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Analytical investigation of the faster-is-slower effect with a simplified phenomenological model
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We investigate the mechanism of the phenomenon called the “faster-is-slower”effect in pedestrian flow studies
analytically with a simplified phenomenological model. It is well known that the flow rate is maximized at a
certain strength of the driving force in simulations using the social force model when we consider the discharge
of self-driven particles through a bottleneck. In this study, we propose a phenomenological and analytical model
based on a mechanics-based modeling to reveal the mechanism of the phenomenon. We show that our reduced
system, with only a few degrees of freedom, still has similar properties to the original many-particle system
and that the effect comes from the competition between the driving force and the nonlinear friction from the
model. Moreover, we predict the parameter dependences on the effect from our model qualitatively, and they are
confirmed numerically by using the social force model.
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I. INTRODUCTION

Collective motion of self-driven particles has captured
much interest for the past few decades from the perspective
of nonequilibrium dynamics. The concept of self-driven
particles has been widely used in many fields (e.g., traffic
flow [1–4], active matter [5–7], and granular media [8,9])
and has enhanced interdisciplinary collaboration. Pedestrian
dynamics has drawn the attention of physicists as a collective
motion of self-driven particles since it shows a wide variety
of self-organized phenomena [1], such as lane formation,
segregation, and flow oscillations at a bottleneck. Studies of
these phenomena are also expected to contribute to the safe
evacuation of people in an emergency in the real world. In
particular, the flow of particles through a bottleneck has been
studied intensively with many approaches, such as the social
force (SF) model [10], the lattice gas model [11], cellular
automata (CA) [12,13], and real experiments [14,15].

The “faster-is-slower”effect [16] is a well-known phe-
nomenon observed in certain systems of self-driven particles.
Let us consider the discharge of self-driven particles from
a square room through a narrow exit. In such a system, the
discharge flow rate is a monotonically increasing function
of the self-driven force when the force is relatively weak.
However, counterintuitively, the flow rate begins to decrease
when the driving force exceeds a critical value. This faster-
is-slower effect was shown in a numerical study using the
SF model [16]. The SF model is based on ordinary differential
equations, and detailed numerical studies have been performed
using this model and its variations [17–21]. It is also known that
the CA model shows a similar effect [12]. In this model, each
particle moves in a discrete manner with given probabilities
that include the effect of friction between two particles. The
CA model gives some insights into the role of the friction
and the effect of an obstacle on the evacuation problem.
Both numerical approaches indicate that the friction is crucial
in this phenomenon, but a theoretical understanding of the
phenomenon has not been attained.

We also should note that we have a gap between the SF
model and a real system. Although the SF model shows

the faster-is-slower effect, we have no definite evidence that
shows the existence of the phenomenon in a real pedestrian
system. Some systematic experiments have been performed
so far [15,22]; they do not show any supportive evidence
with the exception of a biological experiment [23]. A better
strategy to understand the reason of the gap is to know which
factors included in the SF model generate faster-is-slower
effect through the model-aided analysis. This approach allows
us to discuss the effect of each parameter and the relation
among them more clearly. In the present paper, we propose
a simplified phenomenological model to clarify the reason
why the original SF model proposed by Helbing et al.
shows the faster-is-slower effect, or, more generally, what
are the physical causes of the phenomenon. We perform an
analytical investigation of our model, and give comparisons
to the result of the SF model. From this study, we expect to
gain a better understanding of the microscopic mechanism
of the phenomenon. Describing a possible scenario of the
phenomenon would be helpful to understand the gap between
the SF simulations and the reality.

