations, in the present cases as well the
boundedness condition necessarily requires that rational soli-
tons exist only on continuous and unstable wave backgrounds.
Our method of construction is based on the standard Darboux-
Dressing transformation (DDT) as presented in Refs. [32,33]

and briefly summarized in Sec. II. Section III describes the
algebraic algorithm we use to obtain rational solutions. In
Sec. IV we finally display examples of such solutions. The
polynomials which appear in some of the expressions of
rational solitons are given in the Appendix.

II. LAX PAIR AND DARBOUX-DRESSING
TRANSFORMATION

Equations (1) and (2) are integrable models and as such
admit a Lax representation (a Lax pair). For convenience, we
introduce a Lax pair which combines both. Let

ψx = Xψ, ψt = T ψ, (3)

where ψ , X, and T are 3 × 3 square matrices, ψ = ψ(x,t,k)
being a common solution of the two linear ordinary differential
matrix equations (3), while X = X(x,t,k) and T = T (x,t,k)
depend on the variables x, t and the complex spectral parameter
k according to the definitions

X(x,t,k) = ikσ + Q(x,t), (4a)

T (x,t,k) = α Tnls(x,t,k) + β T3w(x,t,k), (4b)

where Q(x,t) contains the dynamical variables u(1)(x,t) and
u(2)(x,t) and introduces two signs s1, s2, s2

1 = s2
2 = 1,

Q =
⎛⎝ 0 s1u

(1)∗ s2u
(2)∗

u(1) 0 0
u(2) 0 0

⎞⎠, (5)

while σ = diag{1,−1,−1} is a constant diagonal matrix. The
matrices Tnls and T3w are defined by

Tnls = 2ik2σ + 2kQ + iσ (Q2 − Qx), (6)

T3w = 2ikC − σW + σ [C,Q], (7)

where W contains the field w(x,t)

W =
⎛⎝0 0 0

0 0 −s1w
∗

0 s2w 0

⎞⎠. (8)

C = diag{0,c1,c2} is a real diagonal matrix, while α and β are
real parameters such that, for α = 1, β = 0, (3) is the Lax pair
corresponding to the VNLS (Manakov) equation (1), and for
α = 0, β = 1 (3) is the Lax pair corresponding to the 3WRI
equation (2). Indeed, the compatibility conditions yield the
evolution equations

u
(1)
t = iα

[
u(1)

xx − 2(s1|u(1)|2 + s2|u(2)|2)u(1)
]

+β
[−c1u

(1)
x − s1 w∗u(2)

]
,

u
(2)
t = iα

[
u(2)

xx − 2(s1|u(1)|2 + s2|u(2)|2)u(2)
]

+β
[−c2u

(2)
x + s2 wu(1)

]
,

0 = β[wx + s1 s2 (c1 − c2) u(1)∗ u(2)]. (9)

In the search for novel rational solutions of (9) we use the
Darboux-Dressing construction, as developed in Ref. [32]
(where the interested reader can find additional references).
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For completeness, we briefly recall here the essential steps
towards a new solution, starting from a known (seed) solution:
given a solution u

(1)
0 , u

(2)
0 , w0 of (9), let �0 be a corresponding

fundamental matrix solution of (3). Then, if χ is strictly
complex (χ �= χ∗),

�(x,t,k) =
[

1 +
(

χ − χ∗

k − χ

)
P (x,t)

]
�0(x,t,k) (10)

is a solution of (3) with(
u(1)(x,t)
u(2)(x,t)

)
=

(
u

(1)
0 (x,t)

u
(2)
0 (x,t)

)
+ 2i(χ − χ∗)ζ ∗

|ζ |2 − s1|z1|2 − s2|z2|2
(

z1

z2

)
,

(11a)

w(x,t) = w0(x,t) − 2is1s2(c1 − c2)(χ − χ∗)z∗
1z2

|ζ |2 − s1|z1|2 − s2|z2|2 ,

(11b)

where the vector

Z(x,t) =

⎛⎜⎝ ζ (x,t)

z1(x,t)

z2(x,t)

⎞⎟⎠ = �0(x,t,χ∗)Z0 (12)

is a solution of (3) with k = χ∗ (Imχ �= 0) and Z0 is an
arbitrary, constant and complex vector. Moreover in (10) the
projector matrix P (x,t) is

P (x,t) = ZZ†

|ζ |2 − s1|z1|2 − s2|z2|2

⎛⎝1 0 0
0 −s1 0
0 0 −s2

⎞⎠. (13)

Here the condition that the parameter χ is not real is crucial.
Indeed, the Darboux-Dressing transformation which adds one
real pole to the solution �0(x,t,k) in the k plane at k = χ = χ∗
is given by a different formula, as detailed in Ref. [32].
However this real-pole transformation is not considered here
because it yields rational (or semirational) solutions which
are singular (i.e., unbounded). The seed solution u

(1)
0 (x,t),

u
(2)
0 (x,t), w0(x,t) of (9) is the plane wave(

u
(1)
0 (x,t)

u
(2)
0 (x,t)

)
=

(
a1e

i(qx−ν1t)

a2e
−i(qx+ν2t)

)
, (14a)

w0(x,t) = is1s2(c2 − c1)
a1a2

2q
e−i[2qx+(ν2−ν1)t], (14b)

with

ν1 = α
[
q2 + 2

(
s1a

2
1 + s2a

2
2

)] + β

[
c1q + s2

a2
2

2q
(c1 − c2)

]
,

ν2 = α
[
q2 + 2

(
s1a

2
1 + s2a

2
2

)] + β

[
−c2q + s1

a2
1

2q
(c1 − c2)

]
.

(15)

Remark 1. With no loss of generality the amplitudes a1

and a2 can be taken to be real. Moreover, because of Galilei
invariance, one may choose the wave numbers q and −q of
these two plane waves [see (14a)] to have opposite sign.

In order to construct the transformation (11) in the case
where the seed solution u

(1)
0 , u

(2)
0 , w0 of (9) is given by

(14), one has to construct first the solution �0 of the Lax
equations (3). To this aim we observe that, once (14) is fixed,
the corresponding Q0 and W0 take the form

Q0 = G

⎛⎝ 0 s1a1 s2a2

a1 0 0
a2 0 0

⎞⎠G−1 , (16)

W0 = G

⎛⎝0 0 0
0 0 is2

a1a2
2q

(c2 − c1)
0 is1

a1a2
2q

(c2 − c1) 0

⎞⎠G−1,

(17)

with

G =
⎛⎝1 0 0

0 ei(qx−ν1t) 0
0 0 e−i(qx+ν2t)

⎞⎠. (18)

It follows then that

�0(x,t,k) = G(x,t)�(x,t,k), (19)

and the Lax pair reads

�x = i�(k)�, �t = −i(k)�, (20)

where

�(k) =
⎛⎝ k −is1a1 −is2a2

−ia1 −k − q 0
−ia2 0 −k + q

⎞⎠ (21)

and (k) = α nls(k) + β 3w(k), with

nls =

⎛⎜⎝−2k2 − s1a
2
1 − s2a

2
2 is1a1(2k − q) is2a2(2k + q)

ia1(2k − q) 2k2 − q2 − s1a
2
1 − 2s2a

2
2 s2a1a2

ia2(2k + q) s1a1a2 2k2 − q2 − 2s1a
2
1 − s2a

2
2

⎞⎟⎠, (22a)

