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Chaotic dynamics of a microswimmer in Poiseuille flow
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The chaotic dynamics of pointlike, spherical particles in cylindrical Poiseuille flow is theoretically characterized
and numerically confirmed when their own intrinsic swimming velocity undergoes temporal fluctuations around
an average value. Two dimensionless ratios associated with the three significant temporal scales of the problem are
identified that fully determine the chaos scenario. In particular, small but finite periodic fluctuations of swimming
speed result in chaotic or regular motion depending on the position and orientation of the microswimmer with
respect to the flow center line. Remarkably, the spatial extension of chaotic microswimmers is found to depend
crucially on the fluctuations’ period and amplitude and to be highly sensitive to the Fourier spectrum of the
fluctuations. This has implications for the design of artificial microswimmers.
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I. INTRODUCTION

The physics of microswimmers is still today a fascinating
field with a long history due to the complexity arising from the
coupling between their intrinsic dynamics and fluid flow, and
to the ubiquity of these self-propelled entities. There are two
main categories of microswimmers: microorganisms subjected
to flow in diverse environments, such as pathogens in the
bloodstream and sperm cells in the Fallopian tube, as well
as artificial microswimmers designed for diverse applications,
such as chemical sensors and drug deliverers [1–5]. A
significant body of research has focused on microswimmer
dynamics in confined steady flows, such as shear flow [6] and
Poiseuille flow [7–10]. These studies assume a strictly constant
intrinsic swimming speed. They have shown that vortices in
flow reorient the swimming direction, while the swimmer’s tra-
jectories remain nonchaotic, including swinging and tumbling
trajectories [10]. More complex dynamics of microswimmers
that include chaos and nontrivial transport phenomena have
been described for time-dependent flow fields [11,12], again
assuming a strictly constant intrinsic swimming speed. While
this simple assumption was sufficient to reveal the possibility
of reduced transport of microswimmers in a chaotic flow due to
hydrodynamic trapping [12], a more accurate description of the
microswimmers’ intrinsic dynamics has to consider temporal
fluctuations in swimming speed. Since a microswimmer is
defined as an organism or object that moves changing its shape
in a periodic way [1], one could expect that this periodicity
may cause fluctuations of the swimming speed around some
average value, even when the effect of noise is negligible.
Recent experiments with the green microalga Chlamydomonas
reinhardtii have indeed demonstrated this behavior [13].

In this work, the simple case of a pointlike, spherical
particle in a cylindrical Poiseuille flow is used to show
that small but finite time-periodic fluctuations of the mean
intrinsic swimming speed are enough to drastically change
its trajectories from regular to chaotic depending on both
the spectral properties of the periodic fluctuations and the
position and orientation of the microswimmer with respect to
the flow center line. It is demonstrated here that the extension
in parameter space of this chaotic dynamics depends crucially
on the relative strength of the three significant time scales

associated with the problem, but that it is robust against
deviations of the microswimmer from perfect sphericity. For
the sake of simplicity, it is assumed that the microswimmer
stays away from bounding walls so that one can neglect steric
and hydrodynamic interactions between microswimmer and
walls.

II. MODEL SYSTEM

Let us consider a pointlike, spherical microswimmer
that moves with an intrinsic swimming velocity v0 =
v0 [1 + εf (t)] ê, where f (t) is a T -periodic function of
unit amplitude accounting for the small fluctuations (ε � 1)
around the average intrinsic speed v0. The equations of motion
of such a microswimmer in a cylindrical channel where
there exists a Poiseuille flow vf = vf (1 − ρ2/R2

