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Robustness of cooperation on scale-free networks under continuous topological change
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In this paper, we numerically investigate the robustness of cooperation clusters in prisoner’s dilemma played
on scale-free networks, where the network topologies change by continuous removal and addition of nodes. Each
removal and addition can be either random or intentional. We therefore have four different strategies in changing
network topology: random removal and random addition (RR), random removal and preferential addition (RP),
targeted removal and random addition (TR), and targeted removal and preferential addition (TP). We find that
cooperation clusters are most fragile against TR, while they are most robust against RP, even for large values of
the temptation coefficient for defection. The effect of the degree mixing pattern of the network is not the primary
factor for the robustness of cooperation under continuous change in network topology, which is quite different
from the cases observed in static networks. Cooperation clusters become more robust as the number of links
of hubs occupied by cooperators increase. Our results might infer the fact that a huge variety of individuals is
needed for maintaining global cooperation in social networks in the real world where each node representing an
individual is constantly removed and added.
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I. INTRODUCTION

The emergence of cooperation is one of the challenging
problems in both social and biological sciences. Cooperators
benefit others by incurring some costs to the actor while defec-
tors do not pay any costs. Thus, under a well-mixed population,
cooperation cannot evolve because defectors are always better
off than cooperators. This relationship between cooperators
and defectors is well parametrized by the prisoner’s dilemma
(PD) game [1]. In PD, two individuals decide whether to
cooperate or defect simultaneously. They both obtain R for
mutual cooperation and P for mutual defection. If one selects
cooperation and the other selects defection, the former gets
S for being the sucker of the defector, and the latter gets
T as a reward for the temptation to defect. The order of
the four payoffs is T > R > P > S in PD. Nowak and May
revealed that spatial structures are required for the evolution
of cooperation [2]. Recently, it has been possible to map any
given spatial structure on a suitable network topology, and
the evolution of cooperation has been investigated through
the analysis of PD played on the corresponding complex
network [3–13].

In this context, the spatial structure required for the
emergence of cooperation is referred to as network reciprocity
and becomes one of the most important factors for the
emergence of cooperation [14]. If the network reciprocity
and some other mechanisms are combined, cooperation is
promoted more [15]. For instance, teaching activity [16],
social diversity [17], an ability to infer the reputation of
others [18], a sparse environment [19,20], selecting high
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fitness individuals in adopting strategies [21,22], age structure
[23], and incorporating environmental factors as the fitness
of the focal individual [24] promote cooperation when they
are combined with the network reciprocity. In these studies,
various “heterogeneities” enhancing cooperation combined
with network reciprocity are considered. On the other hand,
networks can generate structural heterogeneity by themselves,
which we refer to here as “network heterogeneity.” For
scale-free networks, this network heterogeneity is the key
for promoting cooperation [8]. If cooperators occupy hubs
in a scale-free network surrounded by other cooperators, the
payoffs for these cooperators are considerably higher than
for other individuals. Thus, they can spread their cooperative
strategy. In contrast, if defectors occupy hubs surrounded by
other defectors, this cluster of defectors is quite vulnerable and
is easily replaced by cooperators. These two effects contribute
to the evolution of cooperation on scale-free networks.

For scale-free networks, the robustness of cooperation has
been examined on growing [25] or reducing [26] networks.
Poncela et al. [25] have proposed an evolutionary preferential
attachment, in which high payoff nodes attract more links from
new nodes. They introduced a control parameter, ε ∈ [0,1), for
the preference weight. In the limit, ε → 1, each existing node
can get a new link in proportion to its payoff. If ε = 0, a
new link is connected to any node at random, which means
the payoffs are completely ignored. They have shown that
cooperation is most promoted at the limit, ε → 1, resulting
in a scale-free network because a center cooperator in the
cooperative group has a high preference weight and tends to get
a new link more easily. Moreover, this causes positive feedback
of the increment of the degree of the center cooperator. The
rich get richer. It should be noted, however, that the network
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growth in this model is only in the direction of increasing the
number of nodes and that the opposite possibility of decreasing
the number of nodes is totally ignored.

