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Extreme events in excitable systems and mechanisms of their generation
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We study deterministic systems, composed of excitable units of FitzHugh–Nagumo type, that are capable
of self-generating and self-terminating strong deviations from their regular dynamics without the influence of
noise or parameter change. These deviations are rare, short-lasting, and recurrent and can therefore be regarded
as extreme events. Employing a range of methods we analyze dynamical properties of the systems, identifying
features in the systems’ dynamics that may qualify as precursors to extreme events. We investigate these features
and elucidate mechanisms that may be responsible for the generation of the extreme events.
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I. INTRODUCTION

Many natural, technological, or social systems are capable
of recurrently generating large impact events [1–3]. Well
known are earthquakes, tsunamis, or extreme weather events—
such as heat waves, droughts, floods, heavy precipitation,
or tornadoes—that can lead to disasters when interacting
with exposed or vulnerable human or natural systems. Other
examples include epileptic seizures in the human brain [4],
rogue waves in the ocean or in optical systems [5–7], harmful
algal blooms in marine ecosystems [8], large-scale blackouts
in power supply networks [9], market crashes [10], mass
panics [11], or wars [12].

The temporal evolution of a relevant observable of such
systems usually exhibits small-scale fluctuations around some
well-defined level (e.g., derived from the long-term average of
available data). Occasionally, however, this observable shows
abrupt excursions to values that differ significantly from this
level. Such rare and recurring emergences of unusually large
or small values are of paramount importance since they can
indicate extreme events.

Though essential influencing factors are known for many
of the aforementioned events, the exact mechanism of their
emergence is not well understood. Which of those factors or
which combination of them is the main trigger to start the
development of an extreme event is often an open question and
therefore a subject of current research. Besides the need of an
improved understanding of the generation and termination of
extreme events, there is an urgent call for their predictions.
Progress along these lines may be achieved through the
analysis of time series of system observables [13–22] or
through the development and investigation of models. Many
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of the aforementioned systems can be modeled as excitable
systems or as composed of excitable units [23–26]. In general,
excitability refers to the system’s capability to develop a large
pulse of activity in response to some endogenous or exogenous
triggering mechanism [27]. This pulse lasts for some time and,
depending on conditions, may either stop or propagate through
space.

One of the most simple and widely studied excitable
systems is the FitzHugh–Nagumo system (also known as
the Bonhoeffer–van der Pol model) [28–31], which captures
the qualitative essence of neuronal firing through a simple
algebraic form of the evolution equations [32]. It is widely used
as a model for excitable behavior in neural and cardiac non-
linear activities [33,34]. Phenomena observed in FitzHugh–
Nagumo systems include pattern formation [35–37], firing
death [38,39], noise-induced phenomena [40–45], diversity-
induced oscillations [46,47], and aspects of synchronization
[38,48].

Here, we address the question of whether and how excitable
systems of FitzHugh–Nagumo units are capable of generating
extreme events, which would allow us to study the underlying
generating mechanisms. We report on deterministic model
systems of coupled FitzHugh–Nagumo units that are capable
of generating extreme events and analyze the mechanisms
behind them. This paper is organized as follows. In Sec. II
we describe our model systems and report on the extreme
events they exhibit and their properties. In Sec. III we propose
a method to detect precursors to extreme events in model
systems in general and apply them to our model systems. For
those systems we then present our findings on the mechanisms
behind the events (Secs. IV and V). Finally, in Sec. VI we draw
our conclusions.

II. MODEL SYSTEMS AND THEIR BEHAVIOR

We consider systems of n diffusively coupled FitzHugh–
Nagumo units (i ∈ {1, . . . ,n}) whose ith unit is described by
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the following differential equations:

ẋi = xi(ai − xi)(xi − 1) − yi + k

n∑

j=1

Aij (xj − xi),

(1)
ẏi = bixi − ciyi .

Here ai , bi , and ci are internal parameters of the unit,
k is the coupling strength, and A ∈ {0,1}n×n is the symmetric
adjacency matrix (Aij = Aji = 1, iff units i and j are
coupled).

