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Mobility of solitons in one-dimensional lattices with the cubic-quintic nonlinearity
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We investigate mobility regimes for localized modes in the discrete nonlinear Schrödinger (DNLS) equation
with the cubic-quintic on-site terms. Using the variational approximation, the largest soliton’s total power
admitting progressive motion of kicked discrete solitons is predicted by comparing the effective kinetic energy
with the respective Peierls-Nabarro (PN) potential barrier. The prediction, for the DNLS model with the cubic-only
nonlinearity too, demonstrates a reasonable agreement with numerical findings. A small self-focusing quintic
term quickly suppresses the mobility. In the case of the competition between the cubic self-focusing and quintic
self-defocusing terms, we identify parameter regions where odd and even fundamental modes exchange their
stability, involving intermediate asymmetric modes. In this case, stable solitons can be set in motion by kicking,
so as to let them pass the PN barrier. Unstable solitons spontaneously start oscillatory or progressive motion, if
they are located, respectively, below or above a mobility threshold. Collisions between moving discrete solitons,
at the competing nonlinearities frame, are studied too.
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I. INTRODUCTION

Diffraction of light and matter waves upon propagation is a
commonly known fundamental effect. A wave tends to spread
over the whole space as it evolves. However, when the medium
is sensitive to the intensity of traveling waves, nonlinear
corrections must be included in the description of the wave
propagation, which often leads to adequate models based on
nonlinear partial differential equations (PDEs). Solitary-wave
solutions, or solitons, are robust localized modes generated
by this type of nonlinear evolution equations. Arguably, one
of the most generic PDEs related to these systems is the
nonlinear Schrödinger (NLS) equation. In the context of optics,
it predicts the existence of effectively one-dimensional (1D)
solitons in optical fibers [1] and planar wave guides [2].

Still richer phenomenology emerges when the nonlinear
media include a periodic transverse modulation of local
properties. Nonlinearity and periodicity combine to offer a
wide range of phenomena which have no counterparts in bulk
homogeneous media. Among them, a great deal of interest has
been drawn to discrete solitons [3–6]. Numerous realizations of
discrete solitons have been established, ranging from nonlinear
optics (guided waves in inhomogeneous optical structures [7]
and photonic-crystal lattices [8,9]) to atomic physics (chains of
droplets of Bose-Einstein condensates (BECs) trapped in deep
spatially periodic potentials, [10–12], including dipolar BECs
with the long-range interaction between the drops [13,14]) and
from solid-state settings (Josephson-junction ladders [15–17])
to biophysics, in various models of the DNA double strand
[18,19].

Robust mobility of fundamental modes is a necessary
ingredient underlying the transport of light or matter through
the lattice. A vast set of theoretical predictions [20–22] and
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experimental observations [23,24] addressed the issue of the
mobility of discrete solitons in photonic lattices with the
cubic (Kerr) nonlinearity, as well as with saturable [25]
and quadratic (second-harmonic-generating) [26] nonlinear
responses. Recently, it was also analyzed in the model of the
photonic lattice with a saturable nonlinearity [27] and in an
array of coupled optical resonators [28]. Adopting the cubic-
quintic (CQ) form of the on-site nonlinear terms, i.e., including
the second-order Kerr corrections to the refractive index,
the solitons have been observed traveling across the lattice
after being precisely kicked [29]. As concerns applications,
a system that exhibits good mobility of localized modes may
be promising for the design of all-optical networks, where
mobility can help to implement fast switching and transfer of
signals across the system.

In this work we focus on the existence and stability of
mobile fundamental localized modes, both odd and even ones
(alias on-site and off-site-centered states, respectively), in the
discrete NLS (DNLS) equation with CQ on-site nonlinearities.
First we develop an analytical approach predicting, with the
help of the variational approximation (VA), the mobility thresh-
old in this model, i.e., the largest value of the total power (alias
norm) of the discrete soliton admitting its progressive motion
induced by the initial kick. The threshold is predicted by
equating the largest possible value of effective kinetic energy
of the kicked soliton to the height of the corresponding Peierls-
Nabarro (PN) barrier. The comparison of this analytical result
for the usual DNLS lattice with the purely cubic nonlinearity
with numerical results demonstrates a reasonable agreement.
The VA-based prediction describes qualitatively correctly too
fast suppression of the mobility of the discrete solitons with
the increase of the self-focusing quintic nonlinear term. In the
case of the competing combination of the self-focusing cubic
and defocusing quintic terms, we emphasize the crucial role
played by regions of the stability exchange between the odd
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and even fundamental modes and by intermediate asymmetric
modes existing in those regions for the understanding of the
spontaneous mobility featured by solitons which are unstable
in the static state. We also study the mobility of stable discrete
solitons under the action of the kick.

The rest of the paper is organized as follows. The model
is formulated in Sec. II. The VA for the discrete solitons
and the PN barrier are considered in the analytical form
in Sec. III, the main result of which is the prediction of
the above-mentioned mobility threshold. Numerical results
for the system with the absolute-focusing nonlinearity are
reported in Sec. IV (in particular, the analytically predicted
mobility threshold is compared to numerical findings). The
model with the competing focusing-defocusing CQ terms is
considered, in the numerical form, in Sec. V. In this section,
points of the stability exchange between the odd and even
fundamental localized modes are analyzed at first, due to the
specific role which, as said above, they play in the transition
of unstable solitons into the state of spontaneous motion. The
dynamical regimes proper, of both the spontaneous motion for
originally unstable discrete modes and the motion of kicked
stable solitons, are presented in that section too, along with
basic results for collisions between moving discrete solitons.
The paper is concluded by Sec. VI.

