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Edge of chaos and genesis of turbulence
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The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation,
prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic
saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the
chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses.
The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable traveling wave in
the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space.
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I. INTRODUCTION

There is a growing interest in edge states at the laminar-
turbulent boundary that can improve our understanding of the
transition from turbulent to laminar flows in fluids and plasmas,
as well as the precursors of turbulence [1,2]. Recently, an
interior crisis was fully characterized in the chaotic dynamics
of the Pierce diode, a simple spatially extended system for
collisionless bounded plasmas, based on the concept of edge of
chaos (EOC) [3]. EOC is defined as the boundary that divides
the phase space in two pseudobasins: a region whose initial
conditions display a chaotic transient behavior and another
region whose initial conditions converge directly to a laminar
attractor. The EOC is the stable manifold of an invariant saddle
structure called edge state (ES) [1–3] and can be obtained
by refined techniques, such as the bisection method [1], that
allow one to follow the EOC for longer times. For example,
in the EOC of a parallel shear flow the ES, determined by
the bisection method, is an unstable periodic orbit for low
Reynolds numbers, whereas at higher Reynolds numbers it is
a chaotic object known as the relative attractor [1]; the ES
associated with the EOC in a periodic window of the Pierce
diode, found by the bisection method, is a period-3 unstable
periodic orbit arisen from a saddle-node bifurcation [3].

The regularized long-wave equation (RLWE), also known
as the Benjamin-Bona-Mahony equation, is of great interest
in the study of propagation of long waves in shallow waters,
such as tsunami driven by an earthquake [4] and drift waves
in a controlled nuclear fusion plasma [5]. The RLWE is an
improved model of nonlinear small-amplitude long-waves in
fluids, first derived by Peregrine [6] and then by Benjamin
et al. [7], to remove some mathematical problems associated
with the Kortweg-de Vries equation, such as the existence and
stability of solutions and other problems related to the dis-
persion term. Dynamical systems description of the transition
from temporally to spatiotemporally chaotic attractors, based
on the RLWE, provides a simple model to acquire in-depth
insights on the laminar-turbulence transition [8–10].
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In this paper we use the RLWE to study the nonlinear
dynamics of a spatially extended system prior to the onset
of permanent spatiotemporal chaos. The aims are threefold.
First, we establish the link between the concept of EOC
at the boundary of laminar-turbulent transition and the con-
cept of chaotic saddle at the basin boundary of coexisting
attractors. Second, we show that a chaotic saddle is born
in a smooth-fractal metamorphosis, which evolves to well-
developed transient turbulence via fractal-fractal metamor-
phoses. Third, we elucidate the role of the edge state at the
basin boundary of coexisting attractors and at the boundary
of pseudobasins of coexisting chaotic saddle and attractor
before the onset of permanent spatiotemporal chaos, and at the
boundary of pseudobasins of coexisting chaotic saddles and
attractors after the onset of permanent spatiotemporal chaos.

II. THE MODEL

The driven-damped regularized long-wave equation in
dimensionless units is given by [8,10]

∂tu + c∂xu + f u∂xu + a∂txxu = −νu − ε sin(κx − �t), (1)

where ε is the driver amplitude, c = 1, f = −6, a =
−0.28711, ν = 0.1, κ = 1, and � = 0.65. We impose periodic
boundary conditions u(x,t) = u(x + 2π,t) and solve Eq. (1)
numerically using a pseudospectral method by expanding the
wave variable u(x,t) in a Fourier series:

u(x,t) =
N∑

k=−N

ûk(t) exp(ikx). (2)

We set the number of modes N = 32 [9]. By introducing
Eq. (2) into Eq. (1) we obtain a set of ordinary differential
equations for the complex Fourier amplitudes ûk(t),