II. REVIEW OF THE SF MODEL

First, a brief review of the SF model is given [10,16]. It is
widely used in the study of pedestrian flow due to its notable
ability to reproduce many interesting phenomena [1,10,24]. In
the SF model, each particle has a self-driven force, a social
force, linear elasticity, and friction. The equations of motion
for N particles are given by

m
dvi

dt
= m

τ
(v0ei − vi) +

N∑
j

(
Ae

rij −dij

B + kg(rij − dij )
)
nij

+
N∑
j

κg(rij − dij )[(vj − vi) · t ij ]t ij + Fiw, (1)

where vi is the velocity of the particle i, dij is the distance
between particles i and j , rij = ri + rj is the sum of the radii
of the particles, nij is the normal unit vector from j to i, t ij
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FIG. 1. Numerical results for the stationary flow rate obtained
from the SF model simulation. A higher flow rate corresponds to a
faster evacuation time. (a) v0 and N dependence of the flow rate. The
flow rate was not calculated for small values of v0 and N . (b) The
flow rate with a fixed N of 200.

is the tangential unit vector, and v0ei is the desired velocity,
which is always directed toward the exit. The particle i has
mass m, time constant τ , social force parameters A and B,
elasticity k, and friction coefficient κ . The function g is defined
as g(x) = 0 if x < 0 and as g(x) = x if x � 0. The interaction
with the nearest wall Fiw has the same form as the two-body
interaction.

Let us solve Eq. (1) to obtain the flow rate as a function of
v0 and N . As a boundary condition, we consider a large square
room that has a narrow exit in the center of one of its walls.
In this calculation, we consider the stationary state. Since the
flow rate depends on N [25], we need to keep N constant.
For this purpose, particles are appropriately supplied from the
side of the room opposite the exit [18,19]. Here, we use the
following parameters: the width of the exit is 1.2 m, ri = 0.3 ±
0.05 m, m = 80 kg, τ = 0.5 s, A = 2000 N, B = 0.08 m,
k = 120 000 kg/s2, and κ = 240 000 kg/(m s). Basically, the
parameters are based on Helbing et al. [16]. Although it is
known that these parameters lead to unrealistic behavior [26],
we use these values in this paper since our intention is to
identify the cause of the “faster-is-slower” effect rather than to
seek more suitable model parameters. The resulting stationary
flow rate is given by Fig. 1, where the flow rate is calculated
from the time needed for 500 evacuation events. When v0

increases under fixed N , there exists a critical point above
which the flow rate decreases. The schematic phase diagram
is given in Fig. 2, which shows that (v0,N ) space is divided
into qualitatively different regions.

III. MODEL

To investigate the origin of the phenomenon analytically,
we introduce a qualitative phenomenological model inspired
by the SF model to describe the discharge velocity of the
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FIG. 2. Schematic phase diagram. The area below the rough
additional line is the “free state,”where the flow rate increases as the
driving force increases. Each point (×) shows the maximum point
for each N . The area above the line is the “jamming state,”where the
“faster-is-slower”effect occurs. The critical v0 value depends on N ,
and this suggests that the effect begins to slow down evacuation when
N is relatively large.

many-particle system. The derivation of the model is as follows
(see Fig. 3). To simplify the original many-particle system, we
made the following assumptions. The discharge property is
determined by the motion of particles in the immediate vicinity
of the exit. The flow is governed by the radial motion toward
the exit [27] and has no significant angular dependence on
long-time average. The total number of particles inside the
room is fixed. We introduce virtual particles for each direction
that obey the above assumptions and have the same type of
interactions in the SF model (the social force, elasticity, and
friction). The particles around the exit are also affected by the
force from behind,

h(v0,N ) = bv0

√
N, (2)

where b is the dimensionless constant. An intuitive inter-
pretation of the above formula is as follows. In the original
many-particle system, the particles rush into the exit and form
a semicircular shape around the exit due to the clogging. The
force driving the particles is proportional to v0. We assume
that the pressure around the exit is proportional to the radius

FIG. 3. Conceptual images of the model. (Left) The typical
formation of the arch near the exit. (Right) The forces acting on
the virtual particles.
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FIG. 4. Force applied to the particle at the center of the semicircle
for each N . The results are obtained from the SF simulation with
zero-width exit. Dashed lines represent Eq. (2) with the dimensionless
parameter b = 0.625.