In particular, we regard the following three systems:
(A) A system of n = 2 mutually coupled units, i.e.,

A = ( 0 1
1 0 ). The parameters a and c are identical for both

units: a1 = a2 = a = −0.025 794 and c1 = c2 = c = 0.02;
the parameter b is mismatched: b1 = 0.0065, b2 = 0.0135.
The coupling strength k is 0.128.

(B) A system of n = 101 completely coupled units, i.e.,
Aij = 1 ∀ i,j . The parameters a and c are identical for all units:
ai = a = −0.026 51 ∀ i and ci = c = 0.02 ∀ i; the parameter
b is mismatched: bi = 0.006 + 0.008 i−1

n−1 (⇒ 0.006 � bi �
0.014 ∀ i). The coupling strength k is 0.001 28.

(C) A system of n = 10 000 units coupled with a small-
world topology [49]: The units are arranged on a 100 × 100
lattice with cyclic boundary conditions (torus) and each unit
is connected to its 60 nearest neighbors. Then each edge
is rewired with a probability of 0.2, i.e., it is removed and
replaced by an edge between two randomly chosen units.
The parameters a and c are identical for all units: ai = a =
−0.0276 ∀ i and ci = c = 0.02 ∀ i; the parameter bi is ran-
domly drawn from the uniform distribution on [0.006,0.014]
for each unit. The coupling strength k is 0.002 13̄.

Note that for each system the product of coupling strength
and average degree (i.e., the average number of units to
which a given unit is connected) is 0.128 and the values or
ranges, respectively, for the control parameters a, b, and c

are comparable, if not identical. The slight variation of the
parameter a is to align the dynamical behaviors of the systems.
While inhomogeneous units in general are more realistic, it
is for simplicity’s sake that we choose to make the units
inhomogeneous in b and select to distribute the bi uniformly
for systems B and C.

If any of these units are uncoupled, xi (t) exhibits oscilla-
tions with peak amplitudes between 0.88 and 0.95 and yi (t)
exhibits oscillations with peak amplitude between 0.17 and
0.21. These oscillations correspond to relaxation oscillations
and have a period length between 106 and 193, depending on
parameters. If the units are coupled, they exhibit a chaotic be-
havior, as implied by the Lyapunov exponents [50]: We obtain
�1 = 0.0071, �2 = 0.0000, �3 = −0.0512, �4 = −0.1870
for system A and �1 = 0.0053, �2 = 0.0000, �3 = −0.0186,
�4 = −0.0197 as the four largest Lyapunov exponents for
system B. For the temporal evolution of the average of xi over
all units of system C, we observe a broadband power spectrum,
which indicates this system to also be chaotic.

System A was integrated using a fourth-order Runge–Kutta
method with a time step of 0.01. Systems B and C were
realized with Conedy, a tool to compute arbitrary dynamics
with arbitrary coupling topologies [51]. The dynamics was
integrated with the Runge–Kutta–Fehlberg procedure, whose

step size was adapted such that the estimated relative error did
not exceed 10−5. We tried other integration schemes and other
numerical precisions but could not observe an influence on
the systems’ dynamical behavior. Also, the same qualitative
dynamical behavior could be observed for a range of control
parameters, even though a relatively small one (we will report
on the parameter dependence of the observed phenomena
elsewhere [52]). For each of the following observations and
analyses at least 10 000 initial time units were discarded. The
choice of the initial conditions (near the attractor) had no
influence on our observations.

In Fig. 1 (left panels), we show typical time series of
the average value of the first dynamical variable, x̄ (t) =
1
n

∑n
i=1 xi (t) (which we use as the main observable in the

following) for all three considered systems. Predominantly,
x̄ (t) exhibits oscillations with small amplitude (−0.2 <

x̄ (t) < 0.3) and without any apparent regularity, which we
are going to refer to as low-amplitude oscillations. The period
length of these oscillations—estimated as the distance between
adjacent local maxima—varies around 75 (system A: 80 ± 7,
system B: 71 ± 12, system C: 69 ± 8). However, sometimes
we observe events at which x̄ (t) exhibits amplitudes that
are at least six times higher than the amplitudes of the
low-amplitude oscillations. These events qualify as extreme
events in our understanding since the observable x̄ exhibits
unusually large values; the events are rare in comparison to
the usual time scales of the system dynamics (low-amplitude
oscillations), and they are recurring. The right panels of Fig. 1
show a close-up view of one extreme event for each system.
Particularly, for system A, we illustrate the behavior of both
units separately. Looking at the time series, it appears that
unit 1 (b1 = 0.0065) recruits unit 2 (b2 = 0.0135) towards the
extreme event.