II. THE MODEL

We address the propagation of waves in nonlinear discrete
systems which were studied in diverse physical contexts in the
course of the last two decades [6,30–32]. In those systems,
the discreteness appears as an effect of weak interaction
between separated elements, basic examples being arrays of
coupled optical wave guides or BECs trapped in deep optical
lattices. In the context of optics, an evanescent coupling (linear
interaction) between modes of adjacent wave guiding cores
takes place when the wave guides are set in close proximity
to each other. Considering this interaction in the lattice, a
set of linearly coupled equations is derived, similar to the
tight-binding models in solid-state physics [33]. Assuming a
local (on-site) CQ nonlinear response of the system, we arrive
at the 1D DNLS equation in the known form:

iψ̇n + (ψn+1 + ψn−1) + γ |ψn|2ψn + ν|ψn|4ψn = 0. (1)

Here ψn(z) is the field amplitude at the nth lattice site, and ψ̇n

stands for its derivative with respect to the evolutional variable,
which corresponds to the normalized propagation coordinate
z in the present case (this model also applies to BECs loaded
into a deep optical lattice, where the dynamical variable is
time t). The intersite coupling constant is fixed here to be
1, but the coefficient in front of the on-site quintic term is a
free parameter, ν. For γ > 0 and ν < 0 (the competing on-site
self-focusing cubic and self-defocusing quintic terms), static
unstaggered solitons in this model were studied in detail in
Ref. [34] and their 2D counterparts in Ref. [35].

Equations (1) conserve two dynamical invariants, namely,
the total power, alias norm,

P =
N∑

n=−N

|ψn|2, (2)

and the Hamiltonian

H = −
N∑

n=−N

(
ψn+1ψ

∗
n + ψ∗

n+1ψn + γ

2
|ψ |4 + ν

3
|ψ |6

)
, (3)

for a lattice of 2N + 1 sites.
First, we look for stationary solutions of Eqs. (1) of the

usual form, ψn(z) = φn exp(iλz), where λ is to the longitudinal
propagation constant, while φn defines a real spatial profile of
the soliton. Linear solutions, in the case of γ,ν = 0, correspond
to plane waves φn = A exp(ikn) that form the linear band of
the system defined as λ = 2 cos k, where k is the transverse
propagation constant. Thus, the linear band covers the region
λ ∈ (−2,2).

In the nonlinear system, with γ,ν �= 0, exponentially
localized solutions for discrete solitons exist outside of the
linear band, and they can be obtained by solving the following
set of real coupled algebraic equations:

λφn = φn+1 + φn−1 + γφ3
n + νφ5

n. (4)

By means of the high-confinement approximation [36], we
construct an initial condition which is very close to an exact
localized solution. Then, we implement an iterative multi-
dimensional Newton-Raphson method to find a numerical
solution for a given frequency λ or power P (both parameters
can be used independently to find solutions). Once a solution is
obtained, we vary the parameters to construct a whole family of
discrete solitons. Then, we perform the standard linear stability
analysis [37], obtaining an instability growth rate, g, for each
solution. In our notation, g = 0 represents a stable solution,
while g > 0 represents an unstable one. Hereafter, stable and
unstable solutions are plotted by means of solid and dashed
lines, respectively.

In the framework of this work, we focus on typical funda-
mental modes that are relevant to understand the dynamical
properties of collective excitations in this type of lattices.
Accordingly, we call an odd mode the one centered at one
site of the lattice, while the even mode is centered between two
lattice sites. Other frequently used names for these two species
of the localized states are, respectively, on-site-centered and
off-site-centered modes. The quantity which unequivocally
identifies the species is the center-of-mass coordinate, defined
as

Xcm ≡ 1

P

N∑
n=−N

n|φn|2. (5)

Odd and even modes are singled out, severally, by integer and
semi-integer values of Xcm, respectively.

III. THE ENERGY BARRIER AND
VARIATIONAL APPROXIMATION

A. The Peierls-Nabarro barrier

In DNLS models, the PN potential is a major concept for
studying the mobility of localized modes. Odd and even states
correspond to fundamental quiescent solutions. The difference
in their Hamiltonian values defines the height of the PN
potential barrier [38]. Indeed, for a given power (norm), this
difference determines effective energetic barriers for moving
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the discrete soliton across the lattice: To move the odd mode
a single site across the lattice, it needs to be transformed into
even mode and, again, to the odd mode centered at the next
site. Thus, the energy required for this transformation must
be at least equal to the energy difference between the two
states, keeping the power constant (in the case of the adiabatic
movement).

It is worthy to mention that different nonlinear interac-
tions generate diverse energy landscapes. For example, a
photorefractive saturable DNLS model [27,39,40] allows the
existence of a single stability region for any fundamental
solution and regions of multistability where intermediate
asymmetric solutions appear. The continuous exchange of
stability properties is accompanied by several crossings of
the Hamiltonian values, generating diverse regions where
the mobility is enhanced, even for high powers. Another
interesting model is a dipolar DNLS one, applied for the
description of BEC’s with long-range interactions [41]. This
cubic model possesses a single region of simultaneously
unstable solutions, where the stable solution becomes the
intermediate one. Good mobility occurs in the exchange
regions, where Hamiltonian values approach and cross each
other.

In this connection, it is also relevant to mention a very
recent result for 2D cubic Kagome lattices [42]. For that model,
it was found that a single stability-exchange region appears,
where the intermediate solution becomes the ground state of
the system. As the appearance of these solutions implies that
the energy barriers decrease, coherent transport for very low
power and highly localized modes were also found, which is
an unusual property of 2D cubic lattices [6,30–32].