3w =

⎛⎜⎜⎝
0 −is1c1a1 −is2c2a2

−ic1a1 −c1(2k + q) − s2
a2

2
2q

(c1 − c2) s2
a1a2
2q

(c1 − c2)

−ic2a2 s1
a1a2
2q

(c1 − c2) −c2(2k − q) − s1
a2

1
2q

(c1 − c2)

⎞⎟⎟⎠. (22b)

Since [�(k),(k)] = 0, the solution �0 can be written as

�0(x,t,k) = G(x,t)ei(�(k)x−(k)t). (23)

Finally, the vector Z(x,t) [see (12)] which appears in the
Darboux-Dressing transformation (11) reads

Z(x,t) = G(x,t)ei(�(χ∗)x−(χ∗)t)Z0. (24)
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Remark 2. The Darboux-Dressing transformation (11)
may lead to a singular solution of (9) due to zeros of the
denominator |ζ |2 − s1|z1|2 − s2|z2|2. The condition that the
signs s1, s2 are both negative (s1 = s2 − 1) is sufficient, but not
necessary, for this solution to be bounded (i.e., nonsingular).
Thus we will keep the signs s1, s2 arbitrary.

Remark 3. The parameter q, other than the signs s1, s2, turns
out to be relevant to the stability of the plane wave solution
(14). Despite the importance of this point we do not discuss it
here.

III. RATIONAL SOLUTIONS

No rational dependence on x, t of the solution (11) exists if
the two matrices �(k) and (k) (for k = χ∗) are diagonaliz-
able. Indeed, this statement stems from the expressions (11),
together with (14) and (24), which imply that, in this generic
case, the explicit expression (11) of the solution contains only
exponential functions of x and t . Therefore we have to search
for those particular, critical, values kc of k, such that the two
matrices �(kc) and (kc) are not diagonalizable but are instead
similar to a Jordan form (two matrices A and B are similar to
each other if AT = T B, the transformation matrix T being
nonsingular, i.e., det T �= 0). Indeed, this form is generically
the sum of a diagonal matrix and a nonvanishing nilpotent
matrix, and our starting elementary observation is that, if N is
a nilpotent matrix, e.g., Nm+1 = 0 and Nm �= 0 for an integer
m, then exp(zN ) is a matrix-valued polynomial of z of degree
m. Moreover, in order to apply the Darboux-Dressing formula
(11), the critical value kc is required to be strictly complex,
namely, to lie off the real axis of the complex k plane. Therefore
through our investigation we disregard all those values of k

which are real even if the corresponding matrices �(k) and
(k) are similar to a Jordan form. Though the matrices �(k)
and (k) play a similar role, it is convenient to focus first on
�(k) and its characteristic polynomial

P�(λ) = det[λ − �(k)] = λ3 + A2(k)λ2 + A1(k)λ + A0(k)

(25)

whose coefficients take the expression [see (21)]

A2(k) = k, A1(k) = −k2 − q2 + s1a
2
1 + s2a

2
2,

(26)
A0(k) = −k3 + k

(
q2 + s1a

2
1 + s2a

2
2

) + q
(
s2a

2
2 − s1a

2
1

)
.

The following proposition holds true:
Proposition 1. If λ1(k), λ2(k), λ3(k) are the three roots of

the characteristic polynomial (25), then a necessary condition
for �(kc) to be similar to a Jordan form �J ,

�(kc) = T �J T −1, (27)

is that either one of them, e.g., λ3, is simple and λ1 =
λ2 is double, or λ1 = λ2 = λ3. T denotes the similarity
transformation matrix. In the first case, �(kc) is similar to
a Jordan form �J if and only if λ1 = λ2 is geometrically
simple,

�J =
⎛⎝λ1 μ 0

0 λ1 0
0 0 λ3

⎞⎠, μ �= 0 ; (28)

while in the second case, �(kc) is similar to a Jordan form �J

if λ1 = λ2 = λ3 is geometrically simple,

�J =
⎛⎝λ1 μ1 0

0 λ1 μ1

0 0 λ1

⎞⎠, μ1 �= 0. (29)

Remark 4. The case in which λ1 = λ2 = λ3 is geometrically
double is the particular case of (28) for λ1 = λ3.

Remark 5. We point out for future reference that, in our
notation (28) and (29), for dimensional reasons we prefer to
leave the entry μ in (28) and μ1 in (29) as free nonvanishing
parameters rather than giving them the unit value, μ = μ1 = 1,
as commonly in use.

As for the second matrix (kc), since it commutes with
�(kc), it is consequently taken by the same similarity trans-
formation

(kc) = T ̂ T −1 (30)

into a matrix ̂ which commutes with �J , but it is not
necessarily a Jordan form. Indeed, if ω1, ω2, ω3 are the
three eigenvalues of (kc), in the first case (i.e., λ1 = λ2),
it necessarily follows that ω1 = ω2, so that

̂ =
⎛⎝ω1 ρ 0

0 ω1 0
0 0 ω3

⎞⎠, (31)

which is still a Jordan form if ρ �= 0, while in the second case
(i.e., λ1 = λ2 = λ3),

̂ =
⎛⎝ω1 ρ1 ρ2

0 ω1 ρ1

0 0 ω1

⎞⎠. (32)

On the other hand, the values of ρ in (31) and of ρ1 and ρ2 in
(32) have no a priori conditions.

Once a critical value kc has been found, setting in (24)
χ = k∗

c yields the expression

Z(x,t) = G(x,t)V (x,t), (33)

V (x,t) =
⎛⎝ v(x,t)

v1(x,t)
v2(x,t)

⎞⎠ = T ei(�J x−̂t)

⎛⎝γ1

γ2

γ3

⎞⎠, (34)

where γ1, γ2, γ3 are arbitrary complex constants. Due to the
nilpotent part of �J and ̂, this last expression yields a
dependence of V (x,t) on x and t which is partially rational.
Indeed, by inserting (28) and (31) into (33) yields the
semirational dependence

V (x,t) = T

⎛⎝(γ1 + γ2ξ )ei(λ1x−ω1t)

γ2e
i(λ1x−ω1t)

γ3e
i(λ3x−ω3t)

⎞⎠, ξ = i(μx − ρt)

(35)

in the case λ3 and ω3 are (algebraically) simple. In the
alternative case in which λ1 and ω1 are (algebraically) triple,
the expression of V follows from (29) and (32), and it
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reads

V (x,t) = ei(λ1x−ω1t)T

⎛⎝γ1 + γ2ξ1 + γ3ζ

γ2 + γ3ξ1

γ3

⎞⎠,

(36)
ξ1 = i(μ1x − ρ1t), ζ = 1

2
ξ 2

1 − iρ2t.