Ch)̂z are given
by [10]

dr
dt

= v0 + vf ,
d ê
dt

= 1

2
�f × ê, (1)

where r and ê are, respectively, the position and orientation of
the microswimmer, while �f = ∇ × vf is the flow vorticity,
and where cylindrical coordinates (ρ,φ,z) and associated
coordinate basis (ρ̂,φ̂,̂z) are used. The microswimmer orien-
tation ê = eρρ̂ + eφφ̂ + eẑz is defined by means of two angles
(Fig. 1):

eρ = − cos � sin �, eφ = sin �, ez = − cos � cos �,

where � ∈ [−π/2,π/2] measures the orientation in the
azimuthal φ direction while � ∈ [−π,π ] is the angle in the
ρ-z plane. Since the problem presents three characteristic
time scales (T ,t0 ≡ RCh/v0,tf ≡ RCh/vf ), it is convenient
to henceforth use rescaled quantities (ρ/RCh → ρ ∈ [0,1],
z/RCh → z, t/t0 → t) and to define the two essential dimen-
sionless ratios controlling the chaos scenario: τ1 ≡ t0/T and
τ2 ≡ t0/tf = vf /v0.

Let us first consider two-dimensional (2D) solutions of
Eq. (1), i.e., � = 0 [10], since they already capture the essence
of the microswimmer’s chaotic dynamics. In such a case,
the trajectories of the microswimmer are restricted to two
dimensions, for instance, to the x − z plane, x ∈ [0,1], and
the translational symmetry in the z direction implies that only
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FIG. 1. (Color online) (a) Poiseuille flow profile, coordinate
system and angle � characterizing the projected orientation of the
microswimmer onto the ρ-z plane. (b) Cross section of the channel
where the angle � characterizes the orientation of the microswimmer
in the φ direction.

the equations for x and � are coupled:
.
x = − [1 + εf (t0t)] sin �,

.

� = τ2x.

Eliminating x from these equations, one obtains
..

� + τ2 [1 + εf (t0t)] sin � = 0, (2)

while the full 2D trajectory is obtained with the aid of the
additional equation

.
z = τ2(1 − x2) − [1 + εf (t0t)] cos �. (3)

As an illustrative working model for the periodic multihar-
monic fluctuation, the function

f (t ; T ,m) = N (m) sn

[
4Kt

T
; m

]
dn

[
4Kt

T
; m

]
will be considered in the following. In this function,
sn (. . . ; m) , dn (. . . ; m) are Jacobian elliptic functions of pa-
rameter m ∈ [0,1], K = K(m) is the complete elliptic integral
of the first kind, and N (m) is a normalization factor (see Fig. 2).
When m = 0, one has f (t ; T ,m = 0) = sin (2πt/T ), while for
the limiting value m = 1 the fluctuation vanishes. Note that the

0 0.25 0.5 0.75 1
1

0

1

t T

f
t;
T,
m 0 0.5 1

0.8

1

1.2

m

I
m

I
0

FIG. 2. (Color online) Plots of the function f (t ; T ,m) =
N (m) sn[4K(m)t/T ; m] dn[4K(m)t/T ; m] vs t , in which N (m) ≡
1/(a + b/[1 + exp({m − c}/d)]) is a normalization function, with
a ≡ 0.439 32,b ≡ 0.697 96,c ≡ 0.3727,d ≡ 0.268 83, for three val-
ues of the elliptic parameter: m = 0 (thin line), m = 0.717 �
m

impulse
max (medium line), and m = 0.999 (thick line). Inset: Plot of

the fluctuation’s impulse per half period I vs m, which presents a
single maximum at m = m

impulse
max � 0.717.

fluctuation’s impulse per half period,

I (m) = 2

T

∫ T/2

0
f (t ; T ,m)dt = N (m)

K(m)
,

presents a single maximum at m = m
impulse
max � 0.717 (see

Fig. 2, inset). Since Eq. (2) represents a parametrically
excited pendulum, its phase space is three-dimensional (3D),
and there always exists Hamiltonian chaos around the un-
perturbed separatrix in a Poincaré section [

.