(1 − ak2)
dûk

dt
= −ick ûk − νûk

+ ε

2
[(sin �t + i cos �t)δ1,k − fF(u∂xu)],

(3)

where the last term on the right-hand side is the Fourier
transform of the nonlinear part of Eq. (1). The pseudospectral
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method computes this term in the real space using the infor-
mation from the Fourier space. First, we compute the spatial
derivative in the Fourier space ∂xu → ikûk and then both ûk

and ikûk are Fourier-transformed to the real space, where
the multiplication f u∂xu is performed. Finally, the result is
Fourier-transformed back to the Fourier space. Numerical
integration is performed using a fourth-order Runge-Kutta
integrator, with a time step 	t = T/500, where T = 2π/�

is the driver period in Eq. (1). Since u(x,t) is a real function,
only k > 0 need to be considered and at each time step, 1/3
of the high k modes are set to zero to avoid aliasing errors.
Thus, the effective number of modes is N = 20 and the phase
space has dimension 40, with the state of the system at time
t given by u = {û1, . . . ,û20}, where ûk is the kth complex
Fourier amplitude.

As noticed by He [11], Eq. (1) has solutions of the
form u(x,t) = ũ(x − �t), which are traveling waves in the
laboratory frame (x,t). This kind of solution is a fixed point for
the amplitude-phase description of the Fourier modes ûk , when
it is transformed to the driver frame of reference ξ = x − �t .
The amplitude and phase of the kth Fourier mode in this frame
are given by

|ûk| =
√

[Re ûk]2 + [Im ûk]2 and θD
k = θL

k + k�t, (4)

where θL
k = tan−1 (Im ûk/Re ûk) is the phase in the laboratory

frame of reference.

III. NONLINEAR ANALYSIS

In the absence of driving-dissipation (ε = ν = 0) or when
driving-dissipation is relatively weak (ε,ν < 1), Eq. (1) admits
a steady wave solution in the form of a solitary traveling wave
[12]. If we keep all parameters in Eq. (1) fixed and only vary
ε, the steady wave solution of Eq. (1) eventually becomes
unstable and undergoes a diversity of bifurcations, giving rise
to a wealth of dynamical phenomena.

A. Edge of chaos and edge state

At ε = 0.199, just before the onset of permanent spatiotem-
poral chaos, the solutions of Eq. (1) exhibit the characteristics
of edge of chaos. A technique to detect the edge of chaos is
to compute the lifetime of initial conditions in some region
of the phase space [1,2], defined as the time a trajectory
takes to converge to the laminar attractor. We construct a
two-dimensional projection of the phase space starting from
a given initial condition u0 and varying the amplitude of the
first two Fourier modes |û1| and |û2| to generate a grid of
initial conditions in the driver frame, keeping the other 18
Fourier amplitudes and 20 phases the same as u0. Figure 1(a)
shows the lifetime landscape in this grid. The base initial
condition u0 is indicated by the black cross in Fig. 1(a) and
the method to find it is explained below. The red regions
indicate short lifetimes and correspond to initial conditions
whose trajectories do not show the features of transient turbu-
lence (governed by a spatiotemporally chaotic saddle STCS
[9]) and converge quickly to the laminar attractor (spatially
regular and temporally chaotic attractor). On the other hand,
the light-blue regions correspond to initial conditions whose
temporal evolution displays long chaotic transients before

FIG. 1. (Color online) Edge of chaos is the boundary that
separates two regions in the 2D projection of the phase space in (a), at
ε = 0.199, showing the transient lifetime for turbulent trajectories to
converge to a laminar attractor. Edge state is indicated by a black cross
whose stable manifold is the edge of chaos. The blue (red) regions
indicate long (short) lifetimes that correspond to the initial conditions
that do (do not) exhibit transient turbulence before converging to a
laminar attractor, as illustrated by the time series of energy E in (b),
obtained by the bisection method for two different initial conditions.

converging to the laminar attractor. The stable manifold of
STCS is well approximated by the regions of longer lifetime.
The edge of chaos is the boundary dividing the two regions of
lifetime in Fig. 1(a).