As a consequence of (33), the expression (11) of the solution
u(1), u(2), w of (9) can be written in the more explicit form:(

u(1)(x,t)
u(2)(x,t)

)
=

(
ei(qx−ν1t) 0

0 e−i(qx+ν2t)

)[(
a1

a2

)
+ 2i(k∗

c − kc)v∗

|v|2 − s1|v1|2 − s2|v2|2
(

v1

v2

)]
, (37a)

w(x,t) = is1s2(c2 − c1)e−i[2qx+(ν2−ν1)t]

×
[
a1a2

2q
+ 2(k∗

c − kc)v∗
1v2

|v|2 − s1|v1|2 − s2|v2|2
]

. (37b)

Expressions (37) readily show that, if the three eigenvalues
λj are all the same, λ1 = λ2 = λ3, then the solution (37)
is purely rational as its expression does not contain any
exponentials [see (36)]. In the alternative case, λ1 = λ2 �= λ3,
the expression (35) shows that the solution (37) is generically
expressed in terms of both exponential and rational functions.
Nongenerically, however, the dependence on coordinates is
purely rational if γ3 = 0 while it contains only exponentials
if γ2 = 0. We summarize the step-by-step construction of
all such solutions of (9) as follows: once a critical value kc

off the real axis is found, one computes the corresponding
eigenvalues λj , ωj , the off-diagonal entries ρ or ρ1, ρ2, and the
corresponding similarity matrix T . Finally, using the formula
(37) yields the expression of the solution. The following two
subsections describe the computation of the critical values kc

and of the corresponding similarity transformation matrix T .

A. The case λ1 = λ2 = λ3

If the three roots of the characteristic polynomial (25)
coincide, then P�(λ) = [λ − λ1(k)]3, so that

λ1(k) = λ2(k) = λ3(k) = tr[�(k)]/3 = −k/3. (38)

Moreover, by the Cayley theorem, [�(k) + k/3]3 = 0 (we
omit writing the identity matrix I where no confusion can
arise). Therefore the requirement that the matrix [�(k) + k/3]
be nilpotent yields the critical values kc. We disregard the case
[�(k) + k/3]2 = 0 because it leads to the strong reduction
a1a2 = 0 and to real critical values of k. Moreover the
condition [�(k) + k/3]2 �= 0 excludes the limiting case in

which (28) holds for λ1 = λ3 (see Remark 4). This way we
compute all critical values kc. By disregarding those values
which are real, we are left with one case only, namely,

q �= 0, kc = i

√
27

2
εq, s1 = s2 = −1, a1 = a2 = 2q,

(39)

where ε is a sign, i.e., ε2 = 1. In this case the critical value
kc is imaginary and the free parameters are q (real) and ε;
hence the Darboux-Dressing transformation (11) applies and
the resulting solution will be considered below.

It now remains to provide the similarity transformation
matrix T , as well as the two matrices �J and ̂, namely ω1 and
ρ1, ρ2 [see (32)]. �J is, however, already given by (29) with
λ1(kc) = −kc/3 (the nonvanishing parameter μ1 can be fixed
according to convenience). Needless to say, the expression
of the similarity matrix T is not unique, and the one we give
below may be changed, for instance, by a multiplication factor.
In the present case in which λ1 = λ2 = λ3 and � − λ1 is
nilpotent with (� − λ1)2 �= 0, (� − λ1)3 = 0, the construction
of the similarity transformation matrix T requires a tedious but
straight computation, and we limit ourselves to give the final
formula: λ1 = λ2 = λ3 = −i

√
3

2 εq so that

�(kc) = λ1 + μ1N, N =
⎛⎝ε

√
3 1 1

−1 θ 0
−1 0 θ∗

⎞⎠,

(40)
μ1 = 2iq, θ = 1

2
(−ε

√
3 + i),

where the dimensionless matrix N is nilpotent and θ is
a phase factor, namely, |θ | = 1; in this case the similarity
transformation (27), with (29), is provided by the matrix

T =
⎛⎝ θ 0 −i

1 θ∗ iε
√

3
iθ∗ i 0

⎞⎠ (41)

whose Jordanization action is specified by the formula

N = T NJ T −1, NJ =
⎛⎝0 1 0

0 0 1
0 0 0

⎞⎠. (42)

As for the matrix ,

ω1 = ω2 = ω3 = tr()

3 (43)

= 11

2
αq2 + βq[c1 − c2 − iε

√
3(c1 + c2)]

and

(kc) = ω1 + 2αq2

⎛⎝ 8 3ε
√

3 + i 3ε
√

3 − i

−3ε
√

3 − i −4 −2
−3ε

√
3 + i −2 −4

⎞⎠

+βq ×
⎛⎝iε

√
3(c1 + c2) + c2 − c1 2ic1 2ic2

−2ic1 iε
√

3(c2 − 2c1) − c2 −2(c1 − c2)
−2ic2 −2(c1 − c2) iε

√
3(c1 − 2c2) + c1

⎞⎠, (44)
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while ̂ has the expression (32), namely, ̂ = ω1 + ρ1NJ +
ρ2N

2
J , which implies

(kc) = ω1 + ρ1N + ρ2N
2, (45)

where the matrix N has the expression (40). Comparing (45)
with (40) yields

ρ1 = 4αq2ε
√

3 + 2βq(θc1 − θ∗c2),
(46)

ρ2 = 4αq2 + 2βq(c1 − c2).

We now apply the Darboux-Dressing construction formula
(37) with the naked solution appropriate to this case [namely,
(14) with a1 = a2 = 2q], and the vector V (x,t) as given by
(36). Thus we arrive to the following expression of the solution:

(
u(1)(x,t)
u(2)(x,t)

)
= 2q

(
ei(qx−ν1t) 0

0 e−i(qx+ν2t)

)
×

[(
1
1

)
+ 3ε

√
3A∗

|A|2 + |A1|2 + |A2|2
(

θ∗A1

θA2

)]
(47a)

w(x,t) = 2iq(c2 − c1)e−i[2qx+(ν2−ν1)t]

×
[

1 + 3ε
√

3θ∗A∗
1A2

|A|2 + |A1|2 + |A2|2
]

(47b)

with the notation

ν = −15αq2 − 3
2βq(c1 − c2),

ν1 = ν + 1
2βq(c1 + c2), ν2 = ν − 1

2βq(c1 + c2),

A = γ1 + γ2ξ1 + γ3(ζ − iθ∗), (48)

A1 = γ1 + γ2(ξ1 + θ∗) + γ3(ζ + θ∗ξ1 + iε
√

3),

A2 = γ1 + γ2(ξ1 + θ ) + γ3(ζ + θξ1),

while ξ1 and ζ are defined by (36) with μ1 = 2iq [see (40)].
We observe that not all three complex parameters γ1, γ2, γ3,
as introduced via (33), are essential as one of them can be
arbitrarily fixed and two more real parameters can be absorbed
as translations of x and t . The analysis of this solution is
detailed in Sec. IV.