B. Variational approximation

The VA provides a first estimate about regions in the
parameter space, where mobility may be expected. The VA
was developed in Refs. [29,34,43] for 1D discrete solitons in
the CQ-DNLS model, but considering only the self-defocusing
sign of the quintic term. To apply the VA, the following ansatz
was adopted:

φ(VA)
n = Ae−α|n−n0|, (6)

where amplitude A and inverse width α are real positive
constants, and n0 = (χ + 1)/2 defines the position of the
center of the mode, with χ = 0 and χ = 1 for even and odd
states, respectively. We here treat A as a variational parameter,
while α is fixed by the substitution of ansatz (6) into the
linearization of Eq. (4), for the decaying tail of the discrete
soliton far from its center: λ = 2 cosh α.

The power associated with ansatz (6) is

P = A2 cosh (χα)

sinh α
. (7)

It is well known that the Hamiltonian can be expressed as
the Legendre transform of its Lagrangian, namely,

H (qn,pn) =
+∞∑

n=−∞
q̇npn − L(qn,q̇n), (8)

where, for model (1), canonical coordinates pn and qn corre-
spond to ψn and iψ∗

n , respectively. Thus, Eq. (4) corresponds

to the following Lagrangian,

−L = λP + H. (9)

The substitution of ansatz (6) into Eq. (3) and the elimination
of A2 by means of Eq. (7) yields the effective Hamiltonians
for the odd and even modes,

H VA
odd(P ) = −2 sech (α)P − γ

4
[cosh(2α) sech2(α) tanh(α)]

×P 2 − ν

3

[
2 cosh(2α) − 1

2 cosh(2α) + 1
tanh2(α)

]
P 3, (10)

H VA
even(P ) = −2e−α [1 + sinh(α)] P − γ

4
tanh(α)P 2

− ν

3

[
sinh2(α)

2 cosh(2α) + 1

]
P 3. (11)

Finally, by inserting the previous expressions for the
Hamiltonian into Eq. (9), we obtain the full Lagrangian of
the system for both fundamental modes as function of their
width and power content:

LVA
odd(P ) = −2 sinh(α) tanh(α)P

+ γ

4
[cosh(2α) sech2(α) tanh(α)]P 2

+ ν

3

[
2 cosh(2α) − 1

2 cosh(2α) + 1
tanh2(α)

]
P 3, (12)

LVA
even(P ) = [1 − cosh(2α) − 2 sinh(α) + sinh(2α)] P

+ γ

4
tanh(α)P 2 + ν

3

[
sinh2(α)

1 + 2 cosh(2α)

]
P 3. (13)

The Euler-Lagrange equations obtained by these La-
grangians are

∂

∂P

[
L

(VA)
odd,even

] = 0. (14)

To understand how the quintic term in Eq. (1) affects the
mobility of localized solutions, it may be treated as a
perturbation because, as shown below, quite small positive
values of ν lead to full suppression of the mobility. Then, in
the zero-order approximation (ν = 0), Eqs. (14) and (12), for
the odd modes and γ = 1, yield

P
(0)
odd(α) = 4(cosh2 α) (sinh α) sech(2α). (15)

Next, we introduce the first-order correction to Eq. (15),

Podd(α) = P
(0)
odd(α) + νP

(1)
odd(α), (16)

for which the calculation based on the VA results yields

P
(1)
odd(α) = 32

[2 − sech(2α)] (cosh5 α) sinh3 α

[2 cosh(2α) + 1] cosh2 (2α)
. (17)

To estimate the mobility threshold, it is necessary to find
the largest values of α and P for which the kicked mode may
be set in motion [6,44–48]. A kicked odd profile is obtained
by adding the phase term to ansatz (6),

φ(0)
n · eikn = Ae−α|n|+ikn, (18)

where k is the real magnitude of the kick, which corresponds
to a transverse propagation constant restricted to the interval of
[0,π ]. This kicked profile increases the effective Hamiltonian
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of the odd mode by adding what, in the present context, plays
the role of the kinetic energy:

Ekin = 2 sech α (1 − cos k) P. (19)

Then, taking into regard that the Hamiltonian of the even
mode is larger than for the odd one, the mobility limit is
determined by equating Hamiltonian (10), modified according
to ansatz (18) with k = π [which implies taking the largest
possible value of kinetic energy (19)], to the energy of the
immobile even soliton, for the same total power P :

H
(VA)
odd (P,k = π ) = H (VA)

even (P ). (20)

This equations determines the largest values of the total power,
Pmax, at which the kicked discrete soliton may be set in
persistent motion.

First, in the cubic-only model (ν = 0), Eq. (20), with
H

(VA)
odd,even and P substituted by the VA results [see Eqs. (10),

(11), and (15)], leads to the following equation for αmax, which
corresponds to the respective mobility threshold P (0)

max:

2 (2 + sinh αmax + tanh αmax) (cosh αmax) cosh (2αmax)

= exp (αmax) sinh4 αmax, (21)

a numerical solution of which yields

αmax ≈ 2.0361. (22)

Finally, the substitution of this αmax into the VA-predicted
expression for the total power [see Eq. (15)] gives

P (0)
max = P

(0)
odd(αmax) ≈ 7.7866. (23)

We stress that this prediction of the mobility threshold, i.e.,
the largest total power of the odd discrete soliton which may
be set into motion by the arbitrarily large kick, is an unusual
result even for the usual DNLS model with the purely cubic
nonlinearity.