The cross in Fig. 1(a) marks the position of the edge state,
which lies on the edge of chaos. The edge state is found through
the bisection method [1]. By integrating many different initial
conditions it is seen that the trajectories associated with
transient turbulence have a high level of energy bursts; here,
energy is defined by

E = 1

4π

∫ 2π

0
[u(x,t)2 − aux(x,t)2] dx. (5)

In contrast, the trajectories that converge quickly to the laminar
attractor have a low level of energy fluctuations. Beginning
with two initial conditions, uS and uL, with short and long
lifetimes, respectively, we integrate the condition given by
the middle point of the path that connects both conditions,
uM = (uS + uL)/2, until it converges to the laminar attractor.
We set the energy level E0 = 0.2 as a threshold to decide to
which region of the phase space uM belongs. If the maximum
energy along the trajectory of uM is lower than E0, uM lies in
the laminar pseudobasin and at the next step we set uL = uM.
Otherwise, uM belongs to the turbulent pseudobasin, hence at
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FIG. 2. (Color online) Space-time contour plot of u(x,t) in the
laboratory frame for three dynamical structures related to the edge
of chaos at ε = 0.199: (a) transient turbulence, (b) edge state, and
(c) laminar attractor.

the next step uS = uM. Repeating this procedure, we find pairs
of conditions at both sides of the edge of chaos, arbitrarily
close to each other. Figure 1(b) shows an example of two
initial conditions determined by the bisection method, with
the distance between them ||uS − uL|| < 10−12. The red curve
is the trajectory of laminar condition uS, and the light-blue
curve is the trajectory of turbulent condition uL. As the inset
in Fig. 1(b) shows, both trajectories remain close to each other
initially with E remaining almost constant until t ∼ 50. That
part of the solution corresponds to trajectories passing near the
stable manifold (EOC) of ES, which is a saddle fixed point in
the amplitude-phase description of Fourier space in the driver
frame, with constant energy for a given control parameter.
For t � 50, the two trajectories separate quickly. The laminar
trajectory converges immediately to the laminar attractor,
while the turbulent trajectory traverses first the vicinity of
a chaotic saddle before converging to the laminar attractor at
t ∼ 4000. By applying systematically the bisection method, it
is possible to find a long trajectory close to ES.

The space-time contour plots in the laboratory frame of
three dynamical structures connected to EOC at ε = 0.199 are
shown in Fig. 2. We characterize the degree of spatiotemporal
disorder of each structure by computing the Lyapunov spec-
trum {λj } and the Kaplan-Yorke dimension [10,13], defined
as

D = p +
p∑

j=1

λj

λp+1
, (6)

where p = max{m | ∑m
j=1 λj � 0}.

We use the stagger-and-step method [14] to obtain the
transient turbulence (STCS) of Fig. 2(a). Considering that
the lifetime of any state in the chaotic saddle STCS is infinite,
the stagger-and-step method consists of integrating a piecewise
continuous trajectory containing points whose lifetime is
greater than some typically large threshold Tc. First, we search
for an initial condition u0 at t = t0 with lifetime T (u0) > Tc

[for instance, some initial condition in the blue region of
Fig. 1(a)] and integrate it until time t1 = t0 + T (u0) − Tc,
saving the trajectory as being part of the STCS. We define
a new initial condition u1 = u(t1), with lifetime T (u1) = Tc,
and generate random perturbations r such that T (u1 + r) > Tc.

FIG. 3. (Color online) Bifurcation diagram of E as a function of
ε for edge state (ES), attractors (A1–A4), spatiotemporally chaotic
saddle (STCS), and temporally chaotic saddle (TCS), showing Hopf
bifurcation (HB), saddle-node bifurcation (SNB), interior crisis (IC),
and boundary crisis (BC).

Sweet et al. [14] found that the random search is faster when
||r|| = 10−s , with s being a uniformly distributed random
number between 3 and the machine precision, 15 in our case.
The perturbation r, which increases the lifetime of the initial
condition u1, is called a “stagger,” and the trajectory obtained
integrating u1 + r is the “step.” By repeating this process,
it is possible to construct an arbitrary long pseudotrajectory
that follows the STCS. Using this trajectory, we found that
at ε = 0.199, prior to the onset of permanent spatiotemporal
chaos, the chaotic saddle STCS has a Lyapunov spectrum
with 14 positive Lyapunov exponents and a Kaplan-Yorke
dimension ∼36.