In Fig. 2 we show the normal as well as the extreme behavior
of system B in detail: At t ≈ 800 we observe an extreme
event: First, units with lowest bi become excited (i.e., the
corresponding xi assumes a high value), an event which we
are going to refer to as proto-event in the following. Shortly
afterwards this cluster of excited units seems to recruit the
remaining ones, causing all units to be excited simultane-
ously, which constitutes the extreme event. At t ≈ 300 and
t ≈ 1200 we also observe proto-events without an extreme
event following. After these excitations, the cluster lasts
for about one low amplitude oscillation (note the clear-cut
“shadow”). The average time between such proto-events is
1520 with a standard deviation of 1331, while the average
time between the extreme events is 7785. During the rest of
the time, all units exhibit low-amplitude oscillations and a high
level of synchrony. For this system we also observe double
extreme events, which consist of two subsequent events, the
first of which is smaller in amplitude and the only of the two
that is preceded by a proto-event.

Figure 3 shows an extreme event at text for system C in
detail. At t ≈ text − 40 we observe that excited units form a
few localized clusters, which grow with increasing speed until
text. At this time most units are excited, the only exception
being some units within some of the initially excited clusters.
These units have already become refractory. Concordantly,
we observe the height of an extreme event in terms of the
amplitude of x̄ to be lowest for system C (see Fig. 1).
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FIG. 1. (Color online) (left) Exemplary temporal evolutions of x̄ for the investigated systems. (right) Excerpt centered around the first
extreme event (at text) of the respective time series. For system A (first row) the individual time series of x1 (red, dotted line) and x2 (green,
solid line) are shown.

For all three systems, there is one general feature of the
extreme events: One unit or a group of units become(s) excited
and recruit(s) the remaining one or ones to form an extreme
event.
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FIG. 2. (Color online) Temporal evolutions of xi for each unit
of system B around an extreme event. The units are indexed by their
value of bi . For reference, the temporal evolution of x̄ is shown on top.

We restrict ourselves to systems A and B for the following
analyses, since system C is not feasible for these. This is
due to the randomness involved in its creation and the fact
that only realization-specific results are obtainable for this
system, and averaging of these would be meaningless, given
our methods of analysis. Also, for the purposes of automatizing
the analyses, we define an extreme event to be an interval of
time with x̄ (t) > 0.6, and we define the time of such an event
to be the start of the corresponding interval. Since there are
very few local maxima of x̄ with 0.3 < x̄ (t) < 0.6 and the
extreme events are very homogeneous in form, we consider
a more sophisticated event detection unnecessary for our
purposes.

In Fig. 4 we show the estimated distributions of interevent
intervals for systems A and B. We observe both distributions
to be nearly exponential, which would be the result for a
Poissonian process.

III. SEARCHING FOR PRECURSORS

In this section, we propose and apply a method to investigate
whether and when generating mechanisms of extreme events
come into action in our systems. This in turn may be reflected
by precursors. To this end, we require some generating
mechanism to cause an extreme event inevitably or at least with
a high probability. Also, we assume that such a mechanism is
reflected by the dynamical variables and is (in general) not
disabled by small perturbations to these variables.
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FIG. 3. (Color online) (left) Snapshots of the spatial distribution of xi (t) for one realization of system C around an extreme event (at text).
Units are represented by pixels, which are arranged according to the lattice underlying the small-world network. The respective value of the
dynamical variable x is color coded [53]. Top right: Temporal evolution of x̄, with snapshot times shown by red vertical lines. The event is the
first one in Fig. 1, third row.