Finally, the weak quintic term, if treated as a small
perturbation (see above), shifts the largest value of the total
power, which admits the progressive motion, as

Pmax ≈ P (0)
max + νP (1)

max, (24)

with the coefficient found from the respective expansion of
Eq. (20):

P (1)
max ≈ 2 sinh4(αmax) tanh(αmax)

sinh(2αmax) + sinh(4αmax)

(
P (0)

max

)2
(25)

[recall αmax is given by Eq. (22)]. At the same order ∼ν, it is
also necessary to include the correction to the VA-predicted
total power, as given by Eq. (16). Thus, taking into regard
both contributions, one from Eq. (25) and one from (17) with
α = αmax, our estimate for the largest total power admitting
the mobility of the discrete soliton in Eq. (1), including the
quintic term, is

Pmax = P (0)
max − ν

[
P

(1)
odd (αmax) + P (1)

max

]
≈ 7.7866 − 72.0148ν. (26)

Eventually, the absence of the mobility, alias “full stop”
(Pmax = 0), is predicted to occur at the following positive value
of the quintic coefficient:

νhalt = 0.1081. (27)

On the other hand, Eq. (26) predicts that a negative quintic
coefficient will produce the opposite effect, allowing mobility
at larger values of power.

Comparing these predictions with numerical findings (see
below), it is necessary to take into account that sufficiently
heavy kicked localized modes first shed off a part of their
power in the form of the lattice radiation waves (“phonons”).
For this reason, the effective power which is predicted by
Eqs. (23)–(26) is expected to be smaller than the actual initial
power of the kicked modes. It is shown below that this
expectation is borne out by the comparison with numerical
results.

IV. NUMERICAL RESULTS FOR THE MODEL
WITH SELF-FOCUSING CUBIC AND QUINTIC

TERMS: γ,ν > 0

A. Stationary solutions

We start the numerical analysis by considering positive
values of both nonlinear coefficients in Eq. (1): γ,ν > 0,
which corresponds to both on-site nonlinear terms being
self-focusing, in the optical context. First, we construct families
of odd and even fundamental localized modes by solving
Eq. (2), for propagation constants above the linear band. In
Figs. 1 and 2 we show different families of odd and even
fundamental solutions; insets show typical profiles of the odd
and even fundamental modes. In general, with the increase
of the quintic coefficient ν at constant propagation constant
λ, we observe that the total power of the localized solutions
decreases. Therefore, under the stronger self-focusing nonlin-
earity, it may be possible to excite strongly localized states at
lower levels of power.

As we mentioned above, the stability of these solutions was
predicted by means of a standard linear analysis; additionally, it
was corroborated by direct simulations of their evolution in the
framework of Eq. (1), adding initial white-noise perturbations.
The odd mode is found to be unstable only in extremely
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FIG. 1. (Color online) Total power P versus propagation constant
λ for odd-mode (on-site-centered) soliton families. Each color
corresponds to a different value of quintic coefficient ν, while the
cubic coefficient is fixed to γ = 1. The inset shows a typical profile
of the odd localized mode for P = 2.4, λ = 5.0, and ν = 0.5.
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FIG. 2. (Color online) The same as in Fig. 1, but for the families
of even (intersite-centered) modes. The inset shows a typical profile
of the even localized mode for P = 4, λ = 5.0, and ν = 0.5.

small portions of the P (λ) curves with the negative slope
∂P/∂λ < 0, in agreement with the Vakhitov-Kolokolov (VK)
stability criterion [49]. On the other hand, the even mode is
unstable in the whole range of explored parameters, which is
a typical situation for cubic DNLS models [6]. In the course
of the perturbed evolution, the stable odd modes radiate a
very small amount of their power content and relax into
the unperturbed shape. The unstable even modes radiate a
significant amount of power and oscillate between the odd and
even profiles.

To study the mobility of the localized modes, we first com-
pute the PN barrier, which was defined above as the difference
between the values of the Hamiltonian for the odd and the
even modes [38]: �H ≡ Hodd − Heven. Figure 3 displays a
color map showing that the PN barrier monotonically increases
with the total power and the positive quintic coefficient, ν.
Therefore, in this parameter regime, the transport across the
lattice is not expected to be enhanced.

It is relevant to point out here good agreement between
the VA prediction and the numerical calculations. Indeed, it
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FIG. 3. (Color online) The color map of the PN barrier, �H ,
versus P and ν. The black arrow points out the VA of the Pmax value.
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FIG. 4. (Color online) Examples of the mobility of discrete
solitons across the whole lattice with γ = 1 and ν = 0 (no quintic
nonlinearity): (a) P = 2.4 and k = 0.2, (b) P = 2.8 and k = 0.5, and
(c) P = 3.2 and k = 0.8.

follows from Eqs. (19), (22), and (23) that the largest kinetic
energy which may be lent to the odd mode, at ν = 0, is

Ekin ≈ 7.9954. (28)

According to the prediction of the VA, this extra energy allows
one to equalize the Hamiltonians of the odd and even modes;
i.e., it must be equal to the PN barrier at the VA-predicted
value of the total power, given by Eq. (23). The black arrow in
Fig. 3 indicates this point, P = P 0

max,ν = 0, which belongs to
the contour level of �H = −8. The latter value is remarkably
close to the VA prediction given by Eq. (28).

B. Dynamics

First, we consider the propagation of localized solutions in
the system with the cubic-only nonlinearity, i.e., γ = 1 and
ν = 0 in Eq. (1). Figure 4 displays examples of clear mobility
for three different powers and three different kicks: (a) P = 2.4
and k = 0.2, (b) P = 2.8 and k = 0.5 and (c) P = 3.2 and k =
0.8, in lattice with periodic boundary conditions. It is worthy
to note that the trajectories gradually lose their smoothness
as the power increases. Obviously, with the increase of the
PN barrier the mobility deteriorates, in particular, due to the
increment in the emission of radiation. Independent of the size
of the kick, stationary modes with

P >
(
P (0)

max

)
num ≈ 6 (29)

stay immobile, losing a conspicuous part of their power in the
form of radiation as a result of the application of the kick.