The edge state ES of Fig. 2(b) is a saddle point in the
Fourier space, with one positive Lyapunov eigenvalue and
39 negative Lyapunov eigenvalues, whose stable manifolds
(EOC) separate the two regions of pseudobasins in Fig. 1(a)
and accounts for the initial constant energy trajectory at
the inset of Fig. 1(b). The laminar structure of Fig. 2(c),
corresponding to a spatially regular and temporally chaotic
attractor, has one positive Lyapunov exponent and a Kaplan-
Yorke dimension of ∼22 [10].

B. The route to spatiotemporal chaos

In order to probe the origin of the edge state and the genesis
of transient turbulence related to the aforementioned EOC, we
construct a detailed bifurcation diagram in Fig. 3 for E as a
function of ε for attractors, chaotic saddles, and ES. We adopt
a Poincaré map by plotting a point every time the trajectory
obtained from Eq. (1) crosses the plane |û2(t)| = 0.1 with
d|û2(t)|/dt > 0. For ε = 0 to 0.25 we have identified four
different attractors: A1, A2, A3, and A4. In the interval ε = 0
to 0.079, A1 is a stable fixed point (thick blue line) with a
constant energy for a given ε, which loses its stability and is
converted to a period-1 limit cycle (thin blue line) via a Hopf
bifurcation (HB) at ε ∼ 0.079. We observe three small energy
jumps in the A1 branch, one of them is visible in Fig. 3 at ε ∼
0.154. These jumps represent transitions from one period-1
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attractor to another. Although strictly speaking these are
different attractors, we refer to them as A1 in this paper because
they occupy roughly the same area in the phase space and their
bifurcations do not affect our main analysis. The last period-1
limit cycle vanishes at ε ∼ 0.1925.

A2 appears via a saddle-node bifurcation (SNB1) at ε ∼
0.09 when two fixed points, one stable (thick magenta line)
and one unstable (ES, dashed black line), are created. This
unstable fixed point corresponds to the edge state that plays
a fundamental role in the genesis of the EOC and transient
turbulence seen in Figs. 1 and 3, respectively. At ε ∼ 0.125, A2

suffers a Hopf bifurcation and becomes a limit cycle of period
1 (thin magenta line). At ε ∼ 0.1297, A2 is bifurcated into
a quasiperiodic attractor that loses its stability and vanishes
at ε ∼ 0.13235. Further research is required to determine the
bifurcation that causes the disappearance of A2.

The coexistence of attractors A1 and A2 in the interval
ε ∼ 0.09 to 0.13235 implies the existence of two basins of
attraction. We will show that the dynamical changes of the
basin boundary is responsible for the genesis of transient
turbulence.

A period-2 attractor A3 (red line) appears via a saddle-
node bifurcation (SNB2) at ε ∼ 0.1774, which undergoes a
number of different bifurcations as ε increases, involving a
transition to quasiperiodicity, period-doubling cascade, and
unstable dimension variability to temporal chaos at ε ∼ 0.1925
[15], and at ε ∼ 0.2 it loses its stability via an interior crisis
(IC) leading to the onset of a spatiotemporally chaotic attractor
A4 (green) [9].

In references [9,10] it was demonstrated that for ε � 0.21
A4 is composed of a spatiotemporally chaotic saddle, which
preexists as the transient turbulence prior to IC (STCS, light
blue) and a temporally chaotic saddle (TCS, grey) evolved
from A3. TCS turns into a temporally chaotic attractor A3 at
ε ∼ 0.22105 due to a boundary crisis (BC). As ε increases
further, A3 turns into a period-1 limit cycle via an inverse
period-doubling cascade and becomes a stable fixed point
(thick red line) via a Hopf bifurcation at ε ∼ 0.2308. At ε ∼
0.235, the stable fixed point A3 disappears in a saddle-node
bifurcation (SNB3), along with ES. A3 and A4 coexist for
ε ∼ 0.22105 to 0.235.