of the semicircle, which is dependent on
√

N . As a result, we
obtain Eq. (2). The validity of this assumption, at least as a first
approximation, can be confirmed by performing a numerical
calculation using the SF model in which the width of the exit
is nearly zero (see Fig. 4). Next, we assume that the repetitive
formation and breakup of the four-particle arch in front of the
exit is the most frequently observed dynamic structure and the
major cause of the clogging. According to an experimental
study of granular media [28] in which the discharge of
particles from a rectangular-shape orifice is investigated, the
size of the typical arch depends on the width of the exit,
η = 1.41 + 1.15R, where η is the number of particles in the
arch and R is the width of the exit measured by the diameter
of particles. Using this relation here would be valid since the
original SF model is very similar to the model of granular
media. By applying this relation to our system (R = 2), we
obtain η ∼ 4 and assume that the four-particle arch is the
dominant formation in the process of evacuation considered
here. Finally, we simplify the process of the breakup of the
arch. Namely, one of the particles in the arch moves toward
the exit and other particles in the arch stand still during the
motion. It is not important which particle in the arch moves as
far as we consider long-time averaged flow. The equation of
motion of the virtual particles that obey the above assumption
is given by

dvr

dt
= (v0 − avr ) − 2κg[l(v0,N )]vr + h(v0,N ), (3)

and the balance of the forces along the arch is given by

[v0 + h(v0,N )] sin θ = Ael(v0,N) + kg[l(v0,N )], (4)

where vr is the radial flow velocity, a is the deceleration param-
eter which represents the effect of collisions, θ = π/η is the
angle between two particles, and l(v0,N ) is the characteristic
overlap length between particles, which is assumed to be a
monotonically increasing function of v0 and N . The function
h(v0,N ) represents an external force driving the particles from
behind. The other symbols have the same meanings as in the SF
model. Note that these equations are scaled and dimensionless:
for example, A∗ = τ 2

Bm
A and we write A∗ as A for simplicity.

The other parameters and variables are also scaled in the
same manner. The parameters need to satisfy the condition

a(k + A) < 2κA, the meaning of which is that the friction
coefficient is sufficiently large.

The equations describe the motion of virtual particles that
represent the original many-particle system. In the stationary
state, the average discharge velocity can be interpreted as being
its velocity. We assume that the discharge flow in the original
system is characterized by the stationary solution of Eq. (3).

Note that our simplified model is based on the flow velocity,
not the flow rate. Nevertheless, our model was able to describe
the faster-is-slower effect. It is known that the maximum bulk
kinetic energy corresponds to the maximum discharge flow
rate when numerical experiments are performed with various
values for the desired speed v0 [19]. Therefore, we assume that
the maximum discharge velocity in the model corresponds to
the maximum discharge flow rate.

IV. ANALYSIS

Let us consider the stationary state of Eqs. (3) and (4). We
set v̇r = 0. The solution is given by

vr (v0,N ) = v0 + h(v0,N )

a + 2κg[l(v0,N )]
, (5)

l(v0,N ) =
{

ln [v0+h(v0,N)] sin θ

A
(v0 < vc),

[v0+h(v0,N)] sin θ−A

k+A
(v0 � vc),

(6)

where vc = A/(1 + b
√

N ) sin θ . Here, the Taylor expansion
is used to derive Eq. (6). The approximation error of the
expansion is less than 4% (see Fig. 6) in the case of v0 � 5 and
N � 300, so that the analytical expression above is valid in
the discussion presented here. The solution is shown in Fig. 5.
In this paper, we choose θ = 45◦, a = 10, and b = 0.625. The
parameter a is chosen to realize appropriately small outflow
velocity, and b is determined from the numerical data fitting
shown in Fig. 4. The other parameters used here are the same as
those in Eq. (1) but scaled. As can be seen, the model presented
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FIG. 5. Stationary flow velocity obtained from the model. (a) The
v0 and N dependence of the flow velocity. (b) The flow velocity with
a fixed N of 200.
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FIG. 6. Explicit representation of the function g[l(v0,N = 300)].
(Solid) The analytical expression based on Eq. (6), (dotted) the
numerical result calculated directly from Eq. (4), and (chain) the
approximation curve g[l(v0,N )] ∼ vn

0 .

here has a solution that shows the faster-is-slower effect, and it
mimics the v0 and N dependence of the flow rate qualitatively.