The comparison of the numerically found mobility thresh-
old (29) with the VA-predicted counterpart (23) demonstrates
a sufficiently reasonable agreement, taking into account that
the VA for the moving discrete solitons cannot be developed in
a highly accurate form, cf. Ref. [48]. The fact that the predicted
threshold value of the power is greater than the numerically
identified one is explained by the decrease of the power due to
the radiative loss, as discussed above.

Now we include the effect of the quintic self-focusing
nonlinearity, ν > 0. As an example, we here take the same
values P = 3.2 and k = 0.8 as in Fig. 4(c). As shown above in
Fig. 3 and predicted by Eq. (26), the PN barrier increases
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FIG. 5. (Color online) The mobility of discrete solitons with
P = 3.2 under small values of the quintic coefficient: (a) ν = 0.01,
(b) ν = 0.03, and (c) ν = 0.05.

monotonically with ν; hence, reduction of the mobility is
expected. Figure 5 corroborates the dramatic reduction of
the mobility while weakly increasing ν. At ν = 0.01, the
localized mode passes about 40 sites of the lattice [Fig. 5(a)],
before getting trapped around n = 41. Increasing the quintic
coefficient to ν = 0.03 and then to ν = 0.05, we observe that
the discrete soliton shows erratic motion (it is explained by
overcoming the potential barriers, losing the energy through
the radiation loss, and facing new effectively lower barriers),
before getting trapped around n = 15 [Fig. 5(b)] and n = 10
[Fig. 5(c)], respectively. Thus, the prediction of the VA that
the quintic self-focusing term must completely suppress the
mobility at rather small values of ν [see Eq. (27)] is in
qualitative agreement with the numerical findings.

V. NUMERICAL RESULTS FOR THE MODEL
WITH SELF-FOCUSING CUBIC AND DEFOCUSING

QUINTIC TERMS: γ > 0,ν < 0

A. Stationary solutions

The negative quintic coefficient, ν < 0, implies saturation
of the on-site self-focusing nonlinearity (as featured, e.g.,
by the photorefractive nonlinearity [8]). First, we look for
fundamental stationary localized modes in this case. The
respective solution families are constructed by fixing the total
power and numerically looking for the corresponding mode
profiles φn and the propagation constant λ; see Eq. (4). The
results are displayed in Fig. 6 for γ = 1 and ν = −0.1. We
observe that, with the increase of the total power, the λ(P )
curves oscillate (sneak), odd (black) and even (red) modes,
while the modal profiles increase their width by adding new
sites in each oscillation, as shown in Fig. 7.

Below the first crossing point (λ ≈ 3.4), the VK stability
criterion applies. Then, the oscillations give rise to multiple
stability exchanges at several crossing points. By increasing
the total power, we observe regions where both, odd and
even, solutions are unstable simultaneously, regions where
only one solution is stable, and also regions where both
solutions are simultaneously stable. The stability switching
occurs, as it is generic for nonlinear dynamical systems
[50–52], at saddle-node bifurcation points. In this case,
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FIG. 6. (Color online) The propagation constant, λ, versus the
total power, P , for families of odd (black) and even (red) discrete
solitons in the system with γ = 1 and ν = −0.1. Recall that
continuous and dashed curves designate stable and unstable soliton
families, respectively. The left inset shows the instability growth
rate, g, for these families. The right inset shows the PN barrier
corresponding to these solutions, in the whole domain.

these points coincide with maxima and minima values λ(P )
for P > 15. A variational approximation in the ‘snaking’
region was developed in Ref. [53]. This scenario is similar
to the one known from the saturable nonlinearities and it
is characterized by a continuous spatial broadening of the
fundamental solutions, as a consequence of the saturation of
the amplitude at large values of P ; see Fig. 7.

On the other hand, by plotting the PN barrier, �H (right
inset in Fig. 6), we observe several points at which it exactly
vanishes, indicating that both solutions share their properties
in the Hamiltonian representation; i.e., both are maxima or
minima (unstable and stable states, respectively). A straightfor-
ward assumption was that at these points the system becomes
“transparent” [54], featuring perfect mobility. However, a key
ingredient was missing: When (at least) two solutions share
stability properties, an extra solution in between must appear
with the opposite stability. These intermediate stationary
solutions typically correspond to asymmetric profiles. In the
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FIG. 7. (Color online) Solution profiles for the odd and even
modes at several values of the total power (top and bottom panels,
respectively) corresponding to the families represented by the black
and red lines in Fig. 6.
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FIG. 8. (Color online) A zoom of the first stability-exchange
region from Fig. 6. Asymmetric stable solutions family (the gray
curves) appears as the connection between the odd- and even-mode
families (black and red curves). The inset shows the instability growth
rate, g, associated with the solutions belonging to the three different
families.

present case, for the competing CQ on-site nonlinearity, they
were first found in Ref. [34]. With this ingredient included,
the effective energy barrier is the one that takes into regard
all stationary solutions in a certain region of the parameter
space, rather than just the usual odd and even modes. This
situation can be understood from the segment of λ(P ) curve
in Fig. 6 which is magnified in Fig. 8. In this case, families
of asymmetric solutions (gray branches) emerge, linking the
odd and even families exactly at the stability-exchange points.
They are associated with the two first vanishing points of the
PN barrier, designated by the black solid circles in Fig. 6.
Within a small total-power interval around P ≈ 8.4, the odd
and even families are simultaneously unstable. On the contrary,
around P = 16.1 both of them are simultaneously stable. As
the power increases, the PN barrier vanishes at several points,
in accordance with oscillation of the λ(P ) curves and the
exchange of the stability properties.