We detect the STCS for 0.125 � ε � 0.2 using the sprinkler
method [16]. Detection of chaotic saddles using the sprinkler
method is based upon the ability to find initial conditions with
long chaotic transients, but we found out that for ε < 0.125
the transient times become too short to be useful for detecting
the chaotic saddles. However, as we argue below, the STCS
is present from ε ≈ 0.11. Therefore, EOC can be found
for 0.11 � ε � 0.2, where there is coexistence of transient
turbulence (STCS), edge state (ES), and spatially regular
laminar attractors (A1, A2, A3).

Next we investigate the origin of the edge state and its role in
the genesis and evolution of STCS responsible for the transient
turbulence. As mentioned earlier, when A2 appears as a stable
fixed point, an unstable fixed point appears simultaneously
via SNB1; A1 coexists with A2 for 0.09 � ε � 0.13235. The
basins of attraction are separated by a boundary. ES is a
saddle structure that lies at the basin boundary. We applied
the bisection method [1] to detect ES that separates A1 and A2

and discovered that ES is the unstable fixed point born at the

FIG. 4. (Color online) Basins of attraction for the coexisting
attractors A1 (blue) and A2 (magenta) at ε = 0.095 (a), 0.111 (b),
0.130 (c). The black cross denotes the edge state. (d) Thresholded
lifetime function of A1 at ε = 0.133, just after the disappearance of
A2. Blue (magenta) regions indicate initial conditions with lifetime
shorter (longer) than the mean lifetime.

saddle-node bifurcation SNB1 (ε ∼ 0.09), shown in Fig. 3. The
edge state corresponds to an unstable traveling wave moving
with the driver speed in the laboratory frame.

C. Genesis of edge state and transient turbulence

Figure 4 shows the basins of attraction of A1 (blue) and
A2 (magenta) for ε = 0.095, 0.111, and 0.130, respectively,
along with the edge state (cross). The stable manifold of ES
is the basin boundary separating two coexisting attractors. For
ε < εM ∼ 0.11, the basin boundary is smooth as shown by
Fig. 4(a) for ε = 0.095. At ε = εM, the basin boundary suffers
a smooth-fractal metamorphosis [17], as seen in Fig. 4(b), and
a chaotic saddle STCS is born in this process. As ε increases
for ε > εM, the basin boundaries become increasingly complex
due to a cascade of fractal-fractal metamorphoses, as shown
in Fig. 4(c).

D. Characterization of regimes

1. The uncertainty exponent

The uncertainty exponent is a mathematical method of
measuring the fractal dimension of a basin boundary. Since
the transient turbulence is related to a chaotic saddle located at
a basin boundary, which is nonattracting and of measure zero,
a practical way to infer and measure the properties of STCS
is through the basin boundaries [18]. To measure the fractal
dimension of the basin boundary for 0.09 � ε � 0.13235,
where A1 and A2 coexist, we compute the uncertainty exponent
α = D − d, where D is the dimension of the phase space and d

is the fractal dimension of the basin boundary, with α defined
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FIG. 5. (Color online) Log-log plot of the uncertain fraction f

versus the error δ at ε = 0.13 (black dots). The red straight line fits
the data set, in agreement with Eq. (7).

between 0 (total fractality) and 1 (smooth). Here, by total
fractality we mean that the dimension of the fractal boundary
approaches the dimension of the phase space. The uncertainty
exponent is related to the uncertainty fraction [18]

f (δ) ∼ δα, (7)

where f (δ) is the fraction of uncertain initial conditions with
respect to the error δ. In the case of coexistence of attractors,
an initial condition u is classified as uncertain with respect to
δ if the perturbed initial condition u + δê converges to another
attractor different from u, with ê being an arbitrary unit vector.
To ensure good statistical convergence, we classify initial
conditions randomly until reaching a number of 500 uncertain
conditions. Then, we divide the number of uncertain conditions
by the total number of initial conditions chosen to obtain
the uncertain fraction. We repeat this procedure for different
values of δ ∈ [10−12,10−5] and determine α from the slope
of the straight line, which fits f (δ) versus δ in a log-log
scale. As an example, black dots in Fig. 5 are the uncertain
fraction f (δ) for ε = 0.13. The red straight line is obtained
from the linear regression analysis of the data set, with a
slope α = 0.45 ± 0.01. The computed α for the interval where
attractors A1 and A2 coexist is shown by the magenta circles
in Fig. 6(a).

