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Solitons and thermal fluctuations in strongly nonlinear solids
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We study a chain of anharmonic springs with tunable power law interactions as a minimal model to explore the
propagation of strongly nonlinear solitary wave excitations in a background of thermal fluctuations. By treating
the solitary waves as quasiparticles, we derive an effective Langevin equation and obtain their damping rate
and thermal diffusion. These analytical findings compare favorably against numerical results from a Langevin
dynamic simulation. In our chains composed of two-sided nonlinear springs, we report the existence of an
expansion solitary wave (antisoliton) in addition to the compressive solitary waves observed for noncohesive
macroscopic particles.
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I. INTRODUCTION

In linear elastic solids, phonons are the basic mechanical
excitations responsible for energy propagation. By contrast,
an aggregate of macroscopic grains just in contact with
their nearest neighbors constitute a novel elastic material
where solitary waves or shocks replace phonons as the basic
excitations [1–3]. The origin of these strongly nonlinear waves
can be traced to the fact that, unlike the case of harmonic
springs, the repulsive force between two grains in contact does
not depend linearly on the relative compression. So far, little
effort has been directed to determine the fate of these strongly
nonlinear excitations in a background of thermal fluctuations
because temperature is clearly not a parameter relevant to the
elastic response of macroscopic grains.

However, granular aggregates at zero pressure are just
one example of a broader class of materials that can be
prepared in a unique mechanical state called sonic vacuum [1].
This term originally coined by Nesterenko in the context
of strongly nonlinear granular chains designate a material
characterized by a vanishing elastic moduli and linear speed
of sound [1,4–8]. Grafted colloidal particles [9] and ultracold
atoms in optical lattices [10] are microscopic systems that
allow for tunable nonlinear interactions, while being naturally
coupled to a source of fluctuation (thermal or quantum). These
fluctuations restore rigidity and generate long wavelength
phonon modes [11,12]. However, the physics of very high
amplitude strain propagation is still predominantly nonlinear
and resembles the state of sonic vacuum perturbed by
background fluctuations, even if the interaction potentials
are typically two sided, unlike granular ones. The nonlinear
regime is particularly relevant for some biological systems,
where energy transport occurs through localized nonlinear
excitations with energy significantly higher than the thermal
energy [13,14].

Moreover, systems such as polymer networks and colloidal
glasses undergoing an unjamming transition are also charac-
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terized by vanishing elastic moduli as the coordination number
or packing fraction are lowered towards the critical point [15].
The effect of thermal fluctuations on the nonlinear response
of materials undergoing an unjamming transition is relatively
unexplored, despite the fact that they are obvious examples of
a sonic vacuum state at zero temperature [16–18]. Note, that in
the case of jamming the linear elastic moduli can be lowered
towards zero even if the microscopic interactions are harmonic,
simply because there are not enough forces to prevent floppy
motions.

In this article, we focus on strongly nonlinear mechanical
waves propagating in a background of small thermal fluctua-
tions, a nonequilibrium problem that lies outside the realm
of perturbation theory. The starting point of conventional
perturbation methods is a linear elastic solid, possibly at
finite temperature, perturbed by small anharmonic terms. By
contrast, we adopt as a starting point the fully nonlinear state
of sonic vacuum whose elementary excitations are long-lived
solitary waves [19]. Subsequently we switch on temperature
as a small perturbation that creates a background of thermal
fluctuations.

As a minimal model that is analytically tractable, we study
impulse propagation in a one-dimensional lattice of nonlinear
springs with a tunable power law interaction. By coupling
the lattice to a heat bath, we then study the effects of the
thermal fluctuations on the leading solitary wave generated
in response to an impulse of energy much higher than the
background thermal energy. Our approach in a nutshell is to
treat the solitary wave as a quasiparticle and derive an effective
Langevin equation that describes its stochastic dynamics. We
corroborate our analytical predictions for the damping rate and
thermal diffusion of the solitary waves with Langevin dynamic
simulations. The sonic vacuum is usually studied with a chain
of noncohesive beads that only interact upon compression
(one-sided interaction). The system with springs has some
of the same properties as the sonic vacuum, since the sonic
vacuum is a property of the nonlinear power law interaction
(without a harmonic term). In addition to the compressive
solitary waves seen in a lattice of macroscopic grains with
one-sided repulsive interaction, we report an accompanying
antisolitary wave solution for the lattice of nonlinear springs
with two-sided interactions.
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II. THE IMPULSE RESPONSE OF NONLINEAR SPRINGS