A. Method

To detect such a generating mechanism, we perform the
following perturbation analysis: Given a trajectory (x(t), y(t))
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FIG. 4. (left) Histogram of the interevent intervals tIEI for two
of the investigated systems. The observation time was 9 × 109 for
system A and 108 for system B. The dashed lines are multiples of
exp (−rtIEI). Here r = 9.8 × 10−5 (system A) and r = 1.0 × 10−4

(system B), respectively, are the rates of an exponential distribution
fitted to the data (for tIEI > 200).

leading to an extreme event at text, we estimate the probability
q(tper,ε) that the event cannot be observed anymore if we
perturb the system at some tper < text with amplitude ε.

Generally, we expect q- to tendentially increase with
increasing ε and decrease with increasing tper, given a chaotic
dynamical system that self-generates rare events and all of
whose dynamical variables are perturbed in a reasonable way.
We focus on q isolines in the ε—tper plane and, to simplify the
description, treat them as functions of tper. As such they can
be regarded as indicators of the “sensitivity” of the extreme
event to perturbations at a given tper. Therefore the q isolines
should also indicate a generating mechanism coming into
action by a strong increase, since such a mechanism should
make it much harder to “prevent” the extreme event. We
thus look for such increases of the q isolines which exceed
the generally expected increase due to the chaoticity of the
system, as quantified by the maximum Lyapunov exponent.
The advantage of this approach over regarding the maximum
Lyapunov exponent is that it specifically considers the effect of
finite perturbations on the occurrence of extreme events. This
way, we can detect the existence of a precursor or generating
mechanism, respectively, however, we cannot obtain any
further information about its nature.

To perturb the system’s state (x(tper), y(tper)), we here
generated two n-dimensional vectors z and w with unit length
and random direction and added εz to x(tper) and ηεw to
y(tper). The factor η accounts for the fact that the attractor of
the individual units extends differently in x and y directions. To
estimate q(tper,ε) for a given investigated (tper,ε), we employed
a number of realizations of the perturbations (i.e., different
directions of z and w), calculating the ratio of cases, for which
no extreme event happened within a certain allowance around
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FIG. 5. (Color online) Results of the perturbation analysis for an exemplary extreme event (at text = 0) of system A (left) and system B
(right), taking into account events that happen within 1.0 time units of text in the perturbed systems. Top: Temporal evolution of x̄ for the
unperturbed system. Bottom: Relative frequencies q(tper,ε) that the shown event is “prevented” by a perturbation of amplitude ε at tper, estimated
using 64 realizations (i.e., different perturbations). For reference, we show exp(�1tper) (green, dashed line), with �1 being the largest Lyapunov
exponent of the system. For system B, the time series of the number of excited units e(t) := |{i|xi(t) > 0.6}| is shown as additional reference.

text. Note that we chose not to average over different events
since this would require a priori that generating mechanisms
always come into play at about the same time in relation to an
extreme event.

B. Results

In the left part of Fig. 5 we show the result of such a
perturbation analysis for an exemplary event of system A,
taking into account events that happen within 1.0 time units
of text in the perturbed system. For a given tper, we observe q

to monotonically increase with ε from q ≈ 0 to q ≈ 1 over
one order of magnitude of ε. For a given ε, q also decreases
with tper as a general tendency, however, the transition between
q ≈ 1 and q ≈ 0 is more intricate, alternating between high
and low values of q. These alterations correspond to the low-
amplitude oscillations of the unperturbed system, and reflect
the dependence of the system’s sensitivity to perturbations on
the current phase of the low-amplitude oscillations. Apart from
these oscillations, the q isolines can be described quite well by
α exp(�1tper) for some α ∈ R, with �1 being the largest Lya-
punov exponent of the system. However, we observe two cases
of the q isolines increasing faster than expected considering
�1 and the influence of the low-amplitude oscillations: one
at tper ≈ text − 1800 and one at tper ≈ text − 50. After the first
incidence, however, the q isolines cease to increase until the
effect of the initial increase is compensated, and therefore we
do not consider it to be indicative of a generating mechanism.
The second case is a sharp increase of the q isolines, which
is directly followed by the event. This may indicate that
a generating mechanism for the extreme events comes into
action only at this time.