Figure 4(d) shows the thresholded lifetime function of A1

at ε = 0.133, just after the disappearance of A2, in the same
region of the phase space of Fig. 4(c). Blue (magenta) regions
indicate initial conditions with lifetime shorter (longer) than
the mean lifetime. We use this information to compute the
uncertainty exponent of the pseudobasin boundary for 0.14 �
ε � 0.19. Based on the method first introduced by Lau et al.
[19], we define the lifetime difference for two initial conditions
separated by a distance δ as

	T (u) = |T (u + δê) − T (u)|, (8)

where T (u) is the time an initial condition u takes to converge
to A1. We classify an initial condition u as uncertain if
	T (u) > 	T ∗, where 	T ∗ is a positive time-difference
threshold. Following the same procedure described above,
we obtain f (δ) for many values of δ. According to Aguirre
et al. [20], the uncertainty exponent obtained in this way does
not depend on the value of 	T ∗, as long as the threshold is
not too small. Figure 7 shows the log-log plot of f (δ) versus

FIG. 6. (Color online) Variation with ε of (a) the uncertainty
exponent α (magenta circles, blue squares, green triangle) and the
time-average power spectral entropy 〈SA(t)〉 (cross), (b) the number
of positive Lyapunov exponents N+ (blue circles) and the maximum
Lyapunov exponent λmax (red triangles). εM indicates the genesis of
a chaotic saddle (STCS).

δ for 	T ∗ = 10, 20, 30, and 40, in units of Poincaré map
iterations, at ε = 0.15. Applying a linear regression analysis,
we found that all data sets in Fig. 7 are well fitted by
straight lines, as quantified by the linear correlation coefficients
r2 close to 1, in agreement with Eq. (7). Furthermore, the
uncertainty exponent α is very similar for all 	T ∗, with low
standard deviations 	α. The information obtained from linear
regressions is summarized in Table I. To compute α in the
interval 0.14 � ε � 0.19, we produce data sets similar to those
of Fig. 7 for different values of ε in the interval and keep the
value of α associated with the data set that better fits a straight
line, given by the linear correlation coefficient r2 closer to 1.

FIG. 7. (Color online) Log-log plots of the uncertain fraction f

versus the error δ at ε = 0.15, computed using four different time-
difference thresholds: (a) 	T ∗ = 10, (b) 	T ∗ = 20, (c) 	T ∗ = 30,
and (d) 	T ∗ = 40. Time is in Poincaré map units.
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TABLE I. Information from linear regressions applied to the data
sets in Fig. 7.

	T ∗ α ± 	α r2

10 0.194 ± 0.004 0.997
20 0.189 ± 0.004 0.995
30 0.188 ± 0.007 0.985
40 0.184 ± 0.007 0.987

The values of α calculated for the interval 0.14 � ε � 0.19
are indicated by the blue squares in Fig. 6(a).

To compute the fractal dimension of the pseudobasin
boundary for ε = 0.199, we use the expression for the upper
bound of the uncertainty exponent as a function of the mean
lifetime of the chaotic saddle τ [9,17] and the maximum
Lyapunov exponent λmax [21],

α � 1

τλmax
. (9)

Chian et al. [10] obtained λmax = 0.1405 and τ = 353.3 (in
units of the driver period) for ε = 0.199, thus α calculated
from the upper bound formula is 0.002018, denoted by the
green triangle in Fig. 6(a).