On the other hand, Perc [26] has studied the evolution
of cooperation in the direction of decreasing the number of
nodes. He has implemented two ways of node removal from
the Barabási and Albert (BA) network model [27]. One is
random removal of a fraction of nodes �, and the other is
targeted removal of nodes from the largest degree up to a
fraction �. He has shown that the cooperation on scale-free
networks is extremely robust against random node removal,
while it declines rapidly against targeted attack. Notice that, in
his model, removed nodes are never restored [26]. However,
in artificial networks, there are many cases in which the
restoration of removed nodes immediately occurs. Likewise,
in ecological networks, a vacant site due to the death of an
individual is often filled with a new individual immediately.
Therefore, it is plausible that a node removal is followed by
an addition of another new node. The present paper deals
with such a bidirectional network topological change and
investigates the effects of continuous removal and addition
of nodes in the evolution of cooperation.

One of the other factors that potentially affects the robust-
ness of cooperation is the degree correlation between nodes
represented by degree mixing patterns, which was investigated
by Rong et al. [9]. In their model, a network is referred to
as assortative (disassortative) according to the tendency of
highly connected nodes (hubs) to choose nodes with similar
(dissimilar) degrees as neighbors.

Rong et al. [9] have shown that the assortative network
favors defection because the hubs tend to connect closely,
which allows defectors to invade cooperators. In contrast, co-
operation is maintained in the disassortative networks because
the isolation of hubs due to disassortativity enables them to
keep their initial strategy. At the same time, however, the
influence of the hubs becomes weaker as the disassortativity
increases because the tendency of the isolation also increases.
Therefore, uncorrelated networks promote cooperation to the
maximum extent by spreading the strategy of hubs most
effectively.

This conclusion, nevertheless, only applies to networks
with a static topology. Once we allow the change of network
topology by removal and addition of nodes or links, the mixing
patterns change accordingly, and the conclusion observed in
static networks might fail to apply. It is therefore also worth
investigating the effects of the alteration of degree correlation
caused by continuous node removal and addition on the
evolution of cooperation.

In this paper, we perform evolutionary simulations under
such topological changes of networks and find that cooperation
is decreased to the greatest extent when targeted removal
and random addition of nodes are combined. In contrast,
cooperation is maintained even at a high temptation to defect
when random removal and preferential addition are combined.
We also show that the degree variance, which measures the
network heterogeneity, directly controls the robustness of
cooperation. We find that the effect of the degree mixing
pattern of the network is not the primary factor for the
robustness of cooperation under a continuous change of
network topology due to consequential removal and addition

of nodes, which is quite different from the cases observed in
static networks.

This paper is organized as follows. In Sec. II, we introduce a
model in which removal and addition processes are considered
on scale-free networks. In Sec. III, we present the numerical
results for the robustness of cooperation under such topological
changes and an analysis of the results from the view point
of network heterogeneity defined by the degree variance. We
also investigate the effect of the degree mixing pattern on the
evolution of cooperation. The summary and conclusion are
given in Sec. IV.

II. MODEL

To incorporate the network heterogeneity in the degree dis-
tribution observed in real networks, we employ the Barabási-
Albert method for generating initial networks in numerical
experiments [27]. Starting from a complete graph with a given
small number of nodes m0, a new node with m � m0 links
is added at every time step. This new node is connected
to m existing nodes selected according to the probability
pi = ki/

∑
ki , where ki is the degree of node i of each selected

node. Thus, nodes with a larger degree are more likely to be
selected, hence the “preferential attachment.” After t discrete
time steps, the resulting network consists of N = t + m0 nodes
and mt links according to a power-law degree distribution with
an exponent of about 3 [27].