Considering only events in the perturbed system that happen
within 1.0 time units of text only accounts for the case
that the generating mechanism causes the event very shortly
after coming into action in the unperturbed system. Hence,
it neglects the case that the generating mechanism might
last longer and might cause an event after some delay. If
we do, however, consider this by also counting events that
happen some time after text, this does not affect the results
qualitatively, but only lowers the maximum value obtained
by q slightly, which is most probably due to events that are
unrelated to the “original” event. Similar results are obtained
if we count all events between the perturbation and text when
estimating q. In this case, for every tper, q decreases again at
ε ≈ 10−1, i.e., for very large perturbations. This is due to the
perturbations exciting the system and thus causing extreme
events by themselves or even being detected as extreme events
themselves.

In the right part of Fig. 5 we show the result of the
perturbation analysis for an exemplary event of system B. The
results are mainly identical to those for system A, however
there are faster increases of the q isolines, more precisely
at t ≈ text − 2200, at t ≈ text − 1700, at t ≈ text − 1000, and
at t ≈ text − 500. These increases do however coincide with
proto-events, before which a higher sensitivity of the system
to perturbations was expected to some extent (since, e.g., the
excited unit with highest bi in the unperturbed system is not
excited in the perturbed system). Furthermore, the effects of
those increases are compensated later and we therefore do
not consider them to be indicative of a generating mechanism.
Hence, we consider a generating mechanism only to come into
action shortly (about 50 time units) before the extreme event,
as already concluded for system A.
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Both results shown here are exemplary for extreme events
of the respective systems in all the aspects described above
except for the specific position of incidents where the
q isolines increase faster than expected considering �1 (and
of the proto-events). For both systems, we therefore expect
generating mechanisms only to come into play shortly (i.e.,
less than one low-amplitude oscillation) before the extreme
events. We therefore focus on this interval, when further
investigating extreme-event generating mechanisms in the
following sections. For system B we more specifically focus
on the proto-events, which are located in this interval.

IV. HOW AN EXTREME EVENT IS GENERATED
IN SYSTEM A

A. Imperfect phase synchronization

The top right part of Fig. 1 shows the behavior of the
individual variables x1 and x2 for system A around an
extreme event. We observe that the trajectories of the units
are phase-synchronized (PS) and exhibit an apparent loss
of this behavior at extreme events. To quantify this and
the characteristics of phase synchronization in general, we
calculate the phase difference between the units. To this end
we employ the analytical signal approach [54,55], based on the
Hilbert transform of a system variable. We construct analytical
signals for system A using the variables x1 and x2 and calculate
the instantaneous phases as φ1(t) and φ2(t) for units 1 and
2, respectively. Consequently, the phase difference is defined
as �φ(t) := φ1(t) − φ2(t) (considering 1 : 1 PS). We also
estimated the phases by interpolating between consecutive
Poincaré surface crossings [56], obtaining similar results.

Figure 6 shows the temporal evolution of the phase
difference �φ (t). We observe each extreme event to be
associated with a phase slip, with unit 1 leading unit 2 by
2π . In coupled chaotic systems, such an interruption of the
synchronous behavior by phase difference slips in multiples
of 2π is referred to as imperfect phase synchronization (IPS)
[57–59]. Studies have related this behavior to the presence of
a broad range of characteristic time scales in the dynamical
system [57,58]. This can occur in a chaotic dynamical system
when the chaotic attractor contains fixed points of saddle type;
for example in the Lorenz system, where the saddle at the
origin belongs to the closure of the chaotic set [58]. We expect a
similar behavior in our system, and in the following subsection,
we will look more closely at the dynamics of the system along
with the properties of the saddle-type equilibrium at the origin.