Figure 6(a) shows that for ε � 0.11, α is approximately 1,
implying a smooth basin boundary. For ε � 0.11, α becomes
less than 1, implying a fractal basin boundary. As ε increases
further, α steadily decreases, implying the occurrence of a
cascade of fractal-fractal metamorphoses [17], in agreement
with changes in the basin boundaries seen in Fig. 4. After
the disappearance of attractor A2, the fractal dimension of the
pseudobasin boundary increases continuously as ε increases,
as shown by the blue squares in Fig. 6(a). At ε = 0.199, the
fractal dimension of the pseudobasin boundary, corresponding
to the dimension of the stable manifold of the STCS, reaches a
value near the dimension of the phase space (α ∼ 0). This can
be seen as the intermingled blue region in Fig. 1(a). As noted
by Lai and Winslow [22], this feature of the pseudobasin is
related to long spatiotemporal chaotic transients in spatially
extended systems due to the presence of a chaotic saddle.

2. The degree of complexity

To complement the characterization of regimes based on
the variation of the uncertainty exponent α as a function
of the control parameter ε, we compute three different
quantifiers of the degree of complexity: (i) the time-average
of the Fourier power spectral Shannon entropy 〈SA(t)〉,
(ii) the number of positive Lyapunov exponents N+, and (iii)
the maximum Lyapunov exponent λmax. The Fourier power
spectral Shannon entropy quantifies the degree of amplitude
synchronization between Fourier modes [9]. The number of
positive Lyapunov exponents, obtained from the Lyapunov
spectrum, can be used to measure the degree of spatiotemporal
chaos or turbulence. For example, the laminar attractor has
only one positive Lyapunov exponent, whereas the chaotic
saddle associated with the transient turbulence may have up to
14 positive Lyapunov exponents [10], which is consistent with
degrees of amplitude synchronization quantified by 〈SA(t)〉.
The maximum Lyapunov exponent quantifies the degree of
temporal chaoticity of the system.

In order to characterize the spatiotemporal dynamics of the
chaotic saddle STCS created at ε � 0.11 as a function of ε,
first we generate arbitrarily long trajectories near the STCS by
using the stagger-and-step method [14]. To quantify the degree
of spatial disorder of the STCS we compute the time-average
of the Fourier power spectral Shannon entropy [10], given by

SA(t) = −
N∑

k=1

pk(t) ln pk(t), (10)

where pk(t) is the relative weight of a Fourier mode k at an
instant t :

pk(t) = |ûk(t)|2/
N∑

k=1

|ûk(t)|2. (11)

Figure 6(a) shows that the degree of spatial disorder increases
with ε until it reaches the maximum value near ε ∼ 0.199.

Moreover, we compute the Lyapunov spectrum [23] solving
the variational equation for the flux Jacobian matrix from the
STCS trajectories (see Miranda et al. [24] for further details).
The increase of the degree of spatial disorder with increasing
driver amplitude is accompanied by an increase of temporal
chaos. Figure 6(b) shows that the number of positive Lyapunov
exponents N+ (blue circles) increases steadily with increasing
ε, reaching its maximum value of N+ = 14 at ε ∼ 0.199.
Similar behavior is observed for the maximum Lyapunov
exponent λmax (red triangle), shown in Fig. 6(b). Figure 6
provides a consistent overview of the genesis and evolution of
the transient turbulence showing that the degree of complexity
of transient turbulence (STCS) increases as ε increases and
evolves to a well-developed transient turbulence before the
transition to permanent spatiotemporal chaos.

IV. CONCLUSION

We have demonstrated that prior to the onset of permanent
spatiotemporal chaos the regularized long-wave equation
exhibits the behavior of edge of chaos, whereby a trajectory
traverses a transient turbulent state before converging to a
laminar state. The edge state responsible for the EOC and
the genesis of turbulence was identified and a sequence of
metamorphoses of the EOC was shown to be responsible
for the appearance of a chaotic saddle and its subsequent
evolution to a well-developed transient turbulence. Our results
provide a much clearer picture of the origin of turbulence in the
regularized long-wave equation, which has been extensively
studied as a general model of transition to spatiotemporal
chaos [8,9,12,15]. These results can be applied to a wide class
of spatially extended systems where a transient turbulence
(STCS) coexists with laminar (spatially regular) attractors
before transition to an asymptotic turbulence [25].
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