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Analytical solution of a stochastic model of risk spreading with global coupling
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We study a stochastic matrix model to understand the mechanics of risk spreading (or bet hedging) by
dispersion. Up to now, this model has been mostly dealt with numerically, except for the well-mixed case. Here,
we present an analytical result that shows that optimal dispersion leads to Zipf’s law. Moreover, we found that
the arithmetic ensemble average of the total growth rate converges to the geometric one, because the sample size
is finite.
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I. INTRODUCTION

Environmental heterogeneity and fluctuations can induce
nontrivial effects in ecological [1–8] and economic systems
[9–11]. Risk spreading (or bet hedging) is one of the most
important concepts on strategy in unpredictably fluctuating
environments. For example, consider an ecological model of
offspring allocation into two habitats, either of which is so poor
that the population cannot survive if they are exclusive [4,8].
In this model, a dispersal can lead to population persistence.
In economic situations, diversification is a key component of
long-term investment strategies. To minimize risk and increase
expected returns, wealth has to be invested in various types
of funds or asset classes. The purpose of this paper is to
present theoretical results on long-term growth for complicated
systems and to make clear the mechanism of risk spreading.

In this paper, we study a discrete-time stochastic matrix
model for populations that inhabit in n discrete habitats [7].
This class of models has been dealt with mostly numerically
by simulations. Recently, the authors proposed an analytical
theory for a population that inhabits in two habitats [8]. In this
case, the ratios of populations among habitats are distributed
in a complicated self-similar manner, while the marginal
distribution of each population is a log-normal distribution.
Here, we expand the previous theory for the system with a lot
of habitats. We show that populations in habitats at the same
time follow a power-law distribution, although the ensemble
distribution of population in each habitat converges to a log-
normal distribution in the long-time limit. Specifically, when
the dispersion rate is optimal, the distribution of population
tends to follow the famous Zipf’s law, where the exponent of
the power-law tail is near 1. Here, to characterize the fitness or
return of the entire system, we use two different indices: the
geometric mean and the arithmetic mean of the total growth
rate. The inequality of the arithmetic and geometric average
results in the arithmetic average being greater than or equal to
the geometric average. We study analytically and numerically
the characteristics of these two indices in detail. As a result,
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we show that these two indices coincide by averaging over an
adequately long time.

II. MODEL

Let us consider a population that inhabits in n discrete
habitats. Let xi(t) be the number of individuals in habitat
i (1 � i � n) at time t . Thus, the state of the population is
described by a vector [x1(t),x2(t), . . . ,xn(t)]. In each habitat,
the population reproduces with random growth rates mi(t).
The habitats are connected to one another by corridors, which
are described by the adjacency matrix aij . A fraction of the
population disperses from a habitat j to another habitat i. Thus,
the population dynamics is given as

xi(t + 1) = (1 − q)mi(t)xi(t) + qs

n∑
j=1

lijmj (t)xj (t), (1)

where lij is the link matrix defined by using the adjacency
matrix:

lij = aij∑n
k=1 akj

. (2)

The parameters q and s are between 0 and 1. The migration rate
q represents the proportion of population that migrates from
one habitat to other habitats. When q = 0, all the habitats are
isolated completely. The parameter s is the survival rate during
migration between habitats. Here, the local growth rates mi(t)
are stochastic variables with finite variance. The probability
distributions of mi(t) are the same for all habitats. We assume
that the local growth rates mi(t) have no temporal and spatial
correlation for simplicity. If this model is interpreted as a model
of financial economics, xi(t) represents money that is invested
into enterprise i. In this case, the migration rate q and the link
matrix lij give a portfolio strategy and (1 − s) can be regarded
as a kind of transaction cost.

In this paper, we focus on the case of global coupling,

aij =
{

1 (i �= j ),

0 (i = j ).
(3)
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In this case, it is convenient to consider the mean field,

h(t) = 1

n

n∑
i=1

xi(t). (4)

Summing (1) over all habitats, we obtain the dynamics of the
mean field,

h(t + 1) = (1 − q + sq)m̄(t)h(t). (5)

Here m̄(t) is the whole growth at time t , which is defined as

m̄(t) = 1

n

n∑
i=1

mi(t)yi(t), (6)

where yi(t) is the relative population size

yi(t) = xi(t)

h(t)
. (7)

Neglecting small terms of O(n−1), the dynamics of the relative
population size is given by

yi(t + 1) = mi(t)(1 − q)

m̄(t)(1 − q + sq)
yi(t) + sq

1

1 − q + sq
. (8)

Consequently, the dynamics of the population is described by
(5), (6), and (8). Taking into consideration (4) and (7), we have
the following restriction condition:

1

n

n∑
i=1

yi(t) = 1. (9)

The initial condition is set as xi(0) = 1, i.e., h(0) = 1.