In Fig. 1, we demonstrate that the compressional solitary
wave (SW) excitation discovered by Nesterenko in a chain
of noncohesive beads is also seen in a lattice of springs with
two-sided interactions. However, unlike the case of a one-
sided potential, each compressive SW generated in response
to an impulse is accompanied by a corresponding expansion
solitary wave (formed by local stretching of springs) of the
same magnitude but moving in the opposite direction. This
antisolitary wave (ASW) is not sustained by beads interacting
with purely repulsive potentials—the beads would merely lose
contact.

In Fig. 1, we show the SW-ASW excitations for (a) beads,
(b) and (c) particles connected by springs. In Fig. 2, we plot
E, the total energy carried by the soliton (after summing over
all particles involved) versus P , the total momentum, for the
leading SW-ASW. Note that E = P 2

2meff
, where the constant

meff can be viewed as the effective mass of the solitary or
antisolitary waves. Inspection of Fig. 2 demonstrates that SW
excitations in a lattice of repulsive beads (black circles) have
the same effective mass meff as an SW and an ASW in two-
sided springs (red squares).

As shown in Figs. 1(b) and 1(c), the leading SW-ASW
generated in response to an impulse imparted to one of the
particles towards the right (direction of arrow) is followed by
a train of alternating SW-ASW’s excitations, of progressively
smaller magnitudes. The smaller SW-ASW’s are generated as
the particle that initially imparted the impulse, recoils with
its leftover energy. This process is repeated several times,
leading to the generation of the train of smaller excitations.
Since the speed of propagation depends upon the amplitude,
the SW and ASW that start propagating together initially
(appearing bounded), eventually separate and become clearly
distinguishable.

III. LANGEVIN EQUATION

The classical energy-momentum relation E = P 2

2meff
satis-

fied by the SW motivates the interpretation of the solitary
wave as a quasiparticle [1,7,20]. For small perturbations, the
SW can still be treated as a quasiparticle provided the effects of
the perturbations accrue gradually such that the SW retains its
functional form. We now apply this adiabatic approximation to
derive an effective Langevin equation for the SW quasiparticle
when the lattice of springs is coupled to a heat bath. Recall
first, the Langevin equation for a particle of mass m undergoing
Brownian motion in one dimension is

dx

dt
= v,

dE

dt
= −2

ζ

m
K +

√
2mβ2K

dt
N (0,1). (1)

Here, E,K are the total and kinetic energies, respectively, and
ζ,β are the dissipation and diffusion coefficients related via
the fluctuation dissipation theorem β2 = 2ζ kBT

m2 , where kB is
the Boltzmann constant. N (0,1) is a normal random variable
with mean 0 and variance 1, and encapsulates the effects of
random fluctuations during the time interval t,t + dt . For a
free particle of unit mass moving with speed v, E = K = 1

2v2

and upon substituting in Eq. (1), we recover the Langevin’s

FIG. 1. Top: (a) The velocity profile of the compressive solitary
wave (SW) generated through simulation in an athermal chain of
beads with one sided interaction. Here the circles represent beads and
we see that the solitary wave is around 5-bead diameters. (b)–(c) The
velocity profiles showing the formation of a train of SW-ASW pair
for two-sided nonlinear springs. A single particle is initially given
an impulse to the right, generating a train led by a SW moving in
the direction of the impulse (b), while simultaneously generating a
symmetric train led by an ASW that moves in the opposite direction
(c). Here, velocity is measured in units of ωa, where a = 2R is the
lattice spacing and R is the radius of the beads and ω =

√
k

m
aα−2.
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FIG. 2. (Color online) The energy momentum relation for the
leading SW (black)-ASW (red) in the three cases shown in Fig. 1
following the energy (E) momentum (P ) relation E = P 2

2meff
. Energy

is measured in units of kaα , where k is the bare spring constant, a is
the lattice spacing, and α is the exponent of the nonlinear potential.
Velocity is measured in units of ωa, where ω =

√
k

m
aα−2. (Inset)

Zoom-in of the leading SW-ASW pair from Fig. 1. We see that the
SW and ASW are both around 5-bead diameters.

equation conventionally expressed as the rate of change of
momentum of the particle [21].