� (tn) vs � (tn),
tn = nT + t0, n = 1, . . .] for arbitrarily small but finite am-
plitude ε. Additionally, islands of regular elliptic regions and
(stable) fixed points, which are associated respectively with
quasiperiodic and periodic orbits in phase space, as well as
higher-order island chains complete the picture in the Poincaré
section [14]. Given Eq. (3), this means that 2D and 3D
microswimmer’s trajectories may be periodic, quasiperiodic,
or chaotic depending on their position and orientation in
the channel and the values of the parameters ε,m,τ1,τ2. An
estimate of the width, 
, of the chaotic layer around the
unperturbed separatrix can be obtained by using Melnikov’s
method [14–16] (see the Appendix). Thus, using the Fourier
expansion of sn (. . . ; m) dn (. . . ; m), and after some simple
algebraic manipulation, one may write the Melnikov function
(MF) corresponding to the equivalent perturbed pendulum of
Eq. (2) as

M±(t ′) = −2ε

∞∑
n=0

anbn cos

[(
n + 1

2

)
4πτ1t

′
]

,

an = an(m) ≡ π3N (m)
(
n + 1

2

)
K2(m)

√
m cosh

[
(n+ 1

2 )πK(1−m)
K(m)

] ,

bn = bn(τ1,τ2) ≡
(
n + 1

2

)2
(4πτ1)2

sinh
[(

n + 1
2

)
2π2τ1/

√
τ2

] , (4)

where the positive (negative) sign refers to the top
(bottom) homoclinic orbit of the underlying conservative
pendulum:

�0 (t) = ±2 arctan[sinh(
√

τ2t)],
.

�0 (t) = ±2
√

τ2 sech(
√

τ2t).

As noted in the Appendix, the simple zeros of the MF imply
transversal intersections of stable and unstable manifolds,
giving rise to Smale horseshoes and hence hyperbolic invariant
sets [15]. Thus, a homoclinic bifurcation always occurs in
the present case, and an estimate of the width [16] of the
subsequent chaotic separatrix layer in the aforementioned
Poincaré section [cf. Eq. (A3)] is found to be


 = 
 (ε,τ1,τ2,m) = | maxt ′ M
±(t ′)|

2
√

τ2

= ε√
τ2

∞∑
n=0

an(m)bn (τ1,τ2) . (5)

The width function 
 (ε,τ1,τ2,m) provides an estimate
of the width in energy of the chaotic separatrix layer
since the equivalent perturbed pendulum (2) comes
from the perturbed Hamiltonian H = H0 + εH1, where
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H0 ≡ 1
2

.

�
2 − τ2 cos � and H1 ≡ −τ2f (t0t) cos �. Next, the

robustness of the prediction of Eq. (5) against small deviations
from exact sphericity may be determined by considering the
dynamics of an elongated spheroidal microswimmer with
aspect ratio γ and associated geometry factor G = (γ 2 −
1)/(γ 2 + 1) ∈ [0,1), such that the case of exact sphericity is
recovered for γ = 1 (i.e., G = 0) while one has 0 < G � 1
for slightly elongated microswimmers. For any G, Eq. (2) is
generalized to the form [17]

.

� = τ2x [1 − G cos (2�)] ,
(6).

x = − [1 + εf (t0t)] sin �.

FIG. 3. (Color online) Width of the chaotic separatrix layer 


[cf. Eq. (5) with ε = 1] vs (a) τ1 and τ2 for m = 0, (b) τ1 and m for
τ2 = 1, and (c) τ2 and m for τ1 = 1/2.

FIG. 4. (Color online) Poincaré maps of Eq. (6), x(tn) ∈
[−1,1] vs �(tn) ∈ [−π,π ] associated with the section tn = nT ,n =
1, . . . ,1500, for τ2 = 1 and nine sets of the remaining parameters
(ε,m,G,τ1): (a) (0.1,0,0,0.05), (b) (0.1,0,0,τ1, max), (c) (0.1,0,0,0.6),
(d) (0.1,0,0.5,0.05), (e) (0.1,mmax,0,τ1, max), (f) (0.1,mmax,0,0.6),
(g) (0.2,0,0,0.05), (h) (0.1,0.999,0,τ1, max), and (i) (0.1,0.999,0,0.6).
The same initial conditions were used in all the versions, τ1, max ≡
0.194, and mmax ≡ 0.655.

Thus, after assuming 0 < τ2G � 1, the MF corresponding
to the equivalent perturbed pendulum (6) is given by Eq. (4)
minus the integral

τ2G

∫ ∞

−∞

.