There are, essentially, two ways of obtaining the interme-
diate asymmetric solutions. The first one amounts to finding
this solution dynamically, by tracing the center of mass of the
wave packet and noticing when the velocity is smaller or larger,
corresponding to a maxima or minima of the effective potential
and, accordingly, to unstable or stable solutions [25,42].
The second, and more elegant, procedure is provided by the
so-called “constraint method” [55,56]. It starts from a given
stationary mode with defined propagation constant λ, power
P , and center-of-mass coordinate X. We then implement a
constrained Newton-Raphson method that finds solutions by
keeping the power constant and varying X. By performing
a smooth sweep in X, we are able to transform the profile
from a given fundamental mode to the other one (e.g., from
an odd mode to an even one). In Fig. 9 we show the H (X)
dependence obtained by implementing this method, including
mode profiles of the constrained solutions. In fact, this process
corresponds to a correct definition of the PN potential, the one
which traces the shape of the effective potential that the mode
must overcome while it moves adiabatically (without emission
of radiation and keeping the power constant) from one site
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FIG. 9. (Color online) The H versus Xcm plot corresponding to
the adiabatic transition between the odd- and even-mode solutions.
The insets display asymmetric profiles of the intermediate solutions;
see the text.

to another. As the system is periodic, this potential must be
copied to construct the whole effective lattice potential. If there
exists any intermediate stationary solution, it will correspond
to a critical point on this diagram, depending on the particular
model. The solid circles in Fig. 9 correspond to the stationary
fundamental solutions for this level of power. The black and
light red ones, located at X = 0 and X = 0.5, correspond to
the unstable odd and even mode solutions. The extra critical
point, the dark red solid circle located in between the other two
ones, corresponds to a stable intermediate solution (potential
minimum), with a characteristic profile sketched in the inset
of Fig. 9.

When finding such an asymmetric mode, we construct the
whole family by using a normal Newton-Raphson method.
In Fig. 8 this family is shown by a gray line, connecting
the fundamental odd and even modes in the region of multi-
instability. As this solution corresponds to a minimum of the
Hamiltonian (the ground state for this level total power), it is
a stable solution located between two unstable ones [57].

We have computed the effective potential for the first
biunstable region, by sweeping the value of the total power, P ,
and finding the Hamiltonian for all the constrained solutions
in between the odd (X = 0) and even (X = 0.5) modes.
To compare different effective potentials, we normalized the
Hamiltonian to its maximum value for any level of the total
power. Figure 10(a) displays a surface plot of the normalized
values of H as a function of P and X. The center of mass
of the stable asymmetric solutions passes from the odd mode
to the even one, following the increase of P . For low levels
of the total power the odd mode is stable and the even one
unstable. Then, both solutions become unstable up to a level
of the total power at which the even mode transforms into the
ground state, and the odd mode transforms into an unstable
solution. In that sense, the asymmetric intermediate solution
plays the role of a stability carrier, which transfers the stability
between the fundamental stationary solutions.

Next, we construct a similar energy landscape in a region
where both fundamental solutions are simultaneously stable,
around P ≈ 16.2. This implies the existence of an intermediate
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FIG. 10. (Color online) The color-map plot of the normalized
Hamiltonian (H ) for the intermediate solutions in the vicinity of
stability-exchange points. (a) Biunstable region and (b) bistable
region.

asymmetric unstable solution corresponding to a maximum
between two minima (odd and even modes). The surface plot
of the effective potential for this stability region, produced
by the constraint method, is displayed in Fig. 10(b), which
demonstrates that the intermediate solution is indeed unstable,
and, in this region, it transfers the instability from one
fundamental mode to the other, completely switching their
stability properties.

B. Moving solitons

Having established the maps of the effective potential, we
here address the mobility of the localized modes for powers
above and below the threshold value Pth, at which �H (Pth) =
0. We start by analyzing the evolution of unstable odd modes
in the biunstable region, for a power below Pth ≈ 8.39 (see
Fig. 10, where the value of H for the odd mode increases up
to coinciding with that for the even mode). Below this power
level, the odd modes do not have enough energy to overcome
the PN barrier. Thus, the unstable odd modes oscillate in
the interval of −0.5 < X < +0.5 without being able to cross
the barrier. Figure 11 displays the evolution of X for several
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FIG. 11. (Color online) Oscillations of the center of mass (Xcm)
of unstable odd-mode solutions in the case of P < Pth. Increase of
the total power leads to larger oscillations amplitudes.
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FIG. 12. (Color online) Dynamics of unstable odd-mode solu-
tions for P > Pth. (a) P = 8.92, (b) P = 8.404, and (c) P = 8.414.

unstable odd modes, all with P < Pth. As the instability growth
rate g increases, following the increase of the total power,
the amplitude of the spontaneous oscillations increases too,
because the value of H for the odd mode approaches that for
the even one.

On the other hand, we observe mobility of the localized
modes at P > Pth, where the value of H for the odd mode is
larger than the even one. Therefore, the odd mode is able
to overcome the PN barrier and move across the lattice.
Figure 12 shows the evolution of three different unstable
odd-mode solutions for three different levels of the total power.
We observe that the transversal velocity of the spontaneous
motion is correlated to the power; for example, in case (c) the
velocity almost doubles in comparison with case (a). For an
increasing power, the value of H for the odd mode increases
in comparison to the even mode. Therefore, the kinetic energy
for this mode is larger, letting it move faster across the lattice.