III. RESULTS

A. Approximation

To solve the dynamics of the population, we assume that n

is adequately large, such that we can neglect the dependence
of m̄(t) on each yi(t) at the same time t . In this approximation,
Eq. (8) can be treated as a one-dimensional stochastic
process. Thus, the distribution of each relative population
size yi converges to a stationary distribution. Equation (8)
is regarded as a multiplicative process with an additional
constant term. If the probability that the multiplicative factor
mi(t)(1 − q)/[m̄(t)(1 − q + sq)] is larger than 1 is positive,
the stationary distribution has a power-law tail [12–16],

p(y) ∼ y−α−1. (10)

The distribution with a power law is said to follow Pareto
distribution [17]. In the case of α � 2, the variance of yi(t)
diverges in the limit of n → ∞. Even in this case, the variance
of m̄(t) remains finite. Indeed, from the restriction (9), it is
obvious that the variance of m̄(t) is never larger than that of
mi(t). From the generalized central limit theorem [18], we
obtain that for large n, the variance of m̄(t) obeys

V (m̄(t)) ∼ n−μ, (11)

where

μ =
{

α − 1 (1 < α < 2),

1 (α � 2).
(12)

Taking the logarithms of both sides of Eq. (5) and summing
them from t = 0 to t = T − 1, we obtain

log h(T ) = log h(0) + T log(1 − q + sq) +
T −1∑
t=0

log m̄(t).

(13)

Thus, log h(T ) is determined by using the sum of the whole
growth rate log m̄(t). Since log m̄(t) is treated as a time series
of random variables, the ensemble distribution of log h(T ) is
expected to converge to a normal distribution. In other words,
h(T ) follows a log-normal distribution for large T . A way to
characterize the fitness or return of the system is to calculate
the geometric average of the total growth rate as

1

T
E(log h(T )) = log(1 − q + sq) + E(log m̄(t)), (14)

where E denotes the ensemble average. The reason for this
terminology is that (14) is the logarithm of the geometric
ensemble average of h(T ). Since m̄(t) has ergodicity, the
ensemble average E(log m̄(t)) is the same as its time average.
Note that E(log h(T )) coincides with the logarithm of the me-
dian of h(T ), because h(T ) follows a log-normal distribution.
Moreover, the second term on the right-hand side of (14) is the
logarithm of the geometric average of m̄(t). For an adequately
large value of T , the ensemble variance of the whole growth
rate is given by

1

T
V (log h(T )) = V (log m̄(t)). (15)

Because of ergodicity, the ensemble variance V (log m̄(t)) is
also the same as its time variance. For a random variable X

following a log-normal distribution, we have the formula

log (E(X)) = E(log X) + 1
2V (log X). (16)

By using Eqs. (15) and (16), we obtain the following relation:
1
T

log E(h(T )) = 1
T
E(log h(T )) + 1

2V (log m̄(t)). (17)

Another way to characterize the fitness or return of the system
is to calculate Eq. (17), which is the arithmetic average of
the total growth rate. Because V (m̄(t)) follows (11) in the
large-size limit (n → ∞) from (11), V (log m̄(t)) ∼ n−μ. As
a result, for n → ∞, the arithmetic ensemble average (17) is
expected to converge to its geometric ensemble average (14).

In the case in which the autocorrelation of m̄(t) is negligibly
weak, i.e., m̄(t) and m̄(t ′) are independent of each other for
t �= t ′, Eq. (5) reads

1

T
log E(h(T )) = log(1 − q + sq) + log E(m̄(t)). (18)

We call Eq. (18) a well-mixed approximation because it is
exactly correct for a well-mixed system [i.e., 1 − q = sq/(n −
1)] [7].