�0 (t) sin �0 (t) cos [2�0 (t)] dt,

which is zero due to its integrand being an odd function. After
a careful analysis of the above results, the following remarks
may now be in order (see Figs. 3 and 4).

First, an upstream, � ≈ 0 (downstream, � ≈ π ), oriented
microswimmer presents regular (chaotic) motion when it is
sufficiently near the center line of the flow depending on
the parameter values, and hence on the chaotic layer width,
as expected from the stabilizing (destabilizing) effects of
the flow vorticity. Such a regular (quasiperiodic or periodic)
motion of the upstream oriented microswimmer is upstream
motion when the ratio between the maximum flow speed
and the average intrinsic swimming speed (τ2) is sufficiently
small [cf. Eq. (3)]. However, when the upstream-oriented
microswimmer’s direction departs sufficiently from the center
line such that the microswimmer is inside the chaotic layer, it
may move chaotically upstream (

.
z < 0), downstream (

.
z > 0),

or mixed up- and down-stream depending on its distance x to
the center line and the values of the amplitude ε and the ratio
between the maximum flow speed and the average intrinsic
swimming speed (τ2) [cf. Eq. (3)]. Also, a downstream-
oriented microswimmer presents regular (quasiperiodic or
periodic) motion when it is sufficiently far from the center
line of the flow depending on the parameter values, and hence
again on the chaotic layer width.

Second, for τ2 and ε constant, the width 
 presents a single
maximum at (τ1,m) = (τ1, max,mmax) with τ1, max = τ1, max(τ2)
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such that 
(ε,τ1, max,τ2,mmax) increases as the ratio between
the maximum flow speed and the average intrinsic swimming
speed (τ2) or the amplitude ε increase [see Figs. 3(a) and 3(b),
and compare Figs. 4(a), 4(b), 4(c), and 4(e)]. Note that both
τ1, max and 
 increase as τ2 increases, i.e., when the ratio
between the maximum flow speed and the average intrinsic
swimming speed is ever larger, irrespective of the values of
ε and m [see Figs. 3(a) and 3(c)]. However, since x = .

�/τ2

and bn ∼ √
τ2 as τ2 → ∞ [cf. Eq. (4)], one obtains 
 →

const as τ2 → ∞ in a Poincaré section
.

�(tn) vs �(tn) while

 → 0 in a Poincaré section x(tn) vs �(tn). In the other
limit, τ2 → 0 (i.e., when the ratio between the maximum flow
speed and the average intrinsic swimming decreases more and
more), one obtains bn ∼ e−C/

√
τ2 [C ≡ C(n,τ1), cf. Eq. (4)]

and hence 
 → 0 in both kinds of Poincaré sections. Thus,
chaotic behavior of microswimmers is not expected in the
limits τ2 → 0,∞, i.e., when the maximum flow speed is much
higher or much lesser than the average intrinsic swimming
speed, which needs to be taken into account in designing
artificial microswimmers to have regular swimming [1,18].

Third, the width 
 presents its maximum at a single
value of the elliptic parameter m = mmax � 0.655, which
does not depend on the remaining parameters ε,τ1,τ2. This
means that such a value is a consequence of the Fourier
spectrum of the periodic fluctuation. Specifically, mmax is
significantly near m

impulse
max � 0.717, i.e., the m value that yields

maximum impulse per half period [compare Figs. 4(c), 4(f),
and 4(i)]. Importantly, the presence of many non-negligible
subharmonics in the spectrum (such as for m � 1) leads
to richer behavior than that found in the case of a single
harmonic (m = 0), as in the example of Fig. 4(h) where
two secondary chaotic layers can be appreciated [compare
Figs. 4(b) and 4(h)]. Again, this property may be useful
in designing artificial microswimmers. One can understand
the coincidence between mmax and m

impulse
max by analyzing the

variation of the pendulum’s energy. Indeed, note that Eq. (2)
can be put into the form

dE

dt
= −τ2εf (t0t)

.