We investigate the PD game on this initially scale-free
network. Let N be the total number of nodes occupied by
individuals; each of the nodes has its strategy classified as
either C (cooperator) or D (defector). Initially, both strategies
C and D are randomly and equally distributed among the nodes
of the network.

Each node i plays PD with all of its ki neighbors. The
payoffs of the game are the following. Both individuals obtain
R for mutual cooperation and P for mutual defection. If
one selects cooperation and the other selects defection, the
cooperator obtains S as the sucker of the defector, and the
defector obtains T as the reward for temptation to defect.
The order of the four payoffs is T > R > P > S in PD. The
sum of the payoff of individual i against its ki neighbors is
denoted by Pi . Following Nowak and May [2], we set P = 0,
T = b > 1, R = 1, and S = 0, where b is the temptation to
defect. Next, one randomly chosen neighbor of i, denoted by
j , also plays PD with its neighbors and obtains the payoff
Pj . If Pi < Pj , individual i imitates individual j ’s strategy
with probability (Pj − Pi)/[(T − S)kmax], where kmax is the
largest degree between i and j . This update principle of
strategy has been adopted in various studies [8,9,26]. All
individuals update their strategies simultaneously at each time
step. After this update, the network topology is altered by
one removal and one addition of nodes. Here we consider the
following four combinations of node removal and addition.
First, an existing node is removed in two different ways,
namely, random removal and targeted removal. In the random
removal, one randomly selected node is removed. In the
targeted removal, a node with the largest degree is removed.
In both cases, the links connected to the removed node are
also removed from the network. After the removal, a new
node is added in two different ways, namely, random addition
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and preferential addition. In the random addition, a new
node connects to m randomly selected existing nodes. In the
preferential addition, a new node of m degree connects to
each existing node with probability pi = ki/

∑
i ki . Because

the number of removed links is preserved, the remaining
links other than m are also connected in each manner. We
classify these four different combinations of node removal
and addition, which cause continuous alteration of the network
topology, into the following four models.

(1) Random removal and random addition (RR). After the
removal of one randomly selected node of degree n, a new
node of degree m is added and connected to m randomly
selected existing nodes. If m < n, each remaining n− m link
is connected from a randomly selected node (referred to as the
source) to a randomly selected node (referred to as the target).
If m � n, only n links of the added node are connected to n

existing nodes. For n = 0, a new node immediately becomes
an isolated node after it is added. This linking principle is also
applied to the other three models.

(2) Random removal and preferential addition (RP). After
the removal of one randomly selected node of degree n, a new
node of degree m is added and connected to each existing
node with probability pi = ki/

∑
i ki , which is proportional to

the degree of node i. If m < n, each remaining n− m link is
connected from a randomly selected source node to a target
node with probability pi . If m � n, only n links of the added
node are connected to n existing nodes.

(3) Targeted removal and random addition (TR). After
the removal of the node with the largest degree n among
the existing nodes, a new node of degree m is added and
connected to m randomly selected existing nodes. If m < n,
each remaining n− m link is connected from a randomly
selected source node to a randomly selected target node. If
m � n, only n links of the added node are connected to n

existing nodes.
(4) Targeted removal and preferential addition (TP). After

the removal of the node with the largest degree n among the ex-
isting nodes, a new node of degree m is added and connected to
each existing node with probability pi = ki/

∑
i ki . If m < n,

each remaining n− m link is connected from a randomly
selected source node to a target node with probability pi . If
m � n, only n links of the added node are connected to n

existing nodes.
Note that for all four models, both the total number of

nodes and the total number of links remain unchanged. In
contrast, the network topologies do change. The strategy of a
newly added node is randomly chosen from strategies C and D.
The PD game of all existing nodes, updating their strategies,
and the node removal and addition procedure make up one
entire process in a numerical experiment, which we refer to as
“generation.” This generation is repeated up to a given number
of steps.

Figure 1 shows a schematic picture of one generation.