B. Role of the saddle-type equilibrium

System A has a trivial equilibrium at the origin
(x∗

1 ,y∗
1 ,x∗

2 ,y∗
2 ) := (0,0,0,0), which interestingly is a saddle

focus with two-dimensional stable and unstable manifolds, as
seen from the eigenvalues of the Jacobian (see the Appendix).
The saddle quantity for the origin is σ ≈ −0.098 394 < 0,
which suggests that the origin is a simple saddle focus and
does not lead to complicated dynamical scenarios, which could
exist for σ > 0 [60,61]. With the earlier observation regarding
the Lorenz system [57,58] in mind, we look at the role of the
saddle focus behind the IPS and the extreme events for our
case. As it turns out, the saddle focus at the origin and its
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FIG. 6. (Color online) Top: Temporal evolution of x̄ for
system A. Bottom: Estimated phase difference �φ (t) between the
two units. Inset: Detailed behavior of the system around one example
of the phase slips.

stable and unstable manifolds indeed play an important role in
the generation of the extreme event.

We calculated an approximation of the manifolds (see the
Appendix for details) and the minimum Euclidean distances
of the system’s state to the stable and the unstable manifold,
which we denote by Ds and Du, respectively. In Fig. 7 we
show the temporal evolutions of these distances. We observe
that, along with the state of the system in state space, the
corresponding distances Ds and Du show similar oscillatory
behavior. This suggests that the trajectory of the system comes
close and then departs away from the manifolds during the low-
amplitude oscillations of x̄ (t). In the case of an extreme event
(e.g., for t ≈ 2200 in Fig. 7), however, the system exhibits
a long excursion in state space (as shown in the top part of
Fig. 8) and gets farthest from the manifolds.

The appearance of these long excursions is closely related
to the alignment of the manifolds. In the parameter range where
the emergence of extreme events is possible, these manifolds
are located in such a way that there exists a small channel-like
structure in state space through which the trajectory can escape
for the long round trip (see Fig. 8). Since the arrangement of the
manifolds in state space depends on the system parameters, this
channel-like structure can open and close, either permitting or
preventing the emergence of extreme events [52]. Hence, the
existence of the channel-like structures is the backbone of
generating extreme events in system A. On the other hand,
the apparent randomness of the events in the system can
be explained by the chaotic dynamics of the system, which
causes the trajectories to enter the channel recurrently but
aperiodically. Because of this aperiodic behavior, extreme
events are not predictable on long time scales, as found in
Sec. III B. The rarity of the events is related to the “width” of
the opening of the channel and depends upon the parameters
of the system [52].
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FIG. 7. (Color online) Temporal evolutions of x̄ (solid, black line) for system A and, on a logarithmic scale, of the distances Ds (green,
dashed line) and Du (red, dotted line) of the system’s state from the stable or unstable manifold, respectively.

V. HOW AN EXTREME EVENT IS GENERATED
IN SYSTEM B

In this section we investigate how the emergence of extreme
events in system B depends on the proto-events, which we
define for this purpose as local maxima of e that are no
extreme events, e (t) := |{i|xi (t) > 0.6}| being the number of
excited units. In Fig. 9 we show a histogram of the e for
these proto-events. We observe that proto-events with e < 22
are never followed by extreme events, 10% of proto-events
with e = 22 are followed by extreme events, and almost all
proto-events with e = 23 or higher are followed by extreme
events. Furthermore, we observe that there are almost no
proto-events with e > 23 and all extreme events are preceded
by proto-events.

For a system of n = 1001 completely coupled units with
comparable parameters, we make similar observations: Proto-
events with e < 223 are never followed by an extreme event,
almost all proto-events with e � 224 are followed by an
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FIG. 8. (Color online) Projection of the attractor of system A on
the x2–y2 plane (red, dotted line). In the bottom zoom, two extreme-
event trajectories are shown in black and green thick solid lines,
illustrating the channel-like structure leading to the extreme event.

extreme event, there are almost no proto-events with e > 226,
and all extreme events are preceded by proto-events.

We therefore conclude that extreme events emerge from
a special case of the rather normal proto-events. For this to
happen, it is necessary that a certain “critical mass” of units
becomes excited in the proto-event. Moreover, if such a critical
mass of units becomes excited, an extreme event is likely to
happen. Thus, proto-events with a critical mass of excited units
can be considered as precursors to extreme events. This is in
accordance with our previous observations that indicate that a
generating mechanism comes into action only about when the
proto-event begins, i.e., about 50 time units before the extreme
event (see Sec. III B).