B. The case λ1 = λ2 �= λ3

Here we consider the case in which, for a critical value
k = kc, one eigenvalue (e.g., λ1) of �(k) is algebraically
double but geometrically simple, so that �(kc) is similar to
a Jordan form; see (27) and (28). Since finding kc generically
requires computing the roots of a fourth order polynomial (see
below), we postpone this computation and we construct first
the similarity transformation matrix T with the assumption
that k = kc is known. If λ1 = λ1(kc) and λ3 = λ3(kc) are
the corresponding eigenvalues of �, we obtain the following
general expression

T =

⎛⎜⎝
φ1 φ2 φ3

− iφ1a1

(λ1+k+q) − iφ2a1

(λ1+k+q) + iμφ1a1

(λ1+k+q)2 − iφ3a1

(λ3+k+q)

− iφ1a2

(λ1+k−q) − iφ2a2

(λ1+k−q) + iμφ1a2

(λ1+k−q)2 − iφ3a2

(λ3+k−q)

⎞⎟⎠,

(49)

k = kc, which turns out to depend on the three complex
parameters φ1, φ2, φ3, arbitrary except for the condition that
the matrix T be nonsingular. Since the determinant

det T = 2φ2
1φ3qμa1a2

(λ1 − λ3)2

[(λ3 + k)2 − q2][(λ1 + k)2 − q2]2

(50)

does not depend on φ2, we may take φ2 = 0 and conveniently
set φ1 = (λ1 + k)2 − q2 and φ3 = (λ3 + k)2 − q2. With this
choice of the parameters the matrix T takes the expression
(k = kc)

T =

⎛⎜⎜⎝
(λ1 + k)2 − q2 0 (λ3 + k)2 − q2

−ia1(λ1 + k − q) iμa1
λ1+k−q

λ1+k+q
−ia1(λ3 + k − q)

−ia2(λ1 + k + q) iμa2
λ1+k+q

λ1+k−q
−ia2(λ3 + k + q)

⎞⎟⎟⎠,

(51)

where the condition of being invertible reads qμa1a2(λ1 −
λ3) �= 0. We note that the derivation of this expression
requires not only that P�(λ1) = P�(λ3) = 0 but also that
P ′

�(λ1) = 0 where P ′
�(λ) = dP�(λ)/dλ. Since this matrix

T becomes singular (i.e., noninvertible) if q = 0 [see (50)],
before proceeding we prefer to first consider this separate
case here below. In this respect we observe that we assume
a1a2 �= 0 if q �= 0 since if, for instance a2 were vanishing,
then the background parameter q would be irrelevant as it can
be transformed away by a Galilei-type transformation, which
yields therefore to the q = 0 case.

The assumption q = 0 leads to consider two separate
cases, namely, either s1a

2
1 + s2a

2
2 �= 0 or s1a

2
1 + s2a

2
2 = 0.

We disregard this second case as our analysis shows that
its corresponding solution becomes singular because of the
vanishing of the denominator in the expression (37). Thus
we treat here only the case in which q = 0 and s1a

2
1 + s2a

2
2

is strictly nonvanishing. With these assumptions the explicit
expression of the roots of P�(λ) are

λ1 =
√

k2 − s1a
2
1 − s2a

2
2,

(52)
λ2 = −

√
k2 − s1a

2
1 − s2a

2
2, λ3 = −k, q = 0.

The conditions that λ1 = λ2 and that the value of kc be not
real leads to the condition s1a

2
1 + s2a

2
2 < 0. This inequality

therefore excludes the choice s1 = s2 = 1 and leads to the
two values k = kc = ip, p = ±

√
−s1a

2
1 − s2a

2
2 , λ1 = λ2 =

0, λ3 = −kc = −ip. We find, however, that the condition
s1s2 = 1 is necessary and sufficient for the solution (11a) to be
nonsingular (in general singularities come from the zeros of the
denominator which appears in this expression). We conclude
therefore that only the (focusing) case s1 = s2 = −1 is worth
considering. Thus in this particular (and interesting, see below)
case the eigenvalues are

λ1 = λ2 = 0, λ3 = −ip, p = ε

√
a2

1 + a2
2, ε2 = 1.

(53)
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Hence the matrix � reads

�(kc) =
⎛⎝ ip ia1 ia2

−ia1 −ip 0
−ia2 0 −ip

⎞⎠ (54)

and is taken into the Jordan form [here we set μ = −ip; see
(28)]

�J = −ip

⎛⎝0 1 0
0 0 0
0 0 1

⎞⎠ (55)

by the similarity transformation (27) with

T =
⎛⎝−p p 0

a1 0 a2

a2 0 −a1

⎞⎠. (56)

Moreover, since this case does not apply to the 3WRI equations
[see (14b)], we set α = 1 and β = 0 so that the matrix (kc)
has the expression

(kc) =
⎛⎝ 3p2 2pa1 2pa2

−2pa1 −p2 + a2
2 −a1a2

−2pa2 −a1a2 −p2 + a2
1

⎞⎠, (57)

which is similar to the Jordan form ̂ [see (30) and (31)] with

ω1 = ω2 = ω = p2, ω3 = 0, ρ = −2p2. (58)

These findings, together with the explicit expression (35) and
the Darboux-Dressing formula (11), yield the semirational
solution of the VNLS equations(

u(1)(x,t)
u(2)(x,t)

)
= e2iωt

[
L

B

(
a1

a2

)
+ M

B

(
a2

−a1

)]
, (59)

where L = 3
2 − 8ω2t2 − 2p2x2 + 8iωt + |f |2e2px , M =

4f (px − 2iωt − 1
2 )e(px+iωt), B = 1

2 + 8ω2t2 + 2p2x2 +
|f |2e2px , and where f is a complex arbitrary constant.
It should be remarked that the dressing construction has
introduced γ1, γ2, γ3 as arbitrary parameters [see (35)].

However, only the complex parameter γ3 is left essential
since the other parameters can be absorbed by translations
of the coordinates x, t . In fact, the expression (59) is derived
by setting γ1 = 1/2, γ2 = 1, and γ3 = −f . We note also
that the dependence of L,M , and B [see (59)] on x,t is both
polynomial and exponential only through the dimensionless
variables ax and ωt . Moreover the vector solution (59) turns
out to be a combination of the two constant orthogonal vectors
(a1, a2)T and (a2,−a1)T .

Let us proceed further to the case in which q �= 0, and let
us maintain the assumption that kc is known. We first aim to
computing the Jordan matrices �J (28) and ̂ (31), which
amounts to computing λ1, λ3, ω1, ω3, and ρ. We start from
the observation that the eigenvalue λ1 is a zero of both the
polynomial P�(λ) and of its derivative [see (25)] P ′

�(λ) =
3λ2 + 2A2(kc)λ + A1(kc) = 3(λ − λ+)(λ − λ−) where

λ± = −1

3
A2 ±

√(
A2

3

)2

− A1

3
. (60)

Therefore this readily implies the following proposition:
Proposition 2. Assume k = kc, then if P�(λ+) = 0, the

three roots of P�(λ) are

λ1 = λ2 = λ+, λ3 = 1
2 (3λ− − λ+), (61)

while if P�(λ−) = 0, the three roots of P�(λ) are

λ1 = λ2 = λ−, λ3 = 1
2 (3λ+ − λ−). (62)

The proof of these formulas is elementary and consis-
tent with the fact that the discriminant of a generic third
degree polynomial [see (25)] is proportional to the product
[P�(λ+)][P�(λ−)]. The explicit expression of λ1 and λ3 finally
obtains by inserting in (60) the coefficients A2, A1 in terms of
k via (26).