We proceed to exploring the next stability-exchange region,
located around P ≈ 16.14. Here, both fundamental solutions
are stable and both correspond to minima of the Hamiltonian,
without starting spontaneous motion. Therefore, a kick must
be applied to these modes to help them overcome the energy
barriers. The kick with k = 0.1 was enough to set into motion
all the odd stable modes in this region. Figure 13 displays the
motion of the center of mass, X, for several kicked odd modes
with different total powers. After passing a certain distance,
some the kicked discrete solitons come to a halt (see the top
inset), getting trapped between two sites of the lattice, while
others continue the persistent motion. We observe that the
final values of X, at which the motion ceases, increases with
the total power of the soliton in this region of parameters. On
the other hand, Fig. 13 also shows that the discrete solitons
with smaller total powers initially move faster than ones with
greater powers. This feature can be easily explained by the
comparison with the NLS equation in continuum, where the
kick measures the momentum imparted to the soliton, while
the total power determines its mass; hence, the heavier soliton
moves slower under the action of the same kick.

The difference in the mobility between the lighter and the
heavier solitons, kicked with the same strength, is shown in
more detail in Fig. 14, where the soliton field is displayed
on the logarithmic scale: The shape distortion, manifested by
the generation of radiation tails, is greater for lighter solitons
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FIG. 13. (Color online) The initial stage of the motion of the
center of mass, Xcm, of stable odd-mode solutions, with 15.93 <

P < 16.36, under the action of kick k = 0.1. The top inset shows
long-scale evolution of these modes. The bottom inset illustrates the
robust mobility of the mode with P = 16.36.

[Fig. 14(a)]. Thus, the heavier ones are more stable in the
traveling state [Fig. 14(b)], as shown by the bottom inset in
Fig. 13, which displays the persistent motion of the discrete
soliton with total power P = 16.4. Therefore, the heavier
solitons are more appropriate for applications related to
transport properties.

VI. COLLISIONS BETWEEN MOVING SOLITONS

Once the regions with mobility of the discrete solitons
having been established, it is natural to consider collisions
between two traveling robust solitons, which are set in motion
by kicks in opposite direction. The corresponding input can be
written as

ψn(z = 0) = φ(1)
n eik1(n−n1) + φ(2)

n eik2(n−n2), (30)

where n1 and n2 are the initial positions of centers of the
stationary solutions, φ(1) and φ(2), respectively.

Figure 15 displays different scenarios of the interaction
between identical colliding modes. The first case [Fig. 15(a)]
shows the interaction between two discrete solitons initially
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FIG. 14. (Color online) Amplitude profiles, on the logarithmic
scale, of two moving solitons, both kicked by k = 0.1. Left, P =
15.93; right, P = 16.36.
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FIG. 15. (Color online) Three different scenarios of collisions
between traveling discrete solitons: merger for k1 = −k2 = 0.1 (a),
rebound for k1 = 0.1 and k2 = −1.9 (b), and the formation of the
signal-blocker pair for k1 = 0.1 and k2 = −0.2 (c).

kicked with k1 = −k2 = 0.1. After the collision, they merge
into a single quiescent structure with the double total power.
In another case [Fig. 15(b)], the collision does not take place,
due to repulsion between the solitons (rebound). The stronger
kicked mode, with k2 = −1.9, changes the direction of its
velocity, and keeps moving almost at the same velocity as
the other mode, which was kicked by k1 = 0.1. Finally, when
the two modes are kicked by k1 = 0.1 and k2 = −0.2, the
interaction between them resembles that of a signal-blocker
pair; i.e., one discrete soliton gets trapped, producing a barrier
for the perfect reflection of the other soliton [see Fig. 15(c)].

The interaction picture observed in panels (b) and (c) of
Fig. 15 suggests that the interaction between the discrete
solitons may feature effectively long-range interactions. This
may be explained by the interaction of the phonon (radiation)
tail of each soliton, such as those observed in Fig. 14, with the
body of the other; cf. a similar mechanism considered earlier
in continuous media [58].

VII. CONCLUSION

In this work, we used the 1D DNLS model with the
CQ on-site nonlinearity to investigate fundamental mobility
regimes for discrete solitons. The cubic term was taken, as
usual, with the self-focusing sign, while both signs of the
quintic term were considered separately, as well as the usual
cubic model, when the quintic term is absent. The analytical
part of the work was based on the VA, with the aim to
estimate the mobility threshold, i.e., the largest value of the
discrete-soliton’s total power (norm) which admits free motion
of the kicked soliton. This was done by comparing the largest
possible value of the soliton’s effective kinetic energy with the
height of the PN potential barrier. It is relevant to stress that
this analytical prediction is unusual also for the usual DNLS
equation with the purely cubic nonlinearity. The prediction was
found to be in a reasonable agreement with numerical results.
In addition, this analytical estimate qualitatively predicts that
the increase of the coefficient in front of self-focusing quintic
term quickly suppresses the mobility. In the DNLS model
with competing self-focusing and defocusing CQ terms, we
have identified, by means of the numerical analysis, regions in
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MEJÍA-CORTÉS, VICENCIO, AND MALOMED PHYSICAL REVIEW E 88, 052901 (2013)

the parameter space where even and odd fundamental modes
exchange their stability, which involves the appearance of
intermediate asymmetric modes. In this case, stable solitons
are kicked to overcome the PN barrier and get in a state of
persistent motion. On the other hand, it has been demonstrate
by means of direct simulations that unstable solitons start
progressive motion spontaneously, provided that they initially
exist above the mobility threshold. Finally, collisions between
stable moving discrete solitons were considered, and three
different scenarios identified for them.