III. RESULTS AND DISCUSSIONS

To generate the initial networks according to the BA
method, we took m = m0 = 2 and added nodes up to N =
5000.

FIG. 1. (Color online) An example of one “generation” of the
evolutionary game considered in this paper. First, all individuals
update their strategies simultaneously. Then, one defector with two
links is selected for removal in this case. Finally, one cooperator (the
strategy is randomly selected) is added and connected by two links
to the existing nodes. This “generation” is repeated up to a given
number of steps. We consider four models (RR, RP, TR, TP) for the
removal and addition of nodes.

In Fig. 2, we plot the fraction of cooperators as a function of
the temptation to defect b for the four models. The results for
each sample are obtained by averaging over 1000 generations
after a transient time of 10 000 generations. The final results
are obtained by averaging over 20 independent samples for
each set of parameters. The fraction of cooperators shows
quite different profiles depending on the model.

We also plot the case of the original BA model. This case
always shows the highest level of cooperation because its hub
structures, which benefit cooperation, are not altered.

The evolution of cooperation in models containing targeted
node removal (TR and TP) is considerably suppressed even
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FIG. 2. (Color online) Fraction of cooperators as a function of the
temptation to defect b in our four different models and the original
BA model averaged over 20 independent samples. In the BA model,
the structure is kept unchanged during all generations.
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for small values of the temptation to defect b. The evolution of
cooperation is also suppressed in models containing random
addition of nodes (TR and RR). Thus, the fraction of
cooperators is the most fragile in the TR model, which is
the combination of targeted removal and random addition. In
contrast, the fraction of cooperator has relatively large values
in the RP model, which is the opposite combination of TR,
even in the region with rather large values for the temptation
to defect.

The qualitative reason for this difference in the profiles of
the fraction of cooperators is the following. It is commonly
known that the network heterogeneity determines the fate
of cooperation [26]. If cooperators occupy the hubs of a
network surrounded by other cooperators, their payoffs are
considerably higher than other individuals. Cooperative hubs
can therefore easily spread their strategy to the surrounding
nodes. Since the fraction of hubs is extremely small even in
a scale-free network, it is rare that a choice for random node
removal hits a hub. Thus, cooperative hubs are maintained
in random node removal. Moreover, the preferential addition
tends to increase the degree of the hubs, which contributes
to the resiliency of cooperation by expanding the network
heterogeneity. This is the reason of the resiliency of the fraction
of cooperators in the RP model. The reason of the fragility in
the TR model is completely opposite to the case of the RP
model. For quantitative support for this reasoning, we next
examine the network characteristics relating to the network
heterogeneity corresponding to the four models.

A. Network heterogeneity

The network heterogeneity is represented by the degree
variance V = [(1/N)

∑
k2
i − k̄2]/k̄, where k̄ = (1/N)

∑
ki .

This value becomes zero if the all nodes have the same degree,
while it takes a larger value if some nodes have an extremely
large degree, such as hubs.

Figure 3 shows the degree variance as a function of
generation in the four models. In all models, the degree
variance decreases as the generation increases from the largest
degree variance of the initial BA network.
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FIG. 3. (Color online) The degree variance as a function of the
generation in the four models averaged over 20 independent runs.
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FIG. 4. (Color online) The degree distribution at the final gen-
eration in our four models along with the degree distribution of the
initial BA model averaged over 20 independent runs.

The details of the collapse of the degree variance, however,
are different in the four models. The degree variances in TR
and TP show drastic decrease in the early stages of generation
because the largest hub is always removed in the targeted
models. On the other hand, the values of the degree variance
in RR and RP do not show such a drastic decrease. In RP,
in particular, a node is randomly removed without paying
attention to its degree, and the preferential addition of node
introduces new heterogeneity. The network heterogeneity that
supports the fraction of cooperators is thus mostly maintained
in the RP model.