As for the eigenvalues ω1, ω3 and the parameter ρ, see (31),
we use the similarity property (30), the matrix transformation
T being given by (51), and we obtain the expressions (with
k = kc)

ωi = −α

{
2kλ1 + s1a

2
1 + s2a

2
2 + q

[
s1a

2
1

(λ1 + k + q)
− s2a

2
2

(λ1 + k − q)

]}
− β

2

{
(c1 + c2)(k − λ1) + (c1 − c2)

[
s1a

2
1

(λ1 + k + q)
− s2a

2
2

(λ1 + k − q)

]}
, i = 1,2

(63)

ω3 = −α

{
2kλ3 + s1a

2
1 + s2a

2
2 + q

[
s1a

2
1

(λ3 + k + q)
− s2a

2
2

(λ3 + k − q)

]}
− β

2

{
(c1 + c2)(k − λ3) + (c1 − c2)

[
s1a

2
1

(λ3 + k + q)
− s2a

2
2

(λ3 + k − q)

]}
,

ρ = −αμ

{
2k − q

[
s1a

2
1

(λ1 + k + q)2
− s2a

2
2

(λ1 + k − q)2

]}
+ β

2

{
c1 + c2 + (c1 − c2)

[
s1a

2
1

(λ1 + k + q)2
− s2a

2
2

(λ1 + k − q)2

]}
.

The main task now is finding the critical values kc which are in
the complex k plane strictly off the real axis (Imkc �= 0). These

values are zeros of the discriminant of the polynomial P�(λ)
(25). By taking into account the expression of the coefficients
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(26), this discriminant turns out to be proportional to the fourth
order monodic polynomial

�(k) = k4 + D3k
3 + D2k

2 + D1k + D0, (64)

where the coefficients are

D3 = (
s2a

2
2 − s1a

2
1

)/
(2q),

D2 = −[
8q4 − (

s1a
2
1 + s2a

2
2

)2

+ 20q2
(
s1a

2
1 + s2a

2
2

)]/
(24q2),

(65)
D1 = −9

(
s2a

2
2 − s1a

2
1

)(
2q2 + s1a

2
1 + s2a

2
2

)/
(24q),

D0 = (
q2 − s1a

2
1 − s2a

2
2

)3/
(24q2) − (

3
4

)3(
s2a

2
2 − s1a

2
1

)2
.

Though the generic fourth degree algebraic equation is solv-
able, the explicit expression of its solutions is so complicate
that its use does not make their computation any easier than just
computing them numerically. One exception to this wisdom
is the case in which this algebraic equation reduces to a
second degree equation. This is the case if we assume the
condition s1a

2
1 = s2a

2
2 , which implies that D1 = D3 = 0 with

the consequence that the vanishing of the polynomial (64)
reads as the second degree equation

�(k) = R(h) = h2 + D2h + D0 = 0 (66)

for the new variable h = k2. Here the coefficients are

D2 = −(
2q4 − a4

1 + 10sq2a2
1

)/
(22q2),

(67)
D0 = (

q2 − 2sa2
1

)3/
(24q2).

In this special case the reality of a1, a2 implies the condition
s1 = s2 = s and a2

1 = a2
2 , which has been used to pass from

(65) to (67). The search for the critical values kc in the
parameter space, the parameters being q, a1 and the sign s,
is now simple since the four zeros of the discriminant (64)
have the explicit expression

k = k(η1,η2) = η2
(− 1

2D2 + η1

√
1
4D2

2 − D0
)1/2

,
(68)

η2
1 = η2

2 = 1,

which is the starting point of our short discussion of the
corresponding family of solutions we present in Sec. IV B2.
We note here that these expressions of kc are explicit because of
the assumption s1a

2
1 = s2a

2
2 . In the generic case in which q �= 0

and s1a
2
1 − s2a

2
2 �= 0, we prefer to compute kc numerically as

roots of the discriminant (64).

IV. ANALYSIS OF THE SOLUTIONS AND CONCLUSIONS

In the previous section we have shown the way of deriving
a rich family of solutions of the system (9). In fact, we
have constructed all the bounded (rational or semirational)

solutions which can be obtained via the DDT method. The
aim of this section is to select and detail some of such
solutions.

We separately treat those which are solutions of the VNLS
system (1) (by setting α = 1, β = 0) and those which are
solutions of the 3WRI equations (2) (by setting α = 0, β = 1).
As for the parameters which appear in the expressions of our
solutions, some of them are structural coefficients which enter
the partial differential equations (9), such as the signs s1, s2

and the characteristic velocities c1, c2; other parameters, i.e.,
q, a1, a2, originate from the background [see (14))] while
others, γ1, γ2, γ3, come from the DDT transformation. In this
transformation there appears also the critical value kc of the
spectral variable k, which depends only on s1, s2, q, a1, a2.
Although some of the parameters are not essential as they could
be eliminated by using simple symmetries, in some cases we
prefer to keep them because of their physical significance. We
point out also that the background parameter q plays a distinc-
tive role in our solutions as it has no counterpart in the scalar
NLS equation. While our solutions of the 3WRI equations (2)
are novel, some of the solutions of the VNLS equations (1)
reported here have been constructed by Darboux method in
Refs. [19,20]. However, they belong to the subset of our pa-
rameter space corresponding to the focusing case s1 = s2 = 1
only.

A. λ1 = λ2 = λ3

In this case the solutions are rather peculiar as they are
all purely rational. Only two critical values of k are possible,
namely, kc = ±iq

√
27/2 as specified by (39). These solutions

exist only if s1 = s2 = −1, which is the focusing case of the
VNLS equations, together with the condition a1 = a2 = 2q

for the background amplitudes. The general expression of
the corresponding solutions is (47). As for the three complex
parameters γ1, γ2, γ3, we omit considering γ2 = γ3 = 0 since
in this case the expression (47) is trivially that of a plane wave.
Thus we find it convenient to illustrate the dependence of
the solution on these parameters by considering separately
the two cases: (1) γ3 = 0 and (2) γ2 = 0. With no loss
of generality because of translation invariance, one can set
γ2 = 1, γ1 = 0 in the first case and γ3 = 1, γ2 = 0, while γ1

remains arbitrary and complex, in the second case. Moreover
the expression of the solution is the ratio of two polynomials
of second degree in the first case (1) and of two polynomials
of fourth degree in the second case (2). Figures 1–4 illustrate
these two cases separately for the VNLS and for the 3WRI
equations.

1. Solutions of the VNLS

Let X = qx and T = q2t be rescaled variables; let
u(j )(x,t) = qU (j )(X,T ), j = 1,2.

Case γ3 = 0, γ2 = 1, γ1 = 0:

U (1) = 2iθei(X+15T )

[
12X2 + 144T 2 + (4ε

√
3 + 6i)X − 36iT − 1 + iε

√
3

12X2 + 144T 2 + 4ε
√

3X + 2

]
. (69)
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FIG. 1. (Color online) VNLS: kc = i
√

27
2 , s1 = s2 = −1, a1 = a2 = 2, q = 1, ε = 1; γ2 = 1, γ1 = γ3 = 0; see (69).