The analysis reported here may be extended in other
directions. In particular, it may be interesting to consider
possible mobility of excited (nonfundamental) localized states,

such as twisted modes [59]. A challenging problem is to
generalize the analysis for those 2D models where mobile
modes may exist [25,26].
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R. A. Vicencio, Phys. Rev. A 87, 043837 (2013).
[40] U. Naether, R. A. Vicencio, and M. Johansson, Phys. Rev. E 83,

036601 (2011).
[41] S. Rojas-Rojas, R. A. Vicencio, M. I. Molina, and F. K.

Abdullaev, Phys. Rev. A 84, 033621 (2011).
[42] R. A. Vicencio and M. Johansson, Phys. Rev. A 87, 061803

(2013).
[43] C. Chong and D. Pelinovsky, Discrete and Continuous Dynam-

ical Systems 4, 1019 (2011).

052901-10

http://dx.doi.org/10.1364/OPN.13.2.000033
http://dx.doi.org/10.1364/JOSAB.8.001290
http://dx.doi.org/10.1038/nature01452
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1364/JOSAB.19.002938
http://dx.doi.org/10.1364/JOSAB.19.002938
http://dx.doi.org/10.1103/PhysRevE.66.046602
http://dx.doi.org/10.1109/JQE.2002.806184
http://dx.doi.org/10.1088/1367-2630/5/1/371
http://dx.doi.org/10.1103/PhysRevA.64.043606
http://dx.doi.org/10.1103/PhysRevE.66.046608
http://dx.doi.org/10.1103/PhysRevA.78.063615
http://dx.doi.org/10.1103/PhysRevA.81.013633
http://dx.doi.org/10.1103/PhysRevB.47.8357
http://dx.doi.org/10.1103/PhysRevB.47.8357
http://dx.doi.org/10.1063/1.1562891
http://dx.doi.org/10.1063/1.1541131
http://dx.doi.org/10.1103/PhysRevE.47.R44
http://dx.doi.org/10.1103/PhysRevE.47.R44
http://dx.doi.org/10.1016/0167-2789(93)90035-Y
http://dx.doi.org/10.1016/0167-2789(93)90035-Y
http://dx.doi.org/10.1364/OL.19.000332
http://dx.doi.org/10.1364/OL.19.000332
http://dx.doi.org/10.1364/OL.28.001942
http://dx.doi.org/10.1364/OL.28.001942
http://dx.doi.org/10.1103/PhysRevE.71.066614
http://dx.doi.org/10.1103/PhysRevE.71.066614
http://dx.doi.org/10.1103/PhysRevLett.83.2726
http://dx.doi.org/10.1364/JOSAB.19.002637
http://dx.doi.org/10.1364/JOSAB.19.002637
http://dx.doi.org/10.1103/PhysRevE.73.046602
http://dx.doi.org/10.1103/PhysRevE.73.046602
http://dx.doi.org/10.1103/PhysRevLett.99.214103
http://dx.doi.org/10.1103/PhysRevLett.99.214103
http://dx.doi.org/10.1364/OL.36.001467
http://dx.doi.org/10.1364/OL.36.001467
http://dx.doi.org/10.1364/OL.38.001010
http://dx.doi.org/10.1103/PhysRevE.77.036604
http://dx.doi.org/10.1103/PhysRevE.77.036604
http://dx.doi.org/10.1063/1.1650069
http://dx.doi.org/10.1063/1.1650069
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1103/PhysRevB.58.7260
http://dx.doi.org/10.1103/PhysRevB.58.7260
http://dx.doi.org/10.1016/j.physd.2006.01.022
http://dx.doi.org/10.1016/j.physd.2008.10.002
http://dx.doi.org/10.1088/0305-4470/38/4/002
http://dx.doi.org/10.1103/PhysRevE.48.3077
http://dx.doi.org/10.1103/PhysRevA.87.043837
http://dx.doi.org/10.1103/PhysRevE.83.036601
http://dx.doi.org/10.1103/PhysRevE.83.036601
http://dx.doi.org/10.1103/PhysRevA.84.033621
http://dx.doi.org/10.1103/PhysRevA.87.061803
http://dx.doi.org/10.1103/PhysRevA.87.061803
http://dx.doi.org/10.3934/dcdss.2011.4.1019
http://dx.doi.org/10.3934/dcdss.2011.4.1019


MOBILITY OF SOLITONS IN ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 88, 052901 (2013)

[44] D. B. Duncan, J. C. Eilbeck, H. Feddersen, and J. A. D. Wattis,
Physica D 68, 1 (1993).

[45] S. Flach and K. Kladko, Physica D 127, 61 (1999).
[46] S. Flach, Y. Zolotaryuk, and K. Kladko, Phys. Rev. E 59, 6105

(1999).
[47] M. J. Ablowitz, Z. H. Musslimani, and G. Biondini, Phys. Rev.

E 65, 026602 (2002).
[48] I. E. Papacharalampous, P. G. Kevrekidis, B. A. Malomed, and

D. J. Frantzeskakis, Phys. Rev. E 68, 046604 (2003).
[49] N. G. Vakhitov and A. A. Kolokolov, Radiophys. Quantum

Electron. (Engl. Transl.) 16, 783 (1973).
[50] J. Burke and E. Knobloch, Chaos 17, 037102 (2007).
[51] G. Herring, P. G. Kevrekidis, R. Carretero-Gonzlez, B. A.

Malomed, D. J. Frantzeskakis, and A. R. Bishop, Phys. Lett.
A 345, 144 (2005).

[52] A. Sacchetti, Phys. Rev. Lett. 103, 194101 (2009).
[53] P. C. Matthews and H. Susanto, Phys. Rev. E 84, 066207

(2011).
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