� sin �, (7)

where E(t) ≡ 1
2

.

�
2
(t) + U [�(t)] [U (�) ≡ −τ2 cos �] is the

energy function and f (t0t) is a ϒ-periodic function with
ϒ ≡ T/t0 ≡ 1/τ1. Integration of Eq. (7) over any interval
[nϒ,nϒ + ϒ/2)],n = 0,1,2, . . ., yields

E(nϒ + ϒ/2) − E(nϒ) = −τ2ε

∫ nϒ+ϒ/2

nϒ

f (t0t)
.

� sin �dt.

(8)

Now, for the present choice f (t0t) = N (m) sn[4Kt/ϒ ; m]
dn[4Kt/ϒ ; m], if one considers fixing the parameters (ε,τ1,τ2)
for the equivalent perturbed pendulum to lie at a periodic
orbit inside the initial well (near the underlying separatrix as
required by Melnikov’s method) at m = 0, the application of
the first mean value theorem [19] to the integral on the r.h.s.
of Eq. (8) gives

E(nϒ + ϒ/2) − E(nϒ) = −τ2εϒ
.

�(t∗) sin �(t∗)I (m)/2,

(9)

FIG. 5. (Color online) Typical trajectories for chaotic (a), (d),
quasiperiodic (b), and periodic (c) motion in the ρ-�-� phase
space [cf. Eq. (10)] for τ2 = 10,m = 0,ρ(t = 0) = 0.2,�(t = 0) =
0.55. (a) �(t = 0) = π,ε = 0.15,τ1 = 0.2. (b) �(t = 0) = 0,ε =
0.15,τ1 = 0.2. (c) �(t = 0) = π,ε = 0.15,τ1 = 0.05. (d) �(t =
0) = 0,ε = 0.9,τ1 = 0.95.

where t∗ ∈ [nϒ,nϒ + ϒ/2]. Since the initial state is a steady
(periodic) state, t∗ will depend solely on the function f (t0t)
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but not on n. In this situation, one increases m while
holding constant the remaining parameters. For values m > 0
such that the state of the equivalent perturbed pendulum is
still a periodic orbit inside the initial well (which will be
necessarily near the initial periodic orbit in the phase space),
one expects that

.

�(t∗) sin �(t∗) will maintain approximately
its initial value (at m = 0) while the fluctuation’s impulse
per half period I (m) ≡ N (m)/K(m) will rise from its ini-
tial value. This means that, in some case depending upon
the remaining parameters and the sign of

.

�(t∗) sin �(t∗),
the energy increment 
E ≡ E(nϒ + ϒ/2) − E(nϒ) could
be enough to surpass the threshold escape energy, i.e., the
threshold oscillation amplitude to allow escape from the
initial potential well and hence to reach the chaotic separatrix
layer. Clearly the probability of this event is maximal at
m = m

impulse
max where I (m) presents an absolute maximum,

which explains that mmax � m
impulse
max . For fixed ε and τ2, since

the fluctuation’s impulse over a half period ϒI (m)/2 depends
on both the elliptic parameter and the period, its critical value
yielding the aforementioned escape event can in some case
be reached at m 
= m

impulse
max provided that ϒ is sufficiently

large.
And fourth, the prediction of Eq. (5) is expected to hold,

at least for slightly elongated microswimmers [20] [compare
Figs. 4(a) and 4(d)], while the width 
 is proportional to the
fluctuation amplitude ε [compare Figs. 4(a) and 4(g)].

When � 
= 0, Eq. (1) gives rise to the equations
.
ρ = − [1 + εf (t0t)] cos � sin �,
.

� = τ2ρ − sin � tan � cos �/ρ, (10)
.

� = sin � sin �/ρ,

which do not depend on φ and z because of the rotational sym-
metry about the channel axis and the translational symmetry
in the z direction, respectively. The temporal dependence of
the microswimmer speed breaks the two constants of motion
existing when ε = 0 [10], so that chaotic 3D trajectories are
expected over finite regions in parameter space. Unfortunately,
the mathematical complexity of Eq. (10) prevents one from
obtaining analytical estimates of the chaotic regions in pa-
rameter space as was possible in the case � = 0. Numerical
experiments confirmed that the main features of the above 2D
chaos scenario hold in the general case (10). Figure 5 shows
some illustrative examples [21].