VI. CONCLUSIONS

We reported on three deterministic systems which are
composed of diffusively coupled, inhomogeneous FitzHugh–
Nagumo units and which are capable of generating extreme
events. Those systems are of increasing complexity, from more
simple systems, on which we performed most of our analyses,
to a complex network of 10 000 units, which indicates a
certain robustness of the phenomenon regarding the coupling
topology. It remains to be investigated whether comparable
phenomena can be observed on other coupling topologies, e.g.,
with a hub structure. The occurrence of the extreme events,

e
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FIG. 9. Histogram (with non-overlapping bars) of e for the proto-
events from 2 · 108 time units of observation, separated into those
that are followed by no extreme event or a single or double extreme
event, respectively. There are no more than 200 proto-events for
all e between 23 and 60. Also, we observed no extreme event of
either kind that was not preceded by a proto-event.
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though self-generated by a deterministic system without the
influence of noise or any change of control parameters, does
not exhibit signs of determinism: the interevent intervals are
distributed nearly exponentially and we found no indicators
for long-term predictability.

For the extreme events, we observed for all three models
that first a portion of units becomes excited, which then
recruits the rest of the units via the diffusive coupling, such
that all or almost all units become excited, which constitutes
the extreme event. Despite these commonalities, we observed
differences between the systems in the generation of extreme
events: While for a system of two units, whenever one unit
becomes excited, it recruits the other and an extreme event
is generated; in a system of 101 completely coupled units, it
happens rather often that a portion of units becomes excited
and only if their number exceeds a certain “critical mass,”
an extreme event is generated. In the small-world system,
the initial excitation spreads on the underlying lattice, which
eventually leads to the extreme event. Taking a different point
of view, we found for a system of two units that the backbone of
the extreme-event generation is a channel-like structure in state
space that is entered by the system rarely and aperiodically
because of its chaoticity and that when entered leads to a
long excursion in state space, which constitutes the extreme
event. Whether a similar mechanism is at work for our more
complex systems cannot be determined, since computations
of stable and unstable manifolds are not feasible in such
high-dimensional state spaces.

Dynamics similar to the ones analyzed here have been
found for other systems [43,62,63], however with different
mechanisms leading to the extreme events. In Ref. [62],
rare high-amplitude pulses were observed in the output of a
semiconductor optical amplifier, whose phase-space structure
is equivalent to that of a FitzHugh–Nagumo-type oscillator.
These pulses were interpreted as excitations being caused
by the unavoidable experimental noise. In Ref. [43], similar
trajectories were observed in globally coupled networks of
FitzHugh–Nagumo units that are subject to noise. A noise-
induced intermittent occurrence of large events appearing in
between long stretches of irregular small-scale oscillations
will turn into regular occurrences with shorter and shorter
interevent intervals as the noise strength is increased. In
Ref. [63], the phenomenon of the emergence of rare large
pulses of light intensity in a pumped laser relies on the
coexistence of different attractors in the system for a given
set of parameters. Again the noise applied to the pump current
is responsible for the jumps between the coexisting attractors
which is manifested as the high-amplitude pulse. While in
these studies, the emergence of peaks with very large amplitude
is noise induced, the formation of extreme events investigated
here is entirely based on deterministic dynamics.

In Ref. [64] the dynamics of a semiconductor laser with
optical feedback was investigated and the authors also reported
on the formation of extreme pulses in a deterministic model.
The emergence of extreme pulses is closely related to the
expansion of the attractor under a variation of the feedback
strength. In two coupled lasers in a master—slave config-
uration, large intensity pulses—called optical rogue waves
in laser systems—have been observed experimentally [65],
and a theoretical investigation revealed that they occur in the

vicinity of a crisis [66]. The corresponding distribution of
the interevent intervals is also exponential, which hints to
commonalities with our generating mechanism that need to
be further explored.

There are other model systems whose dynamics exhibits
extreme pulses localized in space and time, such as the
complex Ginzburg–Landau equation [67,68] and the nonlinear
Schrödinger equation [69]. The mechanism of their appearance
is very distinct from the one reported here since it includes
only next-neighbor spatial interactions on a lattice. Pulse-
coupled oscillators with a complex coupling topology were
shown to exhibit extreme events of synchrony, which emerge
spontaneously from an asynchronous chaotic behavior [70],
similarly as observed here.