B. Numerical simulations

To examine the above theoretical predictions, we perform
numerical simulations. For simplicity, the local growth rate
mi(t) (i = 1,2, . . . ,n) takes one of two values—m− with
probability p and m+ with probability 1 − p independently—
where we set m− < m+. From (6), the average E[m̄(t)] is
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FIG. 1. The exponent α of the power-law tail as a function of
q. Here, we estimate α by using the top 0.1% for n = 105 and 20
samples [17]. The other parameters are set as m+ = 2, m− = 0.1,
p = 0.3, and s = 0.5. The circles represent the numerical estimated
values and the curve gives the theoretical relation from (21).

simplified to

E(m̄(t)) = pm− + (1 − p)m+. (19)

On the other hand, E(log m̄(t)) does not have an analytical
form. Figure 1 shows the exponent α of the power law. The
condition to realize steady power-law distribution reads [14]

E

[(
mi(t)(1 − q)

m̄(t)(1 − q + sq)

)α]
= 1. (20)

If V (m̄(t)) is relatively small compared to E(m̄(t)), Eq. (20) is
approximated by

[m−αp + m+α(1 − p)](1 − q)α

{[pm− + (1 − p)m+](1 − q + sq)}α = 1. (21)

Thus, we can estimate the value of α and we obtain the
approximation of μ by using (12). Equation (21) indicates
that the exponent α converges to 1 in the limit q → 0. Note
that in the case

m+(1 − q)

[pm− + (1 − p)m+](1 − q + sq)
< 1, (22)

(21) has no relevant solution, and the tail of the stationary
distribution is not a power law, but decays fast. In this case,
μ = 1. The curve in Fig. 1 represents the theoretical prediction
(21), which fits the numerical results quite nicely.

Figure 2 shows the arithmetic and the geometric ensemble
averages of the total growth rate. In Fig. 2(a), both of them have
a peak (the circles and triangles represent the arithmetic and the
geometric averages). This means that the dispersion rate has a
finite optimal value. The solid curve in Fig. 2(a) corresponds to
the well-mixed approximation (18), which slopes downward
to the right when the survival rate s during migration between
habitats is smaller than 1. When n increases, both the arithmetic
and the geometric averages approach the curve of the well-
mixed approximation (not shown). Consequently, when the
system is large (n � 1) and the survival rate s is low, the
optimal value of the dispersion rate is near 0, i.e., the exponents
α are close to 1 (see Fig. 1).

From Fig. 2(a), the arithmetic average seems to agree with
the prediction (17) (dotted curve). However, when the time
length T is larger, the arithmetic average deviates from (17)
and approaches the geometric average [Figs. 2(b) and 2(c)].
We can interpret this result as the effect of finite-size sampling.
In Fig. 2, the sample size Ns is set to 105 in calculating the
ensemble average.

Recalling that if a stochastic variable x follows the standard
normal distribution, the maximum value xmax in Ns samples is
estimated approximately by

1√
2π

∫ ∞

xmax

exp

(−x2

2

)
dx 	 1

Ns

. (23)

For Ns = 105, we calculate xmax ∼ 3.719. The stochastic
variable [log h(T ) − E(log h(T ))]/

√
V (log h(T )) follows the

standard normal distribution. Thus, the maximum value of
[log h(T ) − E(log h(T ))]/

√
V (log h(T )) is also xmax. Using

Eq. (15), the maximum value of log h(T ) is estimated as

1

T
max (log h(T ))

	 1

T
E(log h(T )) + xmax

√
V (log m̄(t))/T . (24)

If V (log m̄(t)) is larger than 2xmax

√
V (log m̄(t))/T , then the

average (17) is over the maximum (24). However, this is
impossible. This fact indicates that the prediction (17) gives a
wrong result, unless T is smaller than a critical time,

Tc 	 4xmax
2

V (log m̄(t))
. (25)

Since we can estimate xmax ∼ √
log Ns for large ensemble Ns

[19] and V (log m̄(t)) 	 V (m̄(t)) ∼ n−μ [see (11)], the critical
time Tc has a scaling relation

Tc ∼ nμ log Ns. (26)

When T > Tc, the average E(h(T )) can be described by an
integral with the interval from −∞ to xmax,

E(h(T )) 	 1√
2π

∫ xmax

−∞
exp

(−x2

2

)

× exp(E(log h(T )) + x
√

V (log h(T )))dx. (27)

By a simple algebra, we obtain

1

T
log E(h(T ))

	 1

T
E(log h(T )) + 1

2
V (log m̄(t))

+ 1

T
log

[
1√
2π

∫ xmax−
√

T V (log m̄(t))

−∞
exp

(−x2

2

)
dx

]
.