Since this solution satisfies the relation u(2)(x,t) = u(1)∗(x,−t)
we report only the component u(1)(x,t) = qU (1)(qx,q2t);
Fig. 1 displays the amplitudes |u(1)(x,t)| and |u(2)(x,t)| for
a choice of parameters (see caption).

Case γ3 = 1, γ2 = 0, γ1 �= 0:

U (1) = 2iθei(X+15T ) P
(1)
4

P4
,

(70)

U (2) = −2iθ∗e−i(X−15T ) P
(2)
4

P4
,

where the fourth degree polynomials P
(1)
4 , P

(2)
4 , P4 are given

in the Appendix. Figure 2 displays the amplitudes |u(1)(x,t)|
and |u(2)(x,t)| (see caption).

2. Solutions of the 3WRI

Let X = qx and T = qt be rescaled variables; let
u(j )(x,t) = qU (j )(X,T ), j = 1,2, w(x,t) = qW (X,T ).

Case γ3 = 0, γ2 = 1, γ1 = 0:

U (1) = 2iθei[X+T (c1−2c2)] Q
(1)
2

M2
,

(71)
W = 2θ (c1 − c2)e−i[2X−T (c1+c2)] Q2

M2
,

where the second degree polynomials Q
(1)
2 , Q2, M2 are

given in the Appendix. Since this solution satisfies the
relation u(2)(x,t,c1,c2) = u(1)∗(x,t,c2,c1) we report the expres-
sion of the components u(1)(x,t) = qU (1)(qx,qt), w(x,t) =
qW (qx,qt) only. Figure 3 displays the amplitudes |u(1)(x,t)|,
|u(2)(x,t)|, and |w(x,t)| (see caption).

Case γ3 = 1, γ2 = 0, γ1 �= 0:

U (1) = 2iθei[X+T (c1−2c2)] Q
(1)
4

M4
,

U (2) = −2iθ∗e−i[X+T (c2−2c1)] Q
(2)
4

M4
, (72)

W = 2θ (c1 − c2)e−i[2X−T (c1+c2)] Q4

M4
,

where the fourth degree polynomials Q
(1)
4 , Q

(2)
4 , Q4, M4

are given in the Appendix. Figure 4 displays the amplitudes
|u(1)(x,t)|, |u(2)(x,t)| and |w(x,t)| (see caption).

B. The case λ1 = λ2 �= λ3

The expression (37), together with (35), shows that gener-
ically these solutions feature a dependence on coordinates
which is both rational and exponential. In particular, however,
if γ3 = 0 the dependence is purely rational, while if γ2 = 0
the solution has only exponential functions. In the following

FIG. 2. (Color online) VNLS: kc = i
√

27
2 , s1 = s2 = −1, a1 = a2 = 2, q = 1, ε = 1; γ1 = i, γ2 = 0, γ3 = 1; see (70).
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FIG. 3. (Color online) 3WRI: kc = i
√

27
2 , s1 = s2 = −1, a1 = a2 = 2, q = 1, ε = 1, c1 = 1, c2 = 2; γ2 = 1, γ1 = γ3 = 0; see (71).

we disregard this last case and consider only solutions with
γ2 �= 0. Here we separately consider solutions corresponding
to q = 0 and different background amplitudes, a1 �= a2, with
q �= 0 but a1 = a2 and, finally, with q �= 0 and a1 �= a2.
These distinctions are merely due to computational reasons.
However, and interestingly enough, we numerically show
below that in the last two cases (i.e., with q �= 0) bounded
rational solutions exist not only in the focusing case s1 = s2 =
−1, as for the Peregrine soliton of the scalar NLS equation,
but also in the defocusing case s1 = s2 = 1 and in the mixed
case s1s2 = −1.

1. q = 0 and vector Peregrine solutions

In this case the solution, which is well described by
its expression (59), applies only to the VNLS equation. In
this respect we first notice that this expression (59), with
f = 0 and a2 = 0, coincides with the Peregrine soliton of
the scalar NLS equation. We further note that, since the two
components u(1)(x,t,a1,a2), u(2)(x,t,a1,a2) satisfy the relation
u(2)(x,t,a1,a2) = u(1)(x,t,a2,−a1), we limit our attention only
to u(1)(x,t). In the rescaled variables X = x

√
a2

1 + a2
2 , T =

t(a2
1 + a2

2), this solution u(1)(x,t) = U (1)(X,T ) [see (59)] may
be written as

U (1) = e2iT

{
a1

[
(2 + 8iT ) + (4X2 + 16T 2 − 8iT − 1) tanh(X − Z)

4X2 + 16T 2 + 1

]
+ a2

√
2f

4|f |
(

8X − 16iT − 1√
4X2 + 16T 2 + 1

)
1

cosh(X − Z)

}
(73)

where the curve X = Z(T ) is the trajectory of the soliton as implicitly defined by the formula

2|f |2e2Z = 4Z2 + 16T 2 + 1. (74)

As a consequence of these expressions, the large T asymptotic behavior along the curve X = Z(T ) is found to be

U (1)(X,T ) → e2iT

[
a1 tanh(X − Z) − ia2

√
2f

|f |
signT

cosh(X − Z)

]
,

Z(T ) → log |T | + 1

2
log

(
8

|f |2
)

+ O

(
log |T |

|T |
)

, (75)

T → ±∞.

FIG. 4. (Color online) 3WRI: kc = i
√

27
2 , s1 = s2 = −1, a1 = a2 = 2, q = 1, ε = 1, c1 = 1, c2 = 2; γ1 = i, γ2 = 0, γ3 = 1; see (72).
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FIG. 5. (Color online) VNLS: kc = i
√

5
2 , s1 = s2 = −1, q = 0,a1 = 1, a2 = 0.5, f = 0.1i; see (73).

We observe that, as suggested by (73) and explicitly indi-
cated by the asymptotic expression of U (1)(X,T ) in (75),
the amplitude a1 multiplies a kink-type profile while the
amplitude a2 multiplies a bright-type pulse. Moreover the
asymptotic motion [see Z(T ) in (75)] is that of a particle
which comes from x = +∞ and goes back to x = +∞
where it “stops” since its velocity asymptotically vanishes,
namely, dZ(T )/dT → 1/T + O(log |T |/T 2). Figure 5 shows
an instance (see caption) of the amplitudes |u(1)(x,t)| and
|u(2)(x,t)|. Further instances of this solution (73) are reported
in Refs. [18,19].

2. q �= 0 and a1 = a2

This family of solutions possesses two novel features with
respect to those discussed in the previous subsections. First,
the choice s1 = s2 = 1 is compatible with the boundedness
of solutions (see below). Second, the conditions on the
parameter set for the existence of a critical value kc lead to
threshold phenomena for the dimensionless positive parameter
m = a2

1/q
2. As implied by the explicit expression (68) of the

zeros of the discriminant (64), alias (66), we state the following
proposition:

Proposition 3. Assume s1 = s2 = 1:
(1) If q2 � 2a2

1 then the four zeros k(η1,η2), see (68), are
real and no (complex) critical value kc exists.