We now derive an equation analogous to Eq. (1) for the
compressive solitary wave quasiparticle. Let the displacement
of a particle from its initial equilibrium position in the
continuum limit be φ(x,t). If we identify the lattice spacing a

as a characteristic length scale and ω =
√

k
m

aα−2 as an inverse
time scale, then the equation of motion for the compressive
displacement field φ(x,t) in dimensionless units reads

φtt − 1
12φxxtt + [(−φx)α−1]x = 0, (2)

where subscripts denote partial derivatives with respect to
space x and time t . Equation (2) is a simplified form of
the Nesterenko equation [1,2]; see Appendix A for details.
The first two terms express the rate of change of momentum
while the third term represents the force. Although the solitary
wave solution to Eq. (2) is not exact (lacking compact support),
Eq. (2) provides a good approximation while being analytically
more tractable especially since we are interested in keeping the
nonlinear exponent α general [2,3]. Note that the equation for
the ASW (stretching) is obtained by modifying the third term
+[(−φx)α−1]x → −[(φx)α−1]x in Eq. (2).

In analogy with the Langevin equation for a particle,
we model the coupling to a heat bath as the sum of two
contributions—an external drag and a random fluctuating
force, phenomenologically introduced into the equation of
motion as

φtt − 1

12
φxxtt + [(−φx)α−1]x

= −γ

(
φt − 1

12
φtxx

)
+

√
2γ

α�dt

(
η(x,t ; t + dt)

− 1√
12

ηx(x,t ; t + dt)

)
, (3)

where γ = ζ

mω
is the dimensionless drag coefficient that

couples to the momentum 
 = (φt − 1
12φtxx). It is useful to

define a coupling constant � = kaα

αkBT
as the ratio of potential to

thermal energy in terms of which, the dimensionless diffusion
coefficient is D = 2γ

α�
. The last (noise) term on the right

of Eq. (3) in conjunction with 
, satisfies the fluctuation
dissipation theorem [22]. Here, η(x,t ; t + dt) is a Gaussian
random noise during the time interval t,t + dt with the
moments,

〈η(x,t ; t + dt)〉 = 0, (4)

and

〈η(x,t ; t + dt)η(x ′,t ′; t ′ + dt ′)〉 = δ(x − x ′)δ(t − t ′), (5)

respectively, where the angular brackets denotes ensemble
averaging.

To study the propagation of the SW in a background of
thermal fluctuations, we now make a working assumption
based on the quasiparticle approximation to the SW: Whenever
the energy of the SW, E ≡ ESW � kBT , the SW functional
form is unaltered and only its amplitude A(t) becomes time
dependent. The amplitude A(t) is the collective variable for
the SW quasiparticle and other properties of the solitary wave,
such as its energy and momentum may be determined from it.
Note, the width of the SW is independent of its amplitude and
therefore we do not consider its time dependence [22].

From Eq. (2), the conserved energy is

E =
∫

dx
1

2
φ2

t + 1

24
φ2

tx + 1

α
(−φx)α, (6)

and the energy of the SW may be obtained by integrating
Eq. (6) over the width of the SW of order W . (This avoids
including the energy of small SW that separate from the main
wave). Using Eq. (2), the rate of change of energy is

dE

dt
=

√
D

dt

∫
dxη(x,t ; t + dt)

(
φt + 1√

12
φtx

)
− 2γK + σ (t), (7)

where K is the kinetic part of the energy,

K =
∫

dx

(
1

2
φ2

t + 1

24
φ2

tx

)
. (8)

The last two terms on the right of Eq. (7) describe the possible
mechanisms of decay of the SW by “friction” from the heat
bath (γ ) and the “phonon drag” induced by the thermal
motion of the chain σ (t). The first term is the fluctuating
part of the energy. In the following, we make the assumption
(verified numerically) that the coupling to the heat bath is more
important and therefore, ignore σ (t).