(28)

In Figs. 2(b) and 2(c), thick curves represent the estimation
(28). The theoretical result agrees with the numerical simula-
tion when T is large. On the other hand, for small T , a deviation
is observed. In this case, the distribution of log h(T ) does not
yet converge to the normal distribution, thus (28) cannot give
a good approximation, especially when the dispersion rate
q is small [Fig. 2(b)]. In the limit T → ∞, the third term
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FIG. 2. (a) Indices to measure the total growth rate as a function of q for n = 100 and T = 210 after a transient of 100 000 time steps. (b),(c)
These indices as a function of time interval T for q = 0.1 (b) and q = 0.4 (c). The other parameters are the same as in Fig. 1. The circles and
triangles represent the arithmetic and the geometric ensemble average of the growth rate, respectively. Here, the ensemble consists of Ns = 105

samples. The plots are given by the average over 10 such realizations. The dotted lines are the prediction (17) for the arithmetic average, where
E(log m̄(t)) and V (log m̄(t)) are calculated over the time interval 0–107. The thin lines are the well-mixed approximation (18). The dotted line
is the prediction (17), where E(log m̄(t)) and V (log m̄(t)) are calculated over the time interval 0–107. The thick curves in (b) and (c) represent
the result (28) taking into account the deviation due to finite sample size.

on the left-hand side in (28) converges to −1/2V (log m̄(t)).
Thus, log E(h(T )) is asymptotic to E(log h(T )) for large
T . Consequently, after a long time (T � Tc), the arithmetic
average of the growth rate coincides with the geometric one
essentially.

IV. DISCUSSIONS

We have presented an analytical solution for a discrete-time
stochastic matrix model of risk spreading and compared it with
numerical simulations. The population in each habitat follows
a log-normal distribution. In high-dimensional systems (n �
1), the simultaneous distribution of populations at the same
time has a power-law tail. Since the population follows
a power-law distribution, the network resulting from the
migration among the habitats has a scale-free structure [20,21].
When the survival rate s during migration between habitats is
lower than 1, the optimal dispersion rate is near 0 for large n.
Equation (21) indicates that when q approaches 0, the exponent
α of the power law approaches 1. The power-law distribution
with α 	 1 is known as Zipf’s law [22], which has been found
in various examples, including the population of cities [23,24]
and the assets of companies [25]. Earlier studies showed that
for the random growth model without migration, Zipf’s law is
realized when the mean growth rate is close to 0 [23,24]. Our
result shows that taking into account the migration with cost,
Zipf’s law is given as the optimal solution of the risk-spreading
model. We therefore conclude that natural selection, which will
favor the trait with high fitness, can lead to Zipf’s law when
there is cost during the migration.

To characterize the fitness or return, we used two types
of indices: the geometric ensemble mean and the arithmetic
one of the total growth rate. In evolutionary ecology, natural
selection is considered as optimizing fitness. As fitness
measure, the arithmetic mean has been used traditionally. On

the other hand, the geometric mean has been used as the
fitness measure across a number of generations [26,27]. In
our model, the difference between values of these two indices
is in the order of n−μ. We found that the geometric mean hardly
depends on the time length over which is averaged, though the
arithmetic mean is near the well-mixed approximation when
the time length is very short, and converges to the geometric
mean in the long-time limit. This result demonstrates the
validity of using the geometric mean to estimate the long-term
fitness. The boundary between short and long terms, which is
given by Eq. (26), is proportional to nμ. This suggest that when
the difference between the arithmetic and geometric mean is
larger for short time length, the convergence tends to be faster.

We studied the case of global coupling to be tractable
analytically. We also perform some numerical simulations for
other networks: regular random graphs and lattice. According
to the numerical results, the results observed in Fig. 2 do not
change qualitatively with the network structures. In all cases,
the arithmetic average of the total growth rate converges to
the geometric one for an adequately long time length, because
of finite sample size. When the degree of coupling decreases,
the optimal migration rate increases. The restriction on the
coupling suppresses power law. Especially in the case of
lattice, Eq. (11) does not hold and the decrease of V (m̄(t)) with
n stops around a critical size. It remains future work to analyze
the model (1) for complex networks including heterogeneous
networks such as scale-free networks.
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