(2) If q2 < 2a2
1 then the two zeros k(1,η2) are real and the

other two k(−1,η2) are imaginary. Therefore in this subset of
the parameter plane (a1, q) there are two critical values with
opposite sign, i.e., kc = k(−1,η2) or, explicitly,

kc = k(−1,η2) = iη2
(

1
2D2 +

√
1
4D2

2 − D0
)1/2

,

η2
2 = 1, (76)

where D0 and D2 are given by (67) with s = 1.
Proposition 4. Assume s1 = s2 = −1:

(1) If q2 > 1
4a2

1 then the four zeros k(η1,η2) [see (68)] are
strictly complex (namely Im[k] �= 0), and therefore there are
four critical values kc = k(η1,η2).

(2) If q2 � 1
4a2

1 then the four zeros are imaginary, and the
critical values are again kc = k(η1,η2).

Once kc is computed, its corresponding solution of the
equations (9) is obtained through the following chain of steps:
(1) use Proposition 2 to compute the eigenvalues λ1 and λ3, (2)
compute ω1, ω3, ρ according to (63), (3) insert the expression
(51) of the similarity matrix T in (35) to compute the vector
V , and (4) finally apply the Darboux-Dressing formula (37).
Instances of solutions in this special class are shown in
Figs. 6–10. Precisely the solution of the VNLS equations (1) in
Fig. 6 is of particular interest since it refers to the defocusing
case s1 = s2 = 1 which has no counterpart in the scalar NLS
equation. We believe that its existence is made possible by the

FIG. 6. (Color online) VNLS: kc = i

2

√
−13 + 16

√
2, s1 = s2 = 1, q = 1, a1 = a2 = 2; γ2 = 1, γ1 = γ3 = 0; see Sec. IV B2.
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FIG. 7. (Color online) VNLS: kc =
√

3
8

√
−3 + i

√
3, s1 = s2 = −1, q = 1, a1 = a2 = 1; γ2 = 1, γ1 = γ3 = 0; see Sec. IV B2.

nonvanishing of the background parameter q. Figure 7 shows
instead a solution of the VNLS in the focusing case s1 = s2 =
−1, and so also Fig. 8 but for different values of the parameters
γ1,γ2,γ3 (see captions). Similarly Figs. 9 and 10 show two
solutions of the 3WRI equations (2) again for s1 = s2 = 1 and
for s1 = s2 = −1, respectively; the first one features rational
amplitudes as it follows from the condition γ3 = 0, while
the second one, with γ3 �= 0, proves to have a mixture of
exponential and rational dependence on coordinates.

3. q �= 0 and a1 �= a2

We explore this case by first computing kc numerically.
Then the step-by-step method of construction of solutions,
as detailed in the preceding section, leads to the three plots
of solutions of the VNLS equations (1) as in Figs. 11–13,
and to the plot (see Fig. 14) of one solution of the 3WRI
equations (2). For all these solutions the parameter γ3 is
chosen to vanish (γ3 = 0, see captions) with the implication
that the plotted amplitudes clearly show a rational dependence
on coordinates. Moreover we should point out that Figs. 11
and 12, respectively, show a solution in the defocusing
case s1 = s2 = 1 and focusing case s1 = s2 = −1. The other
Figure 13 shows instead a solution of the VNLS equations in
the mixed case s2 = −s1 = 1. Finally a solution of the 3WRI
equations (2) is shown in Fig. 14 with s1 = s2 = 1.

C. Conclusions

In this paper we have devised a method of construction
of solutions of two integrable systems of partial differential
equations of interest in a variety of applications. These
systems, the VNLS equations and the 3WRI equations,
model the coupling of two waves and, respectively, of three
waves. Our construction is specially tailored to yield solutions
which feature a rational, or mixed rational-exponential,
dependence on the independent variables. While rational
solutions of integrable partial differential equations attracted
mathematical interest since the 1970s and consequently this
type of solutions were derived for a number of integrable wave
equations, it was only recently that further investigations of
rational solutions were extended to integrable systems of two
or three coupled differential equations. The main motivation
of such a renewed interest goes back to the observation by
Peregrine that the simplest rational solution of the focusing
NLS equation may model an ocean rogue wave. In a variety of
physical contexts it was however soon recognized that, several
waves, rather than a single one, should be considered in order
to account for important resonant interaction processes. For
integrable partial differential equations, according to personal
taste, various, yet equivalent, approaches have been adopted:
spectral transform and dressing techniques, Wronskian and
Hirota methods, and Darboux transformations as considered

FIG. 8. (Color online) VNLS: kc =
√

3
8

√
−3 + i

√
3, s1 = s2 = −1, q = 1, a1 = a2 = 1; γ1 = γ2 = γ3 = 1; see Sec. IV B2.
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FIG. 9. (Color online) 3WRI: kc = i

2

√
−13 + 16

√
2, s1 = s2 = 1, q = 1, a1 = a2 = 2, c1 = 1, c2 = 2; γ2 = 1, γ1 = γ3 = 0; see Sec. IV B2.

FIG. 10. (Color online) 3WRI: kc =
√

3
8

√
−3 + i

√
3, s1 = s2 = −1, q = 1, a1 = a2 = 1, c1 = 1, c2 = 2; γ1 = γ2 = γ3 = 1; see Sec. IV B2.

FIG. 11. (Color online) VNLS: kc = −5.600 + 4.655i, s1 = s2 = 1, q = 1, a1 = 2, a2 = 5; γ2 = 1, γ1 = γ3 = 0; see Sec. IV B3.
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FIG. 12. (Color online) VNLS: kc = 4.876 + 5.343i, s1 = s2 = −1, q = 1, a1 = 2, a2 = 5; γ2 = 1, γ1 = γ3 = 0; see Sec. IV B3.

FIG. 13. (Color online) VNLS: kc = −1.242 + 0.636i, s1 = −1, s2 = 1, q = 1, a1 = 1, a2 = 2; γ2 = 1, γ1 = γ3 = 0; see Sec. IV B3.

FIG. 14. (Color online) 3WRI: kc = 1.319 + 0.256i, s1 = s2 = 1, q = 1, a1 = 2, a2 = 0.5, c1 = 1, c2 = 2; γ2 = 1, γ1 = γ3 = 0; see
Sec. IV B3.
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here. These solutions are all soliton solutions since their
corresponding spectral data on the continuos spectrum vanish.
Moreover the strategy of computation may depend on whether
the soliton is superimposed to the vacuum (i.e., the vanishing
solution) or to a plane wave background. Here we deal with this
second type of solitons. In most of the constructions discussed
in the literature, the way to obtain polynomials out of (a linear
combination of) exponentials goes through an appropriate
limit process by making a number of eigenvalues of the Lax
equations coalesce to get all the same value. Our approach
is instead based on the exponentiation of nondiagonalizable
matrices. This construction naturally leads to consider those
critical values kc of the spectral variable k such that the

matrices which appear as exponent are similar to a Jordan form.
There is therefore no need to take the limit in which different
eigenvalues coalesce. We believe that our investigation is able
to capture all possible solutions in this class. We are confident
that the broad family of solutions presented here add a
contribution to the understanding of rogue wave phenomena in
novel physical situations where wave resonant interactions are
relevant.
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APPENDIX: POLYNOMIALS