Solving for the SW solution from Eq. (2), we find the
velocity field to be

φt (x,t) = Asech
2

α−2

(
x − Vst

W

)
, (9)

where A is the amplitude of the SW that propagates at a speed
Vs = A

α−2
α and has a width W = 1√

3(α−2)
in units of the lattice

spacing; see Appendix A 1, for details. Given the above form
of the solution, the SW energy, kinetic energy, and momentum
may now be expressed in terms of the collective variable A:

E =
∫

dx φ2
t (x,t) = A2IE, (10)
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and from the the virial theorem,

K = α

α + 2
E = α

α + 2
IEA2. (11)

Additionally, the solitary wave momentum is

P =
∫

dx φt (x,t) = AIP . (12)

Here,

IE =
∫

dx sech
4

α−2

(
x

W

)
, (13)

IP =
∫

dx sech
2

α−2

(
x

W

)
(14)

are constants obtained by integrating over all space [2].
Substituting for E and K in terms of A, we cast Eq. (7)

into the form of an ordinary Langevin equation (with additive
noise) for the collective variable A(t),

dA

dt
=

√
2γ

α�I 2
EA(t)2dt

∫
dx η(x,t ; t + dt)

(
φt + 1√

12
φtx

)

− αγ

α + 2
A, (15)

where, φ ≡ φ(x,t). Equation (15) is the central result of
our work whose analytical predictions we derive and test
numerically in the next sections. The first term can be written
as 1√

dt
ηA(t,t + dt), where ηA is a white noise signal; that is,

its correlations are given by 〈ηA(t)ηA(t ′)〉 = 2γ

(α+2)IE�
δ(t − t ′).

Using the fact that the correlations of η(x,t) are described by
delta functions, the correlations of ηA(t) can be related to the
kinetic energy Eq. (8), which can be replaced by α

α+2IEA(t)2.

IV. TIME DEPENDENCE OF MEAN AND VARIANCE

Taking the expectation value (ensemble average) of
Eq. (15), we find

d〈A〉
dt

= − αγ

α + 2
〈A〉, (16)

where, owing to the noise term η(x,t ; t + dt) (which acts
between times t ; t + dt) and φt (x,t) (which is a solution at
time t) being statistically independent, the expectation value
〈η(x,t ; t + dt)φt (x,t)〉 = 0. Consequently, the solitary wave
amplitude decays as

〈A〉 = A0e
− αγ

α+2 t , (17)

where A0 is the initial solitary wave amplitude. Note, the
effective damping rate,

γ ′ = − αγ

α + 2
, (18)

is independent of the inverse temperature �, but rescales with
the exponent of the nonlinear potential α.

Similarly, we solve for the variance of the solitary wave
amplitude or equivalently, the variance in the square root of
energy. Re-defining, D = γ

2α�I 2
E

, we solve for the variance in
the solitary wave amplitude by first expressing the differential
as

d[A2] = A2(t + dt) − A2(t). (19)

We obtain A(t + dt) from Eq. (15),

A(t + dt) = A

(
1 − αγ

α + 2
dt

)
+

√
Ddt

∫
dx η(x,t ; t + dt)

×
(

φt (x,t) + 1√
12

φx(x,t)

)
, (20)

which when substituted into Eq. (19) gives us

d[A2] = − 2αγ

α + 2
A2dt + 2A

√
Ddt

∫
dx η(x,t ; t + dt)

×
(

φt (x,t) + 1√
12

φtx(x,t)

)

+Ddt

∫∫
dxdx ′

(
φt (x,t) + 1√

12
φtx(x,t)

)

×
(

φt (x
′,t) + 1√

12
φtx ′ (x ′,t)

)
. (21)

Here, we have retained terms to order 0(dt) [23,24]. Taking
the expectation value, the second term on the right vanishes (as
discussed for the mean) and using the property that the noise
term is delta correlated in space, we obtain

d[〈A2〉] = − 2αγ

α + 2
〈A2〉dt + Ddt

∫
dx

(
φt + 1√

12
φtx

)2

.