The existence of the faster-is-slower solution can be
understood in terms of the competition between the driving
force and the nonlinear friction. For simplicity, we fix the
number of particles to, e.g., N = 200. The flow velocity
is given by Eq. (5), which means that the flow velocity is
determined by the driving force and the drag force. From
the model, the total driving force v0 + h(v0,N ) is linear with
respect to v0. On the other hand, the friction term is a nonlinear
function of v0. The concrete representation of g in Eq. (5) is
given by the following nonlinear function:

g[l(v0,N )] =
{

0 (v0 < vc),
[v0+h(v0,N)] sin θ−A

k+A
(v0 � vc),

(7)

which is shown in Fig. 6. Equation (7) behaves like a nonlinear
function of v0 around vc, and it could be approximated
by g[l(v0,N )] ∼ vn

0 , for n > 1. The competition between the
linear driving force and friction that has such a nonlinearity
causes the solution (5) to have a maximum value.

The nonlinearity of the friction term originates from the
coupling of the social force with the linear friction. The critical
point in Eq. (7) is determined by the coupling constant of the
social force A. Below the critical driving force, there is no
friction because no overlap between particles exists due to
a weak driving force. Note that the friction becomes linear
if A = 0. From these points, we can say that the social force
plays the role of a barrier. A packing force that is strong enough
to break the barrier is needed for the emergence of contact
friction. The piecewise function in Eq. (7) shows such a barrier
effect. The convexity of Eq. (7) comes from the combination
of the linear behavior of the friction and the existence of the
social force.

V. SIMULATION

If the above analysis is correct, we can immediately make
the following statement. The outflow shows no faster-is-slower
property (i) if κ = 0, (ii) if ri is small, or (iii) if A = 0. If the
size of the particle is small, the overlap between particles does
not exist [that is, l(v0,N ) < 0], then g[l(v0,N )] = 0 in Eq. (5)
so that (ii) holds. We can also state that (iv) if A = 0 but the
friction term maintains its nonlinearity for some reason, the
faster-is-slower effect still exists. One of the ways of realizing
such a condition is the introduction of a shift parameter c only
in the friction term in Eq. (1), such that it becomes g(ri + rj −
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FIG. 7. Numerical results of the SF model simulation correspond-
ing to each conjecture. Only (iv) shows a maximum.

dij − c). The argument of the g in the elastic term in Eq. (1)
remains unchanged. The procedure is equivalent to giving a
frictionless soft skin to the particles and causes an effect similar
to the social force barrier. Under this implementation, such a
result is expected even if there is no social force.

Now we perform the numerical simulation using the SF
model [Eq. (1)] to test the above predictions. We use ri =
0.1 ± 0.016 m in (ii) and c = 0.015 m in (iv). The results are
show in Fig. 7. As can be seen, all the above predictions are
confirmed numerically.

VI. DISCUSSION AND SUMMARY

From the simplified model and its theoretical analysis,
we conclude that the faster-is-slower effect comes from the
competition between the driving force and the nonlinear
friction. The result is consistent with a previous study,
which dealt with this phenomenon numerically [19–21]. The
nonlinearity is the result of the coupling of the repulsive force
with the linear friction, which is based on the effect of the
exclusive volume and the surface friction.

This phenomenon would be observed not only in pedestrian
flow but also in any system that realizes such a mechanism.
The origin of the repulsive force seems less critical. The effect
of collisions is also not important, at least qualitatively.

Of course, our model is so simple that some issues remain.
Though we introduced many assumptions in the derivation
of the model, further investigation is needed to obtain more
evidence that supports the assumptions used in our model.
Another issue is that the results presented here are qualitative
because of the simplicity of the model. Note that the flow
velocity obtained from the model is overestimated compared
to that of the SF simulation due to nonstrict treatment of the
collision effect.

We have provided an analytical investigation of the faster-
is-slower effect by using a simple phenomenological model.
We have shown that our analytical model is capable of
describing the essentials of the phenomenon and that the com-
petition between the driving force and the nonlinear friction is
crucial for this phenomenon. Furthermore, the effects of each
parameter in the original many-particle system were predicted
analytically by our model and confirmed numerically by using
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the SF model. The simplified technique presented here may be
useful for understanding the other phenomena originating from
competition of flows in dissipative self-driven particle systems,
such as lane formation, flow oscillations at a bottleneck, and
freezing by heating [1].
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