From these considerations we can conclude that particularly
optical rogue waves and the extreme events found in systems of
coupled oscillators seem to have more in common than it seems
at first glance. Hence, future studies could address the question
to what extent there are commonalities and differences in the
extreme-event-generating mechanisms in these systems.
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APPENDIX: MANIFOLD APPROXIMATION

The eigenvalues of the Jacobian at the origin are
λ1,2 = 0.000 41 ± 0.096 83 i, λ3 = −0.016 225, and λ4 =
−0.082 989. The associated saddle quantity is σ =
2 Re(λ1,2) + λ3 + λ4 ≈ −0.098 394. These eigenvalues sug-
gest that the stable and the unstable manifolds are both
two dimensional for this case. The stable manifold can be
approximated [71] using the expressions

x1 (t) =
∑

l

l∑

m=0

ρm,l−m exp [mλ1t + (l − m)λ2t],

y1 (t) =
∑

l

l∑

m=0

ςm,l−m exp [mλ1t + (l − m)λ2t],

(A1)

x2 (t) =
∑

l

l∑

m=0

τm,l−m exp [mλ1t + (l − m)λ2t],

y2 (t) =
∑

l

l∑

m=0

χm,l−m exp [mλ1t + (l − m)λ2t],

where ρm,l−m, ςm,l−m, τm,l−m, χm,l−m are undetermined co-
efficients. l ∈ [1,2,3, . . .] can be considered as the order
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of the expansion. Similarly, the unstable manifold can be
approximated from

x1 (t) =
∑

l

l∑

m=0

ρ ′
m,l−m exp [mλ3t + (l − m)λ4t],

y1 (t) =
∑

l

l∑

m=0

ς ′
m,l−m exp [mλ3t + (l − m)λ4t],

(A2)

x2 (t) =
∑

l

l∑

m=0

τ ′
m,l−m exp [mλ3t + (l − m)λ4t],

y2 (t) =
∑

l

l∑

m=0

χ ′
m,l−m exp [mλ3t + (l − m)λ4t],

where ρ ′
m,l−m, ς ′

m,l−m, τ ′
m,l−m, and χ ′

m,l−m are once again the
undetermined coefficients with l being the order of the ex-
pansion. Substituting the expansions from Eqs. (A1) and (A2)
into the system Eq. (1) and matching the terms of same order
of the exponential on both sides of the resultant equation,

these coefficients can be determined. The zeroth-order co-
efficients vanish; (ρ0,0,ς0,0,τ0,0,χ0,0) = (ρ ′

0,0,ς
′
0,0,τ

′
0,0,χ

′
0,0) =

(0,0,0,0) as the manifolds pass through the origin. The
first-order coefficients (l = 1) can be approximated by using
the eigenvectors of the eigenvalues of the Jacobian at the origin:

ρ1,0 = μ1v1,1; ς1,0 = μ1v1,2; τ1,0 = μ1v1,3; χ1,0 = μ1v1,4,

ρ0,1 = μ2v2,1; ς0,1 = μ2v2,2; τ0,1 = μ2v2,3; χ0,1 = μ2v2,4,

ρ ′
1,0 = μ3v3,1; ς ′

1,0 = μ3v3,2; τ ′
1,0 = μ3v3,3; χ ′

1,0 = μ3v3,4,

ρ ′
0,1 = μ4v4,1; ς ′

0,1 = μ4v4,2; τ ′
0,1 = μ4v4,3; χ ′

0,1 = μ4v4,4,

(A3)

where vi,j is the j th component of the eigenvector corre-
sponding to the ith eigenvalue. Constants μi are picked to
keep the series expansions in Eqs. (A1) and (A2) convergent.
The undetermined higher-order coefficients can be calculated
simultaneously and recursively for l = 1,2, . . .. For our calcu-
lations, we consider μi = μ = 0.01, and use the expansions
in Eqs. (A1) and (A2) up to l = 5. The estimation of the
coefficients was performed using Maple [72].
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