The last term when expanded gives twice the solitary wave
kinetic energy 2K [see Eq. (8)], plus an integral 2√

12

∫
dxφtφtx ,

that vanishes by symmetry for the SW solution. Moreover, the
SW kinetic energy is related to its total energy via the virial
relation K = α

α+2E. Hence, we obtain the ordinary differential
equation correct to order dt ,

d〈A2〉
dt

= − 2αγ

α + 2
〈A2〉 + 2DIE

α

α + 2
. (22)

Solving, the differential equation subject to the initial condition
〈A2〉t=0 = A2

0 and substituting for D, we obtain

〈A2〉 = A2
0e

− 2αγ

α+2 t + 1

2IEα�

(
1 − e− 2αγ

α+2 t
)
. (23)

Using Eq. (17), this may be expressed as

var(A) = 〈A2〉 − 〈A〉2 = 1

2IEα�

(
1 − e− 2αγ

α+2 t
)
. (24)

Using the relation in Eq. (10), we rewrite the above equation
as

var(
√

E) = 1

2α�

(
1 − e− 2αγ

α+2 t
)
. (25)

The coefficient 1
2α�

reduces to kBT
2 when the energy is not

measured in units of kaα , so this expression is analogous to the
velocity variance of a Brownian particle. Note, for large α, the
SW is effectively one particle wide and thus Eq. (25) captures
the correct thermal equilibration of the particle energy with
the heat bath. However, for the dynamics of the SW, Eq. (25)
is only useful as long as the SW is identifiable against the
background thermal energy, that is, ESW � �−1.

V. SIMULATIONS

We consider a one-dimensional chain consisting of N =
1024 particles each having a mass m placed regularly on a
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FIG. 3. (Color online) The sound speed computed from the
dispersion curves for a range of � (inverse temperature) for α = 5

2 .
The circles are from numerical simulation while the dashed blue line
is a linear fit, giving a slope of 0.11 for α = 5

2 , close to the expected
value α−2

2α
= 1

10 . The inset shows the kinetic (KE) and potential energy
(PE) approaching thermal equilibrium, where their ratio satisfies the
Virial relation α

2 which is 1.25 for α = 5
2 . Here, energy is measured

in units of kaα

103 and time in units of ωa, where k is the bare spring

constant, a is the lattice spacing, and ω =
√

k

m
aα−2.

lattice with spacing a (spring rest length) interacting pairwise
with a nearest neighbor interaction V (δ) = K

α
(δ)α , where δ is

the compression and stretching induced during the dynamics.
We model the coupling to the heat bath by numerically
integrating Eq. (1) for each particle using the velocity-verlet
algorithm [25]. In thermal equilibrium the mean kinetic energy
is KE ∼ kBT

2 and potential energy is PE ∼ kBT
α

, where their
ratio satisfies the virial relation (see Fig. 3 inset for α = 5

2 ). In
the following, all numerical data is presented in dimensionless
units, ensemble averaged over 1000 samples.

A. Fluctuation induced rigidity

To extract the equilibrium properties in the thermalized
state, we define the longitudinal current density of particles
as j (x,t) = 1√

N

∑N
i=1 vi(t)δ(x − xi(t)), and its Fourier trans-

form j (k,t) = 1√
N

∑N
i=1 vi(t)eikx , where k is the longitudinal

collective mode along the x direction. Thus, the correspond-
ing longitudinal current density autocorrelation function is
C(k,t) = 〈j ∗(k,0)j (k,t)〉, where the angular brackets denote
ensemble averaging over the initial time. The longitudinal
power spectral density is then obtained as the Fourier transform
of the respective current density autocorrelation functions as,
P (k,ω) = ∫ ∞

−∞ dt eiωtC(k,t). The Fourier transforms defined
above are evaluated using fast Fourier transform from sim-
ulation data. The sound speeds in Fig. 3 correspond to the
linear part of the dispersion curves, obtained by projecting the
power spectral densities on the frequency (ω)—wave number
(k) plane.

In Fig. 3, we plot the sound speed from the slope
of the dispersion curves for α = 5

2 for a range of �. At
thermal equilibrium, the mean kinetic energy and hence
the temperature T satisfy the virial relation T ∼ δα

T , where
δT is the average displacement of the particles induced by
thermal fluctuations. Defining the sound speed c as the second
derivative of the induced potential energy leads to the relation,

c2 ∼ T
α−2
α [12]. For α = 5

2 , we find c ∼ �
−1
10 ∼ (kBT )

1
10 ,

closely matching the linear fit in Fig. 3. Thus, coupling the
lattice of nonlinear springs that is initially in its state of sonic
vacuum (implying the absence of linear sound) to a heat bath,
leads to hydrodynamical sound modes with a linear sound
speed that scales with the temperature of the heat bath [12].
Note, setting α = 2 (harmonic springs) yields a sound speed
that is independent of temperature while the limit α → ∞
yields c ∼ (kBT )

1
2 , a result in agreement with the entropic

elasticity for hard sphere colloidal crystals [11].