In Fig. 4, we compare the final degree distribution of
the four models to the initial BA model. The RP model
maintains some hubs, while the other three models do not.
By conducting further network analysis, we find that the four
network topologies are completely altered from that of the
original BA model (Supplemental Fig. S1), but the hubs in RP,
which cause the network heterogeneity, are still maintained.
This supports the result that cooperation is robust in RP [28].

B. Effect of the degree mixing pattern

It has been realized that the degree correlation between
the node connection represented by the degree mixing pattern
sometimes considerably modifies the results obtained from
the mean field analysis based only on the degree distribution
[29–33]. In static networks, it is known that an uncorrelated
network promotes cooperation [9]. Here we investigate the
effects of degree correlation on the resilience of the clusters
of cooperators in the present cases in which the network
topologies are constantly changed.

According to Newman, we measure the degree correlation
of a network by the Pearson coefficient rk [34]. If rk is positive,
nodes with almost the same degree tend to be connected; the
correlation is denoted as “assortative.” In assortative networks,
hubs tend to be connected to other hubs. If rk is negative, nodes
with different degrees tend to be connected; the correlation is
denoted as “disassortative.” In disassortative networks, hubs
tend to be connected to nodes with small degrees. Newman
pointed out that the Pearson coefficient of the BA model takes
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FIG. 5. (Color online) The correlation coefficient rk as a function
of the generation in the four models averaged over 20 independent
runs.

a very small value, rk ≈ 0, which means that the BA networks
are almost uncorrelated [34].

Figure 5 shows the variation of the correlation coefficient
with respect to the generation. We see three different cor-
relation regimes: disassortative (RP and TP), uncorrelated
(TR), and assortative (RR). By reexamining the results for the
fraction of cooperators (Fig. 2) in terms of degree correlation
(Fig. 5), the RP model, in which the fraction of cooperators is
most robust, falls in the disassortative regime. It does not seem,
however, that the degree correlation plays a key role in the
robustness of the cooperation since the fraction of cooperators
in the TP model, which also falls in the disassortative regime, is
rather fragile. For the robustness of cooperation, the resiliency
of the hubs with the largest degree controlling the stability of
cooperation is most important. In this regard, elimination
of the hubs due to targeted attack is most fatal to the robustness
of the cooperation. On the contrary, random node removal
rarely hits the hubs in elimination. This is the main reason for
the difference between RP and TP in the PD game on networks
with continuously changing network topology. The fate of
cooperation is thus dominated by the network heterogeneity,
and the degree correlation seems to be a secondary factor in
the dynamic network.

It should be noted that the fraction of cooperators is most
fragile in the TR model, which falls in the uncorrelated regime.
This result is different from the analysis of static networks,
where uncorrelated networks have an advantage in terms of
the robustness of the clusters of cooperators [9].

IV. SUMMARY

The evolution of cooperation is still an open question
in various fields. It is commonly accepted that the network
structure is one of the main controlling factors for the
promotion of cooperation. In social or ecological systems in
the real world, it is plausible to assume that an individual or
a species represented by a node is constantly replaced by or
added to another, which introduces a continuous topological
change in the network structure.

It is therefore important to know whether cooperation
is maintained under such circumstances. Based on these
motivations, we numerically investigated the robustness of co-
operation on scale-free networks under continuous topological
changes due to the removal and addition of nodes in a network.

We have found that cooperation is most robust against
random removal and preferential addition of nodes, while
cooperation is most vulnerable against targeted attack. The
damage caused by the targeted attack is not fully compensated
by either random or preferential addition. By calculating
several network characteristics, we have revealed that the
network heterogeneity dominates the fate of cooperation. If
the degree variance is large, cooperation is maintained. We
have also shown that the degree correlation does not affect the
cooperation much on dynamical networks because cooperation
mainly depends on the existence of cooperative hubs, which
shows a sharp distinction from the cases observed in static
networks. These results might explain the fact that a vast
variety of individuals is needed in a society where many
individuals independently join and leave because hubs are
actually important for maintaining cooperation on an online
friendship network [35].
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