P
(1)
4 = 12X4 + 1728T 4 + 288X2T 2 + 4(3i + 2

√
3ε)X3 − 864iT 3 − 72iX2T + 48 XT 2(3i − 2

√
3ε)

+ 3 X2(4Re(γ1) + 3i
√

3ε − 1) − 12 T 2(12Re(γ1) + 5i
√

3ε + 9) + 12 T X(4
√

3εIm(γ1) − i
√

3ε + 9)

+ 6 T (2i
√

3εIm(γ1) + 6iRe(γ1) −
√

3ε + 3i) + 2X(−3i
√

3εIm(γ1) + 2
√

3εRe(γ1) + 3iRe(γ1) − 2
√

3ε − 3i)

+ 3|γ1|2 + 1
2 (1 + 5i

√
3ε)Re(γ1) + 9

2 (
√

3ε − i)Im(γ1) + 5
2 (1 − i

√
3ε), (A1a)

P
(2)
4 = 12X4 + 1728T 4 + 288X2T 2 + 4(−3i + 2

√
3ε)X3 − 864iT 3 − 72iX2T − 48 XT 2(3i + 2

√
3ε)

+ 3 X2(4Re(γ1) − 3i
√

3ε − 1) − 12 T 2(12Re(γ1) − 5i
√

3ε + 9) + 12 T X(4
√

3εIm(γ1) − i
√

3ε + 3)

+ 6 T ( − 2i
√

3εIm(γ1) + 6iRe(γ1) +
√

3ε − 3i) + 2X( − 3i
√

3εIm(γ1) + 2
√

3εRe(γ1) − 3iRe(γ1) − 2
√

3ε − 6i)

+ 3|γ1|2 + 1
2 (1 − 5i

√
3ε)Re(γ1) + 3

2 (
√

3ε − 3i)Im(γ1) − 2(1 + i
√

3ε), (A1b)

P4 = 12X4 + 1728T 4 + 288X2T 2 + 8
√

3εX3 − 96
√

3εXT 2 + 6X2(1 + 2Re(γ1)) + 72T 2(1 − 2Re(γ1))

+ 12XT (6 + 4
√

3εIm(γ1)) + 2X
√

3ε(1 + 2Re(γ1)) + 3|γ1|2 − Re(γ1) + 3
√

3εIm(γ1) + 4, (A1c)

Q
(1)
2 = 12X2 + 12T 2(c2

1 − c1c2 + c2
2

) − 12XT (c1 + c2) + 2X(2
√

3ε + 3i)

− 2 T [c1(
√

3ε − 3i) + c2(
√

3ε + 6i)] + i
√

3ε − 1, (A2a)

Q2 = 12X2 + 12 T 2
(
c2

1 − c1c2 + c2
2

) − 12 XT (c1 + c2) + 4 X(
√

3ε − 3i) − 2 T (c1 + c2)(
√

3ε − 3i) − 2i
√

3ε − 1, (A2b)

M2 = 12X2 + 12T 2(c2
1 − c1c2 + c2

2

) − 12XT (c1 + c2) + 4
√

3εX − 2
√

3εT (c1 + c2) + 2, (A2c)

Q
(1)
4 = 12X4 + 12T 4

(
c2

1 − c1c2 + c2
2

)2 + 36X2T 2
(
c2

1 + c2
2

) − 24X3T (c1 + c2) − 24XT 3
(
c3

1 + c3
2

) + 4X3(2
√

3ε + 3i)

− 4T 3
[
c3

1(4
√

3ε − 3i) − 3c2
1c2(

√
3ε − 3i) − 3c1c

2
2(

√
3ε + 3i) + 2c3

2(2
√

3ε + 3i)
]

− 12X2T [
√

3εc1 + c2(
√

3ε + 3i)] + 12XT 2
[
3
√

3εc2
1 − 4

√
3εc1c2 + 3c2

2(
√

3ε + i)
]

+ 3X2(4Re(γ1) + 3i
√

3ε − 1) − 3T 2
{
c2

1[2Re(γ1) −
√

3ε(2Im(γ1) − i) − 11] + 2c1c2(−4Re(γ1) + i
√

3ε + 7)

+ 2c2
2[Re(γ1) +

√
3ε(Im(γ1) − 3i) − 1]

} − 6XT {2c1[
√

3ε(Im(γ1) − i) + Re(γ1) + 2]

+ c2[
√

3ε(−2Im(γ1) + 5i) + 2Re(γ1) − 5]} + X[Re(γ1)(4
√

3ε + 6i) − 2
√

3ε(2 + 3iIm(γ1)) − 6i]

− 2T {c1[Re(γ1)(
√

3ε + 6i) + 9Im(γ1) + 5
√

3ε − 6i] + c2[Re(γ1)(
√

3ε − 3i) − 3Im(γ1)(3 + i
√

3ε) − 7
√

3ε + 3i]}
+ 3|γ1|2 + 9

2

√
3εIm(γ1) − 9

2 iIm(γ1) + 5
2 i

√
3εRe(γ1) + 1

2 Re(γ1) − 5
2 i

√
3ε + 5

2 , (A3a)

Q
(2)
4 = 12X4 + 12T 4

(
c2

1 − c1c2 + c2
2

)2 + 36T 2X2
(
c2

1 + c2
2

) − 24T X3(c1 + c2) − 24T 3X
(
c3

1 + c3
2

) + 4X3(2
√

3ε − 3i)

− 4T 3
[
2c3

1(2
√

3ε − 3i) − 3c2
1c2(

√
3ε − 3i) − 3c1c

2
2(

√
3ε + 3i) + c3

2(4
√

3ε + 3i)
] − 12X2T [c1(

√
3ε − 3i) +

√
3εc2]

+ 12XT 2
[
3c2

1(
√

3ε − i) − 4
√

3εc1c2 + 3
√

3εc2
2

] + 3X2(4Re(γ1) − 3i
√

3ε − 1)

− 3T 2
{
2c2

1[Re(γ1) −
√

3ε(Im(γ1) − 3i) − 4] − 2c1c2(4Re(γ1) + i
√

3ε − 7)

+ c2
2[2Re(γ1) +

√
3ε(2Im(γ1) − i) − 5]} − 6XT {c1[2Re(γ1) +

√
3ε(2Im(γ1) − 5i) + 1]
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+ 2c2[Re(γ1) −
√

3ε(Im(γ1) − i) − 1]} + 2X[Re(γ1)(2
√

3ε − 3i) −
√

3ε(3iIm(γ1) + 2) − 6i]

+ 2T {−c1[Re(γ1)(
√

3ε + 3i) + 3Im(γ1)(3 − i
√

3ε) + 2
√

3ε − 12i] + c2[Re(γ1)(−
√

3ε + 6i) + 9Im(γ1)

+ 4
√

3ε − 6i]} + 3|γ1|2 + 1
2 Re(γ1) − 5

2 i
√

3εRe(γ1) + 3
2

√
3εIm(γ1) − 9

2 iIm(γ1) − 2i
√

3ε − 2, (A3b)

Q4 = 12X4 + 12T 4
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c2

1 − c1c2 + c2
2
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2
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√
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√
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