B. Comparison with analytics

Once the lattice reaches thermal equilibrium, we excite
a solitary wave (SW) by imparting one of the particles an
initial energy of order ESW = 0.5 in dimensionless units. In
Fig. 4, left panel, we show a snapshot of two SWs at the same
time, propagating in a background of thermal fluctuations for
α = 2.5 (red) and α = 2.2 (black). We see that the SW with
lower α is wider and moves faster for the given amplitude, in
qualitative agreement with the analytic widths W ∼ 1√

3(α−2)

and speeds Vs ∼ A
α−2
α .

In Fig. 5, left panel, we plot the numerical data (symbols)
for the attenuation of the SW amplitude as a function of time
for various values of γ and α and we find a very good match
to the analytic expression in Eq. (17) (solid curves). For the
range of � explored, we find the damping rate is independent
of temperature (�) but depends on the environmental drag γ

and α.

0 75 150
−0.1

0.35

v(
x)

50 225 400

−0.01

0

t

m
ea

n
(E

1/
2 )

α=2.2

α=2.5

Thermal fluctuation

c∼−αγ/(α+2)

x

FIG. 4. (Color online) (Left) Snapshot of two leading solitary
waves in a background of thermal fluctuations for α = 2.5 (red)
(narrow profile) and α = 2.2 (black) (broader profile). The solitary
waves are obtained from the velocity field v(x) measured in units
of ωa, where a is the lattice spacing and ω =

√
k

m
aα−2, while

the x axis is measured in units of a. (Right) The attenuation of
the solitary wave as a function of time plotted on a log-natural
scale, for various values of γ , �, and α. The light blue circles
correspond to α = 2.2,� = 104,γ = 5 × 10−5; red circles corre-
spond to α = 2.5,� = 104,γ = 7 × 10−5; green circles represent
α = 2.5,� = 104,γ = 5 × 10−5; and the brown squared correspond
to α = 2.5,� = 164,γ = 5 × 10−5. The analytic estimates for these
values based on Eq. (17) are shown by solid black lines. In these plots,
the initial SW ESW = 0.5 measured in units of kaα , where k is the
bare spring constant and a is the lattice spacing and time is measured
in units of ω =

√
k

m
aα−2.
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FIG. 5. (Color online) (Left) The numerically obtained mean
solitary wave energy for α = 2.5,γ = 0.01 (purple circles), α = 2.2,

γ = 0.02 (blue squares), α = 2.5,γ = 0.02 (black circles), α =
3.0,γ = 0.02 (gray squares) decaying exponentially compared
against the analytical expression (solid curves). The mean decay
rate is independent of the temperature �−1. (Right) The numer-
ically obtained variance of the square root of the solitary wave
energy for α = 2.2,γ = 0.02,� = 6000 (blue squares), α = 2.5,

γ = 0.02,� = 6000 (black circles), α = 3.0,γ = 0.02,� = 6000
(gray squares), α = 2.5,γ = 0.01,� = 6000 (purple circles), and
α = 2.5,γ = 0.02,� = 10000 (red squares) compared against the
analytical expression Eq. (25) (solid curves). The variance has
dimensions of energy expressed in units of kaα

105 where k is the bare
spring constant and a is the lattice spacing.

In Fig. 5, right panel, we show the increase in the variance
of SW amplitude (or the square root of its energy) as a function
of time for multiple values of α, γ , and � obtained numerically
(symbols) and compare them with the complete analytical
solution Eq. (25) finding good agreement. Notice, the final
value of the variance correctly approaches the thermal energy,
as expected for a Brownian particle. However, since the solitary
wave is a dynamical object that decays under the influence
of the external drag, once the solitary wave energy becomes
comparable to the background thermal energy, it is no longer
meaningful to consider it as a Brownian particle.