III. CONCLUSIONS

In summary, it has been demonstrated that periodic fluctu-
ations of a microswimmer’s swimming speed in a cylindrical
Poiseuille flow give rise to dynamics of great complexity,
including chaotic, quasiperiodic, and periodic motions. Two
dimensionless ratios associated with the three significant
temporal scales of the problem were identified that fully deter-
mine the chaos scenario. Analytical estimates were obtained
characterizing the dependence of the extension of the chaos on
the amplitude, period, and Fourier spectrum of the fluctuations,
thus providing information that may be useful in designing
and optimizing artificial microswimmers. The chaos scenario
discussed in this work should be accessible in experiments with

spherical artificial microswimmers with different locomotion
mechanisms [22] in channels under Poiseuille flow.

Finally, the results suggest that finely tuned upstream-
oriented (downstream-oriented) swimming near (far from) the
center of the flow may be an efficient evolutionary strategy to
preserve regular swimming of self-propelled microorganisms
in laminar flows. Remarkably, this is exactly the collective
behavior of the microalga C. reinhardtii when swimming
upstream (downstream) toward a light (phototaxis) [23]. The
phototaxis property describes the regular orientation of certain
microorganisms toward a light source. For typical param-
eter values considered in Refs. [23] (vf ∼ 40 mm/s,v0 ∼
50 μm/s,RCh ∼ 0.5 mm) and [13] (T ∼ 19 ms), one obtains
τ1 ∼ 526,τ2 ∼ 800, and hence 
/ε ∼ 10−73; i.e., chaotic
behavior is not expected [cf. second remark and Eq. (5)].
One can conjecture thus the existence of a link between
phototaxis and required regular swimming, which deserves
further exploration in the light of the complex dynamics of
this microalga [24].
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APPENDIX: MELNIKOV’S METHOD

This Appendix briefly describes Melnikov’s method for the
simple case of a perturbed integrable Hamiltonian system with
one degree of freedom. Consider the system

xt = h0 (x) + εh1 (x,t) , x = (x1,x2) , (A1)

where the unperturbed system (ε = 0) is an integrable Hamil-
tonian system which possesses a hyperbolic fixed point X0 and
a separatrix orbit x0(t) such that limt→±∞ x0(t) = X0 while
the stable and unstable manifolds xs(t),xu(t) are smoothly
joined. Generally, the perturbation term h1 can introduce
dissipation and nonautonomous excitation, with h1 being T

periodic in time. For ε 
= 0, the perturbed stable and unstable
manifolds no longer join smoothly such that, if the ratio
of dissipation and excitation is sufficiently small, the stable
and unstable manifolds will intersect transversally, creating
a homoclinic point. This process is called a homoclinic
bifurcation and indicates the onset of chaotic instabilities. To
check when a transverse crossing occurs, Melnikov introduced
a function M(t ′) (now known as the Melnikov function)
which measures the distance between the perturbed stable and
unstable manifolds in the Poincaré section:

M(t ′) ≡
∫ ∞

−∞
h0(x0(t − t ′)) ∧ h1(x0(t − t ′),t)dt, (A2)

where ∧ is the wedge operator (x ∧ y = x1y2 − x2y1). If
the Melnikov function presents a simple zero, the manifolds
intersect transversally and chaotic instabilities result. When h1

is a Hamiltonian perturbation, this leads to the appearance of
an unstable layer, meaning the possibility of persistent chaotic
motion, along the separatrix of the unperturbed system. The
width 
 of this chaotic separatrix layer can be estimated from
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the Melnikov function as


 =
∣∣∣∣maxt ′ M(t ′)
|h0[x0(0)]|

∣∣∣∣ + O(ε2). (A3)

See Refs. [14–16] for more details about Melnikov’s
method.
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