VI. CONCLUSION

To conclude, we find that a lattice of two sided nonlinear
springs generates a pair of solitary and antisolitary waves in
response to an impulse. By coupling the lattice to a heat bath,
we study the propagation of the leading compressive solitary
wave that has an energy much greater than the background
thermal energy, by deriving an effective Langevin equation for
the solitary wave propagation. We calculated the damping rate
and the growth rate of energy fluctuations, and verified our
results with numerical simulations.
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APPENDIX A: CONTINUUM APPROXIMATION

In this section, we will review the Rosenau approximation
to the Nesterenko solitary wave solution, that is valid for any
general nonlinear potential [2,3].

Here, we adopt as our starting point the Lagrangian for
a one-dimensional chain of identical spheres that are just
touching each other, i.e., in the limit δ0 → 0,

L =
∑

n

1

2
mu̇2

n − K

α

(
un − un+1

a

)α

, (A1)

where un is the displacement of the nth sphere from its equilib-
rium position, a = 2R is the equilibrium lattice spacing, and
K is the spring constant. In order to avoid doing a Binomial
expansion in powers of α, we will define the continuum field
variable as

aφ′(n + 1
2

) = un+1 − un, (A2)

where primes denote derivative with respect to x. We now take
the continuum limit, i.e., un → u(x) ≡ u and Taylor expand
the right-hand side about x + a

2 :

aφ′(x) ≈ u + a

2
u′ + a2

8
u′′ + a3

48
u′′′ − u + a

2
u′

− a2

8
u′′ + a3

48
u′′′. (A3)

Integrating both sides once with respect to x, we obtain

φ(x) = u + a2

24
u′′ (A4)

=
(

1 + a2

24

d2

dx2

)
u(x). (A5)

Inverting the differential operator we obtain

u(x) ≈ φ − a2

24
φ′′. (A6)

Thus, in the continuum limit, the Lagrangian becomes

L

m
=

∫
dx

1

2
u̇2(x) − K

mα
(φ′(x))α (A7)

=
∫

dx
1

2
φ̇2 − a2

24
φ̇φ̇′′ − K

mα
(φ′)α. (A8)

By using the Euler-Lagrange equation, we find the equation of
motion to be

φ̈ − a2

12
φ̈′′ + K

m
[(−φ′)α−1]′ = 0. (A9)

Note, φ here corresponds to the continuum displacement field.
The corresponding equation in the strain field δ = −φ′ reads

δ̈ − a2

12
φ̈′′ − K

m
[δα−1]′′ = 0. (A10)

Upon substituting δ = −φx for the compressive SW or δ = φx

for the expansive ASW, we find the same functional forms
for the solitary wave solutions in both cases. Here, δ(x,t)
represents the compression of two adjacent particles, i.e., the
strain field.

1. Solitary wave solution

The solitary wave solution of Eq. (A10) can be ob-
tained by looking for propagating solutions of the form
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δ(x,t) = δ(x − Vst):

V 2
s a2

12
δ′′ − V 2

s δ + K

m
δα−1 = 0, (A11)

which can be expressed in the form of a Newton-like equation:

δ′′ = − 12

V 2
s a2

[
−V 2

s δ + K

m
δα−1

]
= −dW

dδ
. (A12)

Multiplying both sides by δ′ and integrating∫
dxδ′δ′′ = −

∫
dx

dW

dδ
δ′, (A13)∫

1

2
d(δ′)2 = −

∫
dW, (A14)

1

2
(δ′)2 = −W (δ). (A15)

Taking the square root and integrating again, we find∫
dδ√−2W

=
∫

dx. (A16)

Substituting, W (δ) = 12
V 2

s a2 [ K
mα

δα − V 2
s

2 δ2], and writing for

brevity A = 12
V 2

s a2
K
mα

and B = 6
a2 , we need to integrate∫

dδ√
2δ

√
B − Aδα−2

= x. (A17)

Making the change of variables, z2 = B − Aδα−2, we find

−√
2

(α − 2)

∫
dz

(
√

B)2 − z2
= x. (A18)

Therefore,

x = −1√
2B(α − 2)

[∫
dz√
B − z

+
∫

dz√
B + z

]
, (A19)

that yields

s = −
√

2B(α − 2)x = ln

√
B + z√
B − z

, (A20)

or

z = −
√

B
1 − exp(−s)

1 + exp(−s)
. (A21)

Squaring and substituting z2 = B − Aδα−2,

B − Aδα−2 = B
exp s

2 − exp − s
2

exp s
2 + exp − s

2

, (A22)

that yields

δα−2 = B

A
sech2

(
s

2

)
. (A23)

Therefore, the solitary wave solution is

δ =
(

mαV 2
s

2K

) 1
α−2

sech
2

α−2

(√
3

2a
(x − Vst)

)
. (A24)

APPENDIX B: SOLUTION FROM DISCRETE
EQUATIONS OF MOTION

The energy and the fluctuations of the solitary wave can also
be derived for a discrete chain, without making the continuum
approximation. From Eq. (A1), the equation of motion is

mün = K(un−1 − un)α−1 − K(un − un+1)α−1. (B1)

A solitary wave solution to the above equation of motion has
the form of a wave moving at a constant speed Vs :

un(t) = A

Vs

f (na − Vst), (B2)

where A is the amplitude of the SW and f is a function
that describes the shape of the SW. [Since we define the
amplitude as the maximum speed of the particles enveloped by
the solitary wave, the displacement un(t) will be proportional
to A/Vs .]

In analogy with Eq. (1), we now couple the discrete equation
of motion Eq. (B1) to a source of Gaussian noise and drag:

mün = K(un−1 − un)α−1 − K(un − un+1)α−1 − γ u̇n

+
√

2γ kBT ηn(t). (B3)

Here, the noise satisfies 〈ηn(t)ηn(t ′)〉 = δ(t − t ′). The coef-
ficient of the noise ensures that in equilibrium the particles
satisfy the fluctuation-dissipation theorem such that their
average kinetic energy is 1

2kBT .
From Eq. (A1), the energy of the chain is E = ∑

n
1
2mu̇2

n +
K
α

(un − un+1)α . If we restrict the summation to particles
enveloped by the solitary wave such that the sum does not
include particles that are far away from the SW, then E

corresponds to the energy of the SW. Multiplying Eq. (B3)
by u̇n, we obtain the rate of change of energy,

dE

dt
=

∑
n

−γ u̇2
n +

√
2γ kBT ηn(t)u̇n, (B4)

where the contribution of terms of the form (un±1 −
un)α−1u̇n±1 (i.e., with index n − 1 and n + 1) cancel out upon
summation over n.

Consistent with the quasiparticle interpretation of the SW,
we again assume that the SW in a background of noise and
drag, is still given approximately by Eq. (B2). Therefore, we
write the terms in Eq. (B4) in terms of the SW amplitude. The
SW energy is E = IEA2, and the first term on the right-hand
side is proportional to the kinetic energy, which is 2 α

(α+2)E by
the virial theorem. Thus the energy decays at a rate α

α+2 times
the decay rate for the velocity of a single particle ( γ

m
). The SW

amplitude therefore decays as

Ȧ = − γα

m(α + 2)
A −

√
γ kBT

2I 2
E

∑
n

ηn(t)f ′(na − Vst). (B5)

A term that compensates for the diffusion of A is omitted
here (this term is derived in Ito calculus), but it is only a
small amount that is negligible if IEA2 � kBT . Now, the
different contributions in the last term just add up to a new

noise term λη(t) =
√

γ T

2I 2
E

∑
n ηn(t)f (na − Vst), which is also

not correlated in time. (Assume that λ is the amplitude of
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the noise while η has a noise with one unit of strength.)
The original noise term

∑
ηn(t)ẋn has correlations because

xn depends on the noise at an earlier time. But if the noise
mostly just changes the amplitude of the SW by a random
amount, and does not cause the particles in it to be displaced
randomly relative to each other, then these correlations are not
too important, and that is why they cancel out in the equation
for A. The variance of the noise is, therefore,

λ2〈η(t)η(t)〉 = γ kBT

2I 2
E

f ′(na − Vst)
2δ(t − t ′), (B6)

so λ2 = γ T

2I 2
E

f ′(na − Vst)2. This can be determined by the virial
theorem since it is proportional to the kinetic energy of the SW,
hence λ2 = γ kBT

IEm
α

α+2 . Therefore the amplitude of the soliton
satisfies

Ȧ = − γα

m(α + 2)
A +

√
α

α + 2

γ T

IEm
η(t). (B7)

Upon taking the mean and variance of the amplitude from
Eq. (B7), we recover the solutions derived using continuum